EE247 Lecture 14 - ee247/fa07/files07/lectures/L14_f07.pdf · EECS 247- Lecture 14 Data...

32
EECS 247- Lecture 14 Data Converters:Testing - DAC Design © 2007 H.K. Page 1 EE247 Lecture 14 Data Converters – Data converter testing (continued) DNL & SNR, INL & SFDR Effective number of bits (ENOB) – D/A converter design • Architectures • Performance – Static – Dynamic EECS 247- Lecture 14 Data Converters:Testing - DAC Design © 2007 H.K. Page 2 Summary Last Lecture Data Converters Static testing (continued) • ……………….. Histogram testing Dynamic tests Spectral testing Reveals ADC errors associated with dynamic behavior i.e. ADC performance as a function of frequency – Direct D iscrete F ourier T ransform (DFT) based measurements utilizing sinusoidal signals – DFT measurements including windowing

Transcript of EE247 Lecture 14 - ee247/fa07/files07/lectures/L14_f07.pdf · EECS 247- Lecture 14 Data...

Page 1: EE247 Lecture 14 - ee247/fa07/files07/lectures/L14_f07.pdf · EECS 247- Lecture 14 Data Converters:Testing - DAC Design © 2007 H.K. Page 5 Effective Number of Bits (ENOB) • Is

EECS 247- Lecture 14 Data Converters:Testing - DAC Design © 2007 H.K. Page 1

EE247Lecture 14

• Data Converters – Data converter testing (continued)

• DNL & SNR, INL & SFDR• Effective number of bits (ENOB)

– D/A converter design• Architectures• Performance

– Static– Dynamic

EECS 247- Lecture 14 Data Converters:Testing - DAC Design © 2007 H.K. Page 2

Summary Last Lecture• Data Converters

– Static testing (continued)• ………………..• Histogram testing

– Dynamic tests• Spectral testing Reveals ADC errors associated with

dynamic behavior i.e. ADC performance as a function of frequency– Direct Discrete Fourier Transform (DFT) based

measurements utilizing sinusoidal signals– DFT measurements including windowing

Page 2: EE247 Lecture 14 - ee247/fa07/files07/lectures/L14_f07.pdf · EECS 247- Lecture 14 Data Converters:Testing - DAC Design © 2007 H.K. Page 5 Effective Number of Bits (ENOB) • Is

EECS 247- Lecture 14 Data Converters:Testing - DAC Design © 2007 H.K. Page 3

INL & SFDRDNL & SNR

INL & SFDR

• Depends on "shape" of INL

• Rule of Thumb:

SFDR ≅ 20 log(2B/INL)

– E.g. 1LSB INL, 10bSFDR≅60dB

DNL & SNR

Assumptions: • DNL pdf uniform

• No missing code

312

22

21

22

2

DNLSQNR

N

⎟⎟⎠

⎞⎜⎜⎝

⎛ Δ

=

EECS 247- Lecture 14 Data Converters:Testing - DAC Design © 2007 H.K. Page 4

Uniform DNL?

• DNL distribution of 12-bit ADC test chip• Not quite uniform...

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.50

50

100

150

200

250

DNL

# of

occ

urre

nces

Page 3: EE247 Lecture 14 - ee247/fa07/files07/lectures/L14_f07.pdf · EECS 247- Lecture 14 Data Converters:Testing - DAC Design © 2007 H.K. Page 5 Effective Number of Bits (ENOB) • Is

EECS 247- Lecture 14 Data Converters:Testing - DAC Design © 2007 H.K. Page 5

Effective Number of Bits (ENOB)

• Is a 12-Bit converter with 68dB SNDR really a 12-Bit converter?

• Effective Number of Bits (ENOB)

Bits0.1102.6

76.168dB02.6

dB76.1

=−=

−= SNDRENOB

EECS 247- Lecture 14 Data Converters:Testing - DAC Design © 2007 H.K. Page 6

ENOB

• At best, we get "ideal" ENOB only for zero thermal noise, zero DNL, zero INL

• Low noise design is costly 4x penalty in power per (ENOB-) bit or 6dB extra SNDR

• Rule of thumb for good performance /power tradeoff: ENOB < N-1

Page 4: EE247 Lecture 14 - ee247/fa07/files07/lectures/L14_f07.pdf · EECS 247- Lecture 14 Data Converters:Testing - DAC Design © 2007 H.K. Page 5 Effective Number of Bits (ENOB) • Is

EECS 247- Lecture 14 Data Converters:Testing - DAC Design © 2007 H.K. Page 7

ENOB Survey

R. H. Walden, "Analog-to-digital converter survey and analysis," IEEE J. on Selected Areas in Communications, pp. 539-50, April 1999

EECS 247- Lecture 14 Data Converters:Testing - DAC Design © 2007 H.K. Page 8

Example: ADC Spectral Tests

SFDR

SDR

SNR

Ref: W. Yang et al., "A 3-V 340-mW 14-b 75-Msample/s CMOS ADC with 85-dB SFDR at Nyquist input," IEEE J. of Solid-State Circuits, Dec. 2001

Page 5: EE247 Lecture 14 - ee247/fa07/files07/lectures/L14_f07.pdf · EECS 247- Lecture 14 Data Converters:Testing - DAC Design © 2007 H.K. Page 5 Effective Number of Bits (ENOB) • Is

EECS 247- Lecture 14 Data Converters:Testing - DAC Design © 2007 H.K. Page 9

D-to-A Converter Design

EECS 247- Lecture 14 Data Converters:Testing - DAC Design © 2007 H.K. Page 10

D/A Converter Transfer Characteristics

• An ideal digital-to-analog converter:

– Accepts digital inputs b1-bn

– Produces either an analog output voltage or current

– Assumption • Uniform, binary

digital encoding • Unipolar output

ranging from 0 to VFS

D/A

……..…b1 b2 b3 bn

Vo or Io

MSB LSB

FS

FSN

FS2

N # of bi ts

V ful l scale output

min. s tep size 1LSB

V2

Vor N log resolut ion

=

=

Δ = →

Δ =

= →Δ

Nomenclature:

Page 6: EE247 Lecture 14 - ee247/fa07/files07/lectures/L14_f07.pdf · EECS 247- Lecture 14 Data Converters:Testing - DAC Design © 2007 H.K. Page 5 Effective Number of Bits (ENOB) • Is

EECS 247- Lecture 14 Data Converters:Testing - DAC Design © 2007 H.K. Page 11

D/A Converters• D/A architecture examples

– Resistor string DAC– Charge Redistribution DAC– Current source type

• Static performance– Limited by component matching– Architectures

• Unit element• Binary weighted• Segmented

– Dynamic element matching

• Dynamic performance– Limited by timing errors causing glitches

EECS 247- Lecture 14 Data Converters:Testing - DAC Design © 2007 H.K. Page 12

D/A Converters

• Comprises voltage or charge or current based elements

• Examples for above three categories:– Resistor string voltage – Charge redistribution charge– Current source type current

Page 7: EE247 Lecture 14 - ee247/fa07/files07/lectures/L14_f07.pdf · EECS 247- Lecture 14 Data Converters:Testing - DAC Design © 2007 H.K. Page 5 Effective Number of Bits (ENOB) • Is

EECS 247- Lecture 14 Data Converters:Testing - DAC Design © 2007 H.K. Page 13

Resistor String DAC

R

R

R

R

R

R

R

R

Voltage based:

A B-bit DAC requires: 2B

resistors in seriesAll resistors equal

Generates 2B

equally spaced voltages ready to be chosen based on the digital input word

Vref

3-Bit Resistor String DAC

EECS 247- Lecture 14 Data Converters:Testing - DAC Design © 2007 H.K. Page 14

R-String DACExample

Example:

• Input code: [d2 d1 d0]=101

Vout= 5Vref /8

• Assuming switch resistance << R:

τsettling = (3R||5R) x C=0.23 x 8RC Vref /8

2Vref /8

3Vref /8

4Vref /8

5Vref /8

6Vref /8

7Vref /8

C

R

Vref

Vout = 5Vref /8

Page 8: EE247 Lecture 14 - ee247/fa07/files07/lectures/L14_f07.pdf · EECS 247- Lecture 14 Data Converters:Testing - DAC Design © 2007 H.K. Page 5 Effective Number of Bits (ENOB) • Is

EECS 247- Lecture 14 Data Converters:Testing - DAC Design © 2007 H.K. Page 15

R-String DAC• Advantages:

– Takes full advantage of availability of almost perfect switches in MOS technologies

– Simple, fast for <8-10bits– Inherently monotonic– Compatible with purely digital

technologies

• Disadvantages:– 2B resistors & ~2x2B switches for B

bits High element count & large area for B >10bits

– High settling time for high resolution DACs:τmax ~ 0.25 x 2B RC

C

Ref:M. Pelgrom, “A 10-b 50-MHz CMOS D/A Converter with 75-W Buffer,” JSSC, Dec. 1990, pp. 1347

Vref

EECS 247- Lecture 14 Data Converters:Testing - DAC Design © 2007 H.K. Page 16

R-String DAC

•Choice of resistor value:–Since maximum output settling

time:

τmax ~ 0.25 x 2B RC–Choice of resistor value directly

affects DAC maximum operating speed

–Power dissipation: function of Vref

2/ (Rx2B)

Tradeoff between speed and power dissipation

C

Vref

Page 9: EE247 Lecture 14 - ee247/fa07/files07/lectures/L14_f07.pdf · EECS 247- Lecture 14 Data Converters:Testing - DAC Design © 2007 H.K. Page 5 Effective Number of Bits (ENOB) • Is

EECS 247- Lecture 14 Data Converters:Testing - DAC Design © 2007 H.K. Page 17

R-String DAC

• Resistor type:– Choice of resistive material

important

– Diffusion type R high temp. co. & voltage co. • Results in poor INL/DNL

– Better choice is poly resistor beware of poly R 1/f noise

– At times, for high-frequency & high performance DACs, metal R (beware of high temp. co.) or thin film R is used

C

Vref

EECS 247- Lecture 14 Data Converters:Testing - DAC Design © 2007 H.K. Page 18

R-String DACLayout Considerations

• Number of resistor segments 2B

–E.g. 10-bit R-string DAC 1024 resistors

• Low INL/DNL dictates good R matching

• Layout quite a challenge

–Good matching mandates all R segments either vertical or horizontal - not both

–Matching of metal interconnect and contacts–Need to fold the string

• Difficult to match corner segments to rest• Could result in large INL/DNL

........

R-S

tring

Lay

out

Corner

Page 10: EE247 Lecture 14 - ee247/fa07/files07/lectures/L14_f07.pdf · EECS 247- Lecture 14 Data Converters:Testing - DAC Design © 2007 H.K. Page 5 Effective Number of Bits (ENOB) • Is

EECS 247- Lecture 14 Data Converters:Testing - DAC Design © 2007 H.K. Page 19

R-String DACIncluding Interpolation

Resistor string DAC+ Resistor string interpolator increases resolution w/o drastic increase in complexitye.g. 10bit DAC (5bit +5bit 2x25=26 #of Rs) instead of direct 10bit 210

Considerations:Main R-string loaded by the interpolation stringLarge R values for interpolating string less loading but lower speedCan use buffers

Vout

Vref

EECS 247- Lecture 14 Data Converters:Testing - DAC Design © 2007 H.K. Page 20

R-String DACIncluding Interpolation

Use buffers to prevent loading of the main ladder

Issues:

Buffer DC offset Buffer limited

bandwidth effect on overall speed

Vref

Page 11: EE247 Lecture 14 - ee247/fa07/files07/lectures/L14_f07.pdf · EECS 247- Lecture 14 Data Converters:Testing - DAC Design © 2007 H.K. Page 5 Effective Number of Bits (ENOB) • Is

EECS 247- Lecture 14 Data Converters:Testing - DAC Design © 2007 H.K. Page 21

Charge Based: Serial Charge Redistribution DACSimplified Operation

• Conversion sequence:– Initialize: Discharge C2 & charge C1 to VREF S2& S4 closed– Charge share: close S1 VC2=VC1=VREF/2

Nominally C1=C2

EECS 247- Lecture 14 Data Converters:Testing - DAC Design © 2007 H.K. Page 22

• Conversion sequence:–Next cycle

• If S3 closed VC1=0 then when S1 closes VC1 = VC2 = VREF/4• If S2 closed VC1=VREF then when S1 closes VC1 =VC2 =VREF/2+VREF/4

Nominally C1=C2

Serial Charge Redistribution DACSimplified Operation (Cont’d)

Page 12: EE247 Lecture 14 - ee247/fa07/files07/lectures/L14_f07.pdf · EECS 247- Lecture 14 Data Converters:Testing - DAC Design © 2007 H.K. Page 5 Effective Number of Bits (ENOB) • Is

EECS 247- Lecture 14 Data Converters:Testing - DAC Design © 2007 H.K. Page 23

Serial Charge Redistribution DAC• Nominally C1=C2

• Conversion sequence:– Discharge C1 & C2 S3&

S4 closed– For each bit in succession

beginning with LSB, b1:• S1 open- if bi=1 C1

precharge to VREF if bi=0 discharged to GND

• S2 & S3 & S4 open- S1 closed- Charge sharing C1 & C2

½ of precharge on C1 +½ of charge previously stored on C2 C2

EECS 247- Lecture 14 Data Converters:Testing - DAC Design © 2007 H.K. Page 24

Serial Charge Redistribution DACExample: Input Code 101

• Example input code 101 output (1/8 +0/8 +4/8 )VREF =5/8 VREF

• Very small area• N redistribution cycles for N-bit conversion quite slow

b3 b2 b1

LSB MSB

Page 13: EE247 Lecture 14 - ee247/fa07/files07/lectures/L14_f07.pdf · EECS 247- Lecture 14 Data Converters:Testing - DAC Design © 2007 H.K. Page 5 Effective Number of Bits (ENOB) • Is

EECS 247- Lecture 14 Data Converters:Testing - DAC Design © 2007 H.K. Page 25

Parallel Charge Scaling DAC

Make Cx & Cy function of incoming DAC digital word

Vref

Vout

CCxCyout ref

CxV VCx Cy C+

=+

• DAC operation based on capacitive voltage division

EECS 247- Lecture 14 Data Converters:Testing - DAC Design © 2007 H.K. Page 26

Parallel Charge Scaling DAC

• E.g. “Binary weighted”

• B+1 capacitors & switches (Cs built of unit elements

2B units of C)

CC2C4C8C2(B-1) C

Vref

Vout

reset

b0 (lsb)b1b2b3bB-1 (msb)

B 1i

ii 0out refB

b 2 CV V

2 C

==∑

Page 14: EE247 Lecture 14 - ee247/fa07/files07/lectures/L14_f07.pdf · EECS 247- Lecture 14 Data Converters:Testing - DAC Design © 2007 H.K. Page 5 Effective Number of Bits (ENOB) • Is

EECS 247- Lecture 14 Data Converters:Testing - DAC Design © 2007 H.K. Page 27

Charge Scaling DACExample: 4Bit DAC- Input Code 1011

CC2C4C8C

Vref

Vout

b0 (lsb)b1b2b3

CC2C4C8C

Vref

Voutreset

b0 (lsb)b1b2b3

b- Charge phasea- Reset phase

0 1 3out ref ref4

2 C 2 C 2 C 11V V V2 C 16

=+ +=

EECS 247- Lecture 14 Data Converters:Testing - DAC Design © 2007 H.K. Page 28

Charge Scaling DAC

• Sensitive to parasitic capacitor @ output– If Cp constant gain error– If Cp voltage dependant DAC nonlinearity

• Large area of caps for high DAC resolution (10bit DAC ratio 1:512)

• Monotonicity depends on element matching (more later)

refP

B

B

i

ii

out VCC

CbV

+=∑

=

2

21

0

CC2C4C8C2(B-1) C

Vref

Vout

reset

b0 (lsb)b1b2b3bB-1 (msb)

CP

Page 15: EE247 Lecture 14 - ee247/fa07/files07/lectures/L14_f07.pdf · EECS 247- Lecture 14 Data Converters:Testing - DAC Design © 2007 H.K. Page 5 Effective Number of Bits (ENOB) • Is

EECS 247- Lecture 14 Data Converters:Testing - DAC Design © 2007 H.K. Page 29

Parasitic InsensitiveCharge Scaling DAC

• Opamp helps eliminate the parasitic capacitor effect by producing virtual ground at the sensitive node since CP has zero volts at start & end

– Issue: opamp offset & speed

C2C4C8C2(B-1) C

Vref

Vout

reset

b0 (lsb)b1b2b3bB-1 (msb)

CP

CI

-

+

CI

B 1 B 1i i

i iBi 0 i 0

out ref I out refBI

b 2 C b 2V V , C 2 C V V

C 2

− −

= == = → =∑ ∑

EECS 247- Lecture 14 Data Converters:Testing - DAC Design © 2007 H.K. Page 30

Charge Scaling DACIncorporating Offset Compensation

• During reset phase:– Opamp disconnected from capacitor array via switch S3– Opamp connected in unity-gain configuration (S1)– CI Bottom plate connected to ground (S2)– Vout ~ - Vos VCI = -Vos

• This effectively compensates for offset during normal phase

C2C4C8C2(B-1) C

Vref

Vout

reset

b0 (lsb)b1b2b3bB-1 (msb)

CP -

+

CI

osV

reset

reset

S1

S2

S3

Page 16: EE247 Lecture 14 - ee247/fa07/files07/lectures/L14_f07.pdf · EECS 247- Lecture 14 Data Converters:Testing - DAC Design © 2007 H.K. Page 5 Effective Number of Bits (ENOB) • Is

EECS 247- Lecture 14 Data Converters:Testing - DAC Design © 2007 H.K. Page 31

Charge Scaling DACUtilizing Split Array

• Split array reduce the total area of the capacitors required for high resolution DACs

– E.g. 10bit regular binary array requires 1024 unit Cs while split array (5&5) needs 64 unit Cs

– Issue: Sensitive to parasitic capacitor

series

al l LSB array CC C

all MSB array C=∑

C 2C 4C

Vref

Vout

reset

b5b4b3b2

+

-

8/7C

C 2C 4C

b1b0

C

EECS 247- Lecture 14 Data Converters:Testing - DAC Design © 2007 H.K. Page 32

Charge Scaling DAC

• Advantages:– Low power dissipation capacitor array does not dissipate DC power– Output is sample and held no need for additional S/H– INL function of capacitor ratio– Possible to trim or calibrate for improved INL– Offset cancellation almost for free

• Disadvantages:– Process needs to include good capacitive material not

compatible with standard digital process– Requires large capacitor ratios– Not inherently monotonic (more later)

Page 17: EE247 Lecture 14 - ee247/fa07/files07/lectures/L14_f07.pdf · EECS 247- Lecture 14 Data Converters:Testing - DAC Design © 2007 H.K. Page 5 Effective Number of Bits (ENOB) • Is

EECS 247- Lecture 14 Data Converters:Testing - DAC Design © 2007 H.K. Page 33

Segmented DACResistor Ladder (MSB) & Binary Weighted Charge Scaling (LSB)

CC2C4C8C32 C

reset

b1b2b3b5

16C

b4

Vout

b0

..........

SwitchNetwork

6bitresistorladder

6-bitbinary weighted charge redistribution DAC

• Example: 12bit DAC

– 6-bit MSB DACR- string

– 6-bit LSB DAC binary weighted charge scaling

• Complexity much lower compared to

full R-string– Full R string

4096 resistors– Segmented 64

R + 7 Cs (64 unit caps)

EECS 247- Lecture 14 Data Converters:Testing - DAC Design © 2007 H.K. Page 34

Current based DACUnit Element Current Source DAC

• “Unit elements” or thermometer• 2B-1 current sources & switches • Suited for both MOS and BJT technologies• Monotonicity does not depend on element matching • Output resistance of current source gain error

– Cascode type current sources higher output resistance less gain error

Iref Iref

Iout

IrefIref

……………

……………Iref

Page 18: EE247 Lecture 14 - ee247/fa07/files07/lectures/L14_f07.pdf · EECS 247- Lecture 14 Data Converters:Testing - DAC Design © 2007 H.K. Page 5 Effective Number of Bits (ENOB) • Is

EECS 247- Lecture 14 Data Converters:Testing - DAC Design © 2007 H.K. Page 35

Current Source DACUnit Element

• Output resistance of current source gain error problemUse transresistance amplifier- Current source output held @ virtual ground - Error due to current source output resistance eliminated- New issues: offset & speed of the amplifier

Iref IrefIrefIref

……………

……………

Vout

R

-

+

EECS 247- Lecture 14 Data Converters:Testing - DAC Design © 2007 H.K. Page 36

Current Source DACBinary Weighted

• “Binary weighted”• B current sources & switches (2B-1 unit current

sources but less # of switches)• Monotonicity depends on element matching

4 Iref Iref

Iout

2Iref2B-1 Iref

……………

……………

Page 19: EE247 Lecture 14 - ee247/fa07/files07/lectures/L14_f07.pdf · EECS 247- Lecture 14 Data Converters:Testing - DAC Design © 2007 H.K. Page 5 Effective Number of Bits (ENOB) • Is

EECS 247- Lecture 14 Data Converters:Testing - DAC Design © 2007 H.K. Page 37

R-2R Ladder Type DAC

• R-2R DAC Basics

– Simple R network divides both voltage & current by 2

R

V

V/2

2R 2RI I/2 I/2

Increase # of bits by replicating circuit

EECS 247- Lecture 14 Data Converters:Testing - DAC Design © 2007 H.K. Page 38

R-2R Ladder DAC

VB

2R 2R

Emitter-follower added to convert to high output impedance current sources

Series switch resistance does not impair performance

2R 2R 2R 2RR R R R

VEE

Iout

Page 20: EE247 Lecture 14 - ee247/fa07/files07/lectures/L14_f07.pdf · EECS 247- Lecture 14 Data Converters:Testing - DAC Design © 2007 H.K. Page 5 Effective Number of Bits (ENOB) • Is

EECS 247- Lecture 14 Data Converters:Testing - DAC Design © 2007 H.K. Page 39

R-2R Ladder DACHow Does it Work?

VB

Consider a simple 3bit R-2R DAC:

2R 2R 2R 2RR R

VEE

Iout

AunitAunit2Aunit4Aunit

EECS 247- Lecture 14 Data Converters:Testing - DAC Design © 2007 H.K. Page 40

R-2R Ladder DACHow Does it Work?

VB

Simple 3bit DAC:1- Consolidate first two stages:

2R 2R 2R 2RR R

VEE

ITI1I2I3

AunitAunit2Aunit4Aunit

QTQ1Q2Q3 VB

2R 2R RR R

VEE

I1+ITI2I3

2Aunit2Aunit4Aunit

Q2Q3

Page 21: EE247 Lecture 14 - ee247/fa07/files07/lectures/L14_f07.pdf · EECS 247- Lecture 14 Data Converters:Testing - DAC Design © 2007 H.K. Page 5 Effective Number of Bits (ENOB) • Is

EECS 247- Lecture 14 Data Converters:Testing - DAC Design © 2007 H.K. Page 41

R-2R Ladder DACHow Does it Work?

Simple 3bit DAC-2- Consolidate next two stages:

VB

2R 2R RR R

VEE

I1+ITI2I3

2Aunit2Aunit4Aunit

Q2Q3VB

2R RR

VEE

I2+I1+ITI3

4Aunit4Aunit

Q2Q3

Total Total Total3 2 1 3 2 1T

I I II I I I I , I , I2 4 8= + + → = = =

EECS 247- Lecture 14 Data Converters:Testing - DAC Design © 2007 H.K. Page 42

R-2R Ladder DACHow Does it Work?

VB

Consider a simple 3bit R-2R DAC:

2R 2R 2R 2RR R

VEE

II2I4I

2I4I

Iout

AunitAunit2Aunit4Aunit

Ref: B. Razavi, “Data Conversion System Design”, IEEE Press, 1995, page 84-87

Page 22: EE247 Lecture 14 - ee247/fa07/files07/lectures/L14_f07.pdf · EECS 247- Lecture 14 Data Converters:Testing - DAC Design © 2007 H.K. Page 5 Effective Number of Bits (ENOB) • Is

EECS 247- Lecture 14 Data Converters:Testing - DAC Design © 2007 H.K. Page 43

R-2R Ladder DAC

VB

2R 2R

Transresistance amplifier added to:- Convert current to voltage- Generate virtual ground @ current summing node so that output impedance of current sources do not cause error- Issue: error due to opamp offset

Vout

R-

+

2R 2R 2R 2RR R R R

VEE

II2I4I8I16I

2I4I8I16I

RTotal

EECS 247- Lecture 14 Data Converters:Testing - DAC Design © 2007 H.K. Page 44

R-2R Ladder DACOpamp Offset Issue

out inos os Total

Totalout inos os

Totalout inos os Total

Totaloutos

R1V V R

If R l arg e,

V V

If R not l arg eR1V V R

Pr oblem :

Since R is code dependant

V would be code dependant

Gives r ise to INL & DNL

⎛ ⎞+= ⎜ ⎟⎝ ⎠

=

→ ≈

=⎛ ⎞+→ = ⎜ ⎟⎝ ⎠

Vout

R

-

+

RTotal

osV

Offset Model

Page 23: EE247 Lecture 14 - ee247/fa07/files07/lectures/L14_f07.pdf · EECS 247- Lecture 14 Data Converters:Testing - DAC Design © 2007 H.K. Page 5 Effective Number of Bits (ENOB) • Is

EECS 247- Lecture 14 Data Converters:Testing - DAC Design © 2007 H.K. Page 45

R-2R LadderSummary

• Advantages:– Resistor ratios only x2– Does not require precision capacitors

• Disadvantages:– Total device emitter area AE

unitx 2B

Not practical for high resolution DACs– INL/DNL error due to amplifier offset

EECS 247- Lecture 14 Data Converters:Testing - DAC Design © 2007 H.K. Page 46

Static DAC Errors -INL / DNLStatic DAC errors mainly due to component mismatch

– Systematic errors• Contact resistance• Edge effects in capacitor arrays• Process gradients• Finite current source output resistance

– Random variations• Lithography etc…• Often Gaussian distribution (central limit theorem)

*Ref: C. Conroy et al, “Statistical Design Techniques for D/A Converters,” JSSCAug. 1989, pp. 1118-28.

Page 24: EE247 Lecture 14 - ee247/fa07/files07/lectures/L14_f07.pdf · EECS 247- Lecture 14 Data Converters:Testing - DAC Design © 2007 H.K. Page 5 Effective Number of Bits (ENOB) • Is

EECS 247- Lecture 14 Data Converters:Testing - DAC Design © 2007 H.K. Page 47

Current Source DACDNL/INL Due to Element Mismatch

• Simplified example:– 3-bit DAC– Assume only two of the current sources mismatched (# 4 & #5)

Iref IrefIrefIref Iref

Iref +ΔIIref -ΔI

Vout

-

+

EECS 247- Lecture 14 Data Converters:Testing - DAC Design © 2007 H.K. Page 48

max

segment[ m] V [ LSB]DNL[ m]

V [ LSB]

segment[4] V [ LSB]DNL[4]

V [ LSB]

( I I )R IR

IR

DNL[4] I / I [ LSB]

( I I )R IRDNL[5]

IR

DNL[5] I / I[ LSB]

INL I / I [ LSB]

−=

−=

− Δ −=

= −Δ

+ Δ −=

= Δ

→ = −Δ000 001 010 011 100 101 110 111

DigitalInput

Analog Output

7 Iref R

6

5

4

3

2

1xIref R

0

Current Source DACDNL/INL Due to Element Mismatch

Page 25: EE247 Lecture 14 - ee247/fa07/files07/lectures/L14_f07.pdf · EECS 247- Lecture 14 Data Converters:Testing - DAC Design © 2007 H.K. Page 5 Effective Number of Bits (ENOB) • Is

EECS 247- Lecture 14 Data Converters:Testing - DAC Design © 2007 H.K. Page 49

Component MismatchProbability Distribution Function

• Component parameters Random variables

• Each component is the product of many fabrication steps• Most fabrication steps includes random variations

Overall component variation product of several random variables

Assuming each of these variables have a uniform distribution:Joint pdf of a random variable affected by two uniformly distribution is the convolution of the two uniform pdfs…….

pdf [f(x1)]

*

*

pdf [f(x2)] pdf [f(x1,x2)]

pdf [f(x1,x2)] pdf [f(x3,x4)]

..……..pdf [f(xm,xn)]

*Gaussian pdf

EECS 247- Lecture 14 Data Converters:Testing - DAC Design © 2007 H.K. Page 50

Gaussian Distribution

-3 -2 -1 0 1 2 30

0.1

0.2

0.3

0.4

(x-μ) /σ

Prob

abilit

y de

nsity

p(x

)

( )22

2

x2

2 2

variance

is the expected value and

1p( x ) e2

where:

standard deviation : E( X )

μσ

μ

πσ

σ μσ

−−

=

= −

Page 26: EE247 Lecture 14 - ee247/fa07/files07/lectures/L14_f07.pdf · EECS 247- Lecture 14 Data Converters:Testing - DAC Design © 2007 H.K. Page 5 Effective Number of Bits (ENOB) • Is

EECS 247- Lecture 14 Data Converters:Testing - DAC Design © 2007 H.K. Page 51

Yield

( )2xX

2

X

P X x X

1e dx

2

Xerf

2

π

+ −

− ≤ ≤ + =

=

⎛ ⎞= ⎜ ⎟⎝ ⎠

0

0.1

0.2

0.3

0.4

Pro

babi

lity

dens

ity

p(x)

0 0.5 1 1.5 2 2.5 30

0.20.40.60.8

1

X/σ

38.3

68.3

95.4

P(-

X ≤

x ≤

+X)

In most cases we are interested in finding the percentage of components (e.g. R) falling within certain bounds:

EECS 247- Lecture 14 Data Converters:Testing - DAC Design © 2007 H.K. Page 52

YieldX/σ P(-X ≤ x ≤ X) [%]

0.2000 15.85190.4000 31.08430.6000 45.14940.8000 57.62891.0000 68.26891.2000 76.98611.4000 83.84871.6000 89.04011.8000 92.81392.0000 95.4500

X/σ P(-X ≤ x ≤ X) [%]

2.2000 97.21932.4000 98.36052.6000 99.06782.8000 99.48903.0000 99.73003.2000 99.86263.4000 99.93263.6000 99.96823.8000 99.98554.0000 99.9937

Page 27: EE247 Lecture 14 - ee247/fa07/files07/lectures/L14_f07.pdf · EECS 247- Lecture 14 Data Converters:Testing - DAC Design © 2007 H.K. Page 5 Effective Number of Bits (ENOB) • Is

EECS 247- Lecture 14 Data Converters:Testing - DAC Design © 2007 H.K. Page 53

Example

• Measurements show that the offset voltage of a batch of operational amplifiers follows a Gaussian distribution with σ = 2mV and μ = 0.

• Fraction of opamps with |Vos| < 6mV:– X/σ = 3 99.73 % yield

• Fraction of opamps with |Vos| < 400μV:– X/σ = 0.2 15.85 % yield

EECS 247- Lecture 14 Data Converters:Testing - DAC Design © 2007 H.K. Page 54

Component Mismatch

RR

Δ

10000

100

200

300

400

No.

of r

esis

tors

1004 1008 1012996992988R[ ]Ω

Example: Resistors layouted outside-by-side

E.g. Let us assume in this example 1000 Rs measured & 68.5% within +-4OHM or +-0.4% of average

1σ for resistors 0.4%

After fabrication large # of devices measured & graphed typically if sample size large shape is Gaussian

…….…….

Page 28: EE247 Lecture 14 - ee247/fa07/files07/lectures/L14_f07.pdf · EECS 247- Lecture 14 Data Converters:Testing - DAC Design © 2007 H.K. Page 5 Effective Number of Bits (ENOB) • Is

EECS 247- Lecture 14 Data Converters:Testing - DAC Design © 2007 H.K. Page 55

Component Mismatch

1 2

1 2

2dRR

R RR

2

dR R R

1Area

σ

+=

= −

RR

Δ

00

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Prob

abilit

y de

nsity

p(x

)

σ 2σ 3σ−σ−2σ−3σdRRFor typical technologies & geometries

1σ for resistors 0.02 to 5%

In the case of resistors σ is a function of area

Example: Two resistors layouted out side-by-side

EECS 247- Lecture 14 Data Converters:Testing - DAC Design © 2007 H.K. Page 56

DNL Unit Element DAC

i i refR IΔ =

DNL of unit element DAC is independent of resolution!

E.g. Resistor string DAC:

Iref

Vref

B

i

i

2 1

io

median ref median B

i i re f

i mediani

median

i median

imedian median

DNL dRR

RR I where R

2

R I

DNL

R R dR dR

R R R

σ σ

Δ = =

Δ =

Δ − Δ=

Δ

−= = ≈

=

Page 29: EE247 Lecture 14 - ee247/fa07/files07/lectures/L14_f07.pdf · EECS 247- Lecture 14 Data Converters:Testing - DAC Design © 2007 H.K. Page 5 Effective Number of Bits (ENOB) • Is

EECS 247- Lecture 14 Data Converters:Testing - DAC Design © 2007 H.K. Page 57

DNL Unit Element DAC

Example:If σdR/R = 0.4%, what DNL spec goes into the datasheet so that 99.9% of all converters meet the spec?

To first order DNL of unit element DAC is independent of resolution!Note similar results for other unit-element based DACs

E.g. Resistor string DAC:

i

i

DNL dRR

σ σ=

EECS 247- Lecture 14 Data Converters:Testing - DAC Design © 2007 H.K. Page 58

YieldX/σ P(-X ≤ x ≤ X) [%]

0.2000 15.85190.4000 31.08430.6000 45.14940.8000 57.62891.0000 68.26891.2000 76.98611.4000 83.84871.6000 89.04011.8000 92.81392.0000 95.4500

X/σ P(-X ≤ x ≤ X) [%]

2.2000 97.21932.4000 98.36052.6000 99.06782.8000 99.48903.0000 99.73003.2000 99.86263.4000 99.93263.6000 99.96823.8000 99.98554.0000 99.9937

Page 30: EE247 Lecture 14 - ee247/fa07/files07/lectures/L14_f07.pdf · EECS 247- Lecture 14 Data Converters:Testing - DAC Design © 2007 H.K. Page 5 Effective Number of Bits (ENOB) • Is

EECS 247- Lecture 14 Data Converters:Testing - DAC Design © 2007 H.K. Page 59

DNL Unit Element DACExample:If σdR/R = 0.4%, what DNL spec goes into the datasheet so that 99.9% of all converters meet the spec?

Answer:From table: for 99.9%

X/σ = 3.3σDNL = σdR/R = 0.4%3.3 σDNL = 1.3%

DNL= +/- 0.013 LSB

E.g. Resistor string DAC:

i

i

DNL dRR

σ σ=

EECS 247- Lecture 14 Data Converters:Testing - DAC Design © 2007 H.K. Page 60

DAC INL Analysis

B

A

N=2B-1n

n

N

Out

put [

LSB

]

Input [LSB]

E

Ideal VarianceA=n+E n n.σε

2

B=N-n+E N-n (N-n).σε2

E = A-n r =n/N N=A+B= A-r(A+B)= A (1-r) -B.r

Variance of E:σE

2 =(1-r)2 .σΑ2 + r 2 .σB

2

=N.r .(1-r).σε2

Page 31: EE247 Lecture 14 - ee247/fa07/files07/lectures/L14_f07.pdf · EECS 247- Lecture 14 Data Converters:Testing - DAC Design © 2007 H.K. Page 5 Effective Number of Bits (ENOB) • Is

EECS 247- Lecture 14 Data Converters:Testing - DAC Design © 2007 H.K. Page 61

DAC INL

• Error is maximum at mid-scale (N/2):

• INL depends on DAC resolution and element matching σε

• While σDNL = σε is to first order independent of DAC resolution and is only a function of element matching

Ref: Kuboki et al, TCAS, 6/1982

2 2E

2E

BINL

B

n1n

Nd

To find max. variance : 0dn

n N / 2

12 1

2 with N 2 1

ε

ε

σ σ

σ

σ σ

⎛ ⎞−= ×⎜ ⎟⎝ ⎠

=

→ =

= −

= −0.5 1

0

(2B-1)0.5/2

0n/N

σINL/σε

EECS 247- Lecture 14 Data Converters:Testing - DAC Design © 2007 H.K. Page 62

Untrimmed DAC INLExample:

Assume the following requirement for a DAC:σINL = 0.1 LSB

Then:σε = 1% B = 8.6σε = 0.5% B = 10.6σε = 0.2% B = 13.3σε = 0.1% B = 15.3

⎥⎦

⎤⎢⎣

⎡+≅

−≅

ε

ε

σσ

σσ

INL

BINL

B 2log22

1221

Page 32: EE247 Lecture 14 - ee247/fa07/files07/lectures/L14_f07.pdf · EECS 247- Lecture 14 Data Converters:Testing - DAC Design © 2007 H.K. Page 5 Effective Number of Bits (ENOB) • Is

EECS 247- Lecture 14 Data Converters:Testing - DAC Design © 2007 H.K. Page 63

Simulation Example

σε = 1%B = 12Random # generator used in MatLab

Computed INL:σINL = 0.3 LSB(midscale)

500 1000 1500 2000 2500 3000 3500 4000-1

0

1

2

bin

DN

L [L

SB

]12 Bit converter DNL and INL

-0.04 / +0.03 LSB

500 1000 1500 2000 2500 3000 3500 4000-1

0

1

2

bin

INL

LSB

] -0.2 / +0.8 LSB