EE155/255 Green Electronicsweb.stanford.edu/class/ee152/lecture_slides/... · 3 10/3/16 Power...

76
EE155/255 Green Electronics Photovoltaics Feedback Control 10/10/16 Prof. William Dally Computer Systems Laboratory Stanford University

Transcript of EE155/255 Green Electronicsweb.stanford.edu/class/ee152/lecture_slides/... · 3 10/3/16 Power...

Page 1: EE155/255 Green Electronicsweb.stanford.edu/class/ee152/lecture_slides/... · 3 10/3/16 Power Electronics - 1 (switches) 2 1 2 1 AC Energy Meter Power Devices 4 10/5/16 Power Electronics

EE155/255 Green Electronics

PhotovoltaicsFeedback Control

10/10/16

Prof. William DallyComputer Systems Laboratory

Stanford University

Page 2: EE155/255 Green Electronicsweb.stanford.edu/class/ee152/lecture_slides/... · 3 10/3/16 Power Electronics - 1 (switches) 2 1 2 1 AC Energy Meter Power Devices 4 10/5/16 Power Electronics

Course Logistics• Next week schedule is ‘flipped’

– Lectures on Wed/Fri, Discussion on Monday• HW2 due Today (In box outside Sue’s office by 10AM tomorrow)• HW3 out – SPICE simulation – Due Monday 10/17• Lab2 signed off this week• Lab3 out – PV MPPT

EE155/255 Lecture 5 - Photovoltaics

Page 3: EE155/255 Green Electronicsweb.stanford.edu/class/ee152/lecture_slides/... · 3 10/3/16 Power Electronics - 1 (switches) 2 1 2 1 AC Energy Meter Power Devices 4 10/5/16 Power Electronics

No Date Topic HWout HWin Labout Labck Lab HW1 9/26/16 Intro(basicconverters) 1 1 IntrotoST32F3 PeriodicSteadyState2 9/28/16 EmbeddedProg/PowerElect.3 10/3/16 PowerElectronics-1(switches) 2 1 2 1 ACEnergyMeter PowerDevices4 10/5/16 PowerElectronics-2(circuits)5 10/10/16 Photovoltaics 3 2 3 2 PVMPPT PVSPICE6 10/12/16 FeedbackControl7 10/19/16 ElectricMotors 4 3 4 3 MotorcontrolMatlab Feedback8 10/21/16 IsolatedConverters9 10/24/16 SolarDay 5/PP 4 5 4 Motorcontrol-Lab/ IsolatedConverters10 10/26/16 Magnetics11 10/31/16 SoftSwitching 6 5/PP 6 5 PS MagneticsandInverters12 11/2/16 ProjectDiscussions13 11/7/16 Inverters,Grid,PF,andBatteries 6 P 6 Project14 11/9/16 Thermal&EMI15 11/14/16 QuizReview C116 11/16/16 Grounding,andDebuggingQ 11/16/16 Quiz-intheevening C2

11/21/16 ThanksgivingBreak11/23/16 ThanksgivingBreak

17 11/28/1618 11/30/16 MartinFornage,enPhase C319 12/5/16 ColinCampbell,Tesla20 12/7/16 Wrapup

TBD Projectpresentations PTBD Projectwebpagedue

Page 4: EE155/255 Green Electronicsweb.stanford.edu/class/ee152/lecture_slides/... · 3 10/3/16 Power Electronics - 1 (switches) 2 1 2 1 AC Energy Meter Power Devices 4 10/5/16 Power Electronics

Course to Date• We need sustainable energy systems• At the core they are voltage converters• Periodic steady-state analysis, buck and boost• Intelligent control (embedded uC) + power path• Real devices have switching and conduction loss• Half-bridges, dead-time, and snubbers• PV cells characterized by a diode-like I-V curve

– With a maximum power point

EE155/255 Lecture 5 - Photovoltaics

Page 5: EE155/255 Green Electronicsweb.stanford.edu/class/ee152/lecture_slides/... · 3 10/3/16 Power Electronics - 1 (switches) 2 1 2 1 AC Energy Meter Power Devices 4 10/5/16 Power Electronics

PV Module Review

EE155/255 Lecture 5 - Photovoltaics

Page 6: EE155/255 Green Electronicsweb.stanford.edu/class/ee152/lecture_slides/... · 3 10/3/16 Power Electronics - 1 (switches) 2 1 2 1 AC Energy Meter Power Devices 4 10/5/16 Power Electronics

Simple Equvalent Circuit

EE155/255 Lecture 5 - Photovoltaics

Current proportional to irradiance (ISC)

VOC = VDiode(ISC)

Page 7: EE155/255 Green Electronicsweb.stanford.edu/class/ee152/lecture_slides/... · 3 10/3/16 Power Electronics - 1 (switches) 2 1 2 1 AC Energy Meter Power Devices 4 10/5/16 Power Electronics

Typical PV Module

… … …

EE155/255 Lecture 5 - Photovoltaics

Typical 250W module:

• 3 strings of 20 cells

• “Bypass” diodes between strings• Diodes turn on when voltage

across string becomes negative• When Imodule > Istring

Page 8: EE155/255 Green Electronicsweb.stanford.edu/class/ee152/lecture_slides/... · 3 10/3/16 Power Electronics - 1 (switches) 2 1 2 1 AC Energy Meter Power Devices 4 10/5/16 Power Electronics

IV Curve from SPICE ModelISC

VOC

Page 9: EE155/255 Green Electronicsweb.stanford.edu/class/ee152/lecture_slides/... · 3 10/3/16 Power Electronics - 1 (switches) 2 1 2 1 AC Energy Meter Power Devices 4 10/5/16 Power Electronics

Peak-Power Tracking• Find point on IV curve where power is maximized.

Start at any point (v(0),i(0))“Dither” v, v(i+1) = v(i) + DvCheck result: if(p(i+1) < p(i)) v(i+1) = v(i)Try both directions: Dv = -Dv

EE155/255 Lecture 4 - Power Circuits

Page 10: EE155/255 Green Electronicsweb.stanford.edu/class/ee152/lecture_slides/... · 3 10/3/16 Power Electronics - 1 (switches) 2 1 2 1 AC Energy Meter Power Devices 4 10/5/16 Power Electronics

MPP Tracking – The Movie

EE155/255 Lecture 4 - Power Circuits

Page 11: EE155/255 Green Electronicsweb.stanford.edu/class/ee152/lecture_slides/... · 3 10/3/16 Power Electronics - 1 (switches) 2 1 2 1 AC Energy Meter Power Devices 4 10/5/16 Power Electronics

Start at (35 V, 5.5A) P=192.5

EE155/255 Lecture 4 - Power Circuits

Page 12: EE155/255 Green Electronicsweb.stanford.edu/class/ee152/lecture_slides/... · 3 10/3/16 Power Electronics - 1 (switches) 2 1 2 1 AC Energy Meter Power Devices 4 10/5/16 Power Electronics

Dither by DV = 0.5V to V = 35.5V(35.5V, 4.7A) P=166.9 < 192.5

EE155/255 Lecture 4 - Power Circuits

Page 13: EE155/255 Green Electronicsweb.stanford.edu/class/ee152/lecture_slides/... · 3 10/3/16 Power Electronics - 1 (switches) 2 1 2 1 AC Energy Meter Power Devices 4 10/5/16 Power Electronics

(35.5V, 4.7A) P=166.9 < 192.5Bad Move – Go Back to (35, 5.5)

EE155/255 Lecture 4 - Power Circuits

Page 14: EE155/255 Green Electronicsweb.stanford.edu/class/ee152/lecture_slides/... · 3 10/3/16 Power Electronics - 1 (switches) 2 1 2 1 AC Energy Meter Power Devices 4 10/5/16 Power Electronics

Dither by -0.5V to 34.5V(34.5, 6.2) P=213.9 > 192.5

EE155/255 Lecture 4 - Power Circuits

Page 15: EE155/255 Green Electronicsweb.stanford.edu/class/ee152/lecture_slides/... · 3 10/3/16 Power Electronics - 1 (switches) 2 1 2 1 AC Energy Meter Power Devices 4 10/5/16 Power Electronics

(34.5, 6.2) P=213.9 > 192.5Keep move and keep going

EE155/255 Lecture 4 - Power Circuits

Page 16: EE155/255 Green Electronicsweb.stanford.edu/class/ee152/lecture_slides/... · 3 10/3/16 Power Electronics - 1 (switches) 2 1 2 1 AC Energy Meter Power Devices 4 10/5/16 Power Electronics

Move to 34.0(34.0, 6.7) P=227.8 > 213.9

EE155/255 Lecture 4 - Power Circuits

Page 17: EE155/255 Green Electronicsweb.stanford.edu/class/ee152/lecture_slides/... · 3 10/3/16 Power Electronics - 1 (switches) 2 1 2 1 AC Energy Meter Power Devices 4 10/5/16 Power Electronics

(34.0, 6.7) P=227.8 > 213.9Keep move and keep going

EE155/255 Lecture 4 - Power Circuits

Page 18: EE155/255 Green Electronicsweb.stanford.edu/class/ee152/lecture_slides/... · 3 10/3/16 Power Electronics - 1 (switches) 2 1 2 1 AC Energy Meter Power Devices 4 10/5/16 Power Electronics

(33.5, 7.0) P=234.5> 227.8 Keep move and keep going

EE155/255 Lecture 4 - Power Circuits

Page 19: EE155/255 Green Electronicsweb.stanford.edu/class/ee152/lecture_slides/... · 3 10/3/16 Power Electronics - 1 (switches) 2 1 2 1 AC Energy Meter Power Devices 4 10/5/16 Power Electronics

(33.0, 7.3) P=240.9 > 234.5Keep move and keep going

EE155/255 Lecture 4 - Power Circuits

Page 20: EE155/255 Green Electronicsweb.stanford.edu/class/ee152/lecture_slides/... · 3 10/3/16 Power Electronics - 1 (switches) 2 1 2 1 AC Energy Meter Power Devices 4 10/5/16 Power Electronics

(32.5, 7.5) P=243.75 > 240.9 Keep move and keep going

EE155/255 Lecture 4 - Power Circuits

Page 21: EE155/255 Green Electronicsweb.stanford.edu/class/ee152/lecture_slides/... · 3 10/3/16 Power Electronics - 1 (switches) 2 1 2 1 AC Energy Meter Power Devices 4 10/5/16 Power Electronics

(32.0, 7.6) P=243.2 < 243.75 Abandon Move and Go Back!

EE155/255 Lecture 4 - Power Circuits

Page 22: EE155/255 Green Electronicsweb.stanford.edu/class/ee152/lecture_slides/... · 3 10/3/16 Power Electronics - 1 (switches) 2 1 2 1 AC Energy Meter Power Devices 4 10/5/16 Power Electronics

Operate at (32.5, 7.5) P=243.8With occasional forays to 32.0 and 33.0

EE155/255 Lecture 4 - Power Circuits

Page 23: EE155/255 Green Electronicsweb.stanford.edu/class/ee152/lecture_slides/... · 3 10/3/16 Power Electronics - 1 (switches) 2 1 2 1 AC Energy Meter Power Devices 4 10/5/16 Power Electronics

“Hillclimbing” On the Power Curve

EE155/255 Lecture 4 - Power Circuits

Page 24: EE155/255 Green Electronicsweb.stanford.edu/class/ee152/lecture_slides/... · 3 10/3/16 Power Electronics - 1 (switches) 2 1 2 1 AC Energy Meter Power Devices 4 10/5/16 Power Electronics

Compound Power Curve

EE155/255 Lecture 4 - Power Circuits

Page 25: EE155/255 Green Electronicsweb.stanford.edu/class/ee152/lecture_slides/... · 3 10/3/16 Power Electronics - 1 (switches) 2 1 2 1 AC Energy Meter Power Devices 4 10/5/16 Power Electronics

Compound Power Curve (2 Panels)

Not convexHow do you find maximum power point?

EE155/255 Lecture 4 - Power Circuits

Page 26: EE155/255 Green Electronicsweb.stanford.edu/class/ee152/lecture_slides/... · 3 10/3/16 Power Electronics - 1 (switches) 2 1 2 1 AC Energy Meter Power Devices 4 10/5/16 Power Electronics

Three Panels

EE155/255 Lecture 4 - Power Circuits

Page 27: EE155/255 Green Electronicsweb.stanford.edu/class/ee152/lecture_slides/... · 3 10/3/16 Power Electronics - 1 (switches) 2 1 2 1 AC Energy Meter Power Devices 4 10/5/16 Power Electronics

Typical String of 10 PV Panels

EE155/255 Lecture 4 - Power Circuits

Page 28: EE155/255 Green Electronicsweb.stanford.edu/class/ee152/lecture_slides/... · 3 10/3/16 Power Electronics - 1 (switches) 2 1 2 1 AC Energy Meter Power Devices 4 10/5/16 Power Electronics

Search Strategies for Non-Convex MPPT• Exhaustion

– Try every operating point• Random

– Randomly pick new points – keep if better• Hierarchical

– Try every point – with coarse spacing– Try every point near best point with finer spacing– Repeat

• Acquire and Track– One of the above to acquire MPPT (e.g., hierarchical)– Then gradient search to track– Periodically revisit (devote some fraction of string time to this)

• Optimal method depends on – Shape of curve– How fast the curve changes– How the curve changes

EE155/255 Lecture 4 - Power Circuits

Page 29: EE155/255 Green Electronicsweb.stanford.edu/class/ee152/lecture_slides/... · 3 10/3/16 Power Electronics - 1 (switches) 2 1 2 1 AC Energy Meter Power Devices 4 10/5/16 Power Electronics

Good Optimization Depends on Understanding The Problem

• Collect lots of data– Time series of IV curves from typical strings

• Understand the data• What causes “dips”

– Bad panels • Static offset in current

– Fixed shading – trees, buildings, etc… • Periodic offset – same time each day

– Variable shading – clouds, etc… • Unpredictable shading – but shifts across panels in one direction

• Develop algorithms• Test on data

EE155/255 Lecture 4 - Power Circuits

Page 30: EE155/255 Green Electronicsweb.stanford.edu/class/ee152/lecture_slides/... · 3 10/3/16 Power Electronics - 1 (switches) 2 1 2 1 AC Energy Meter Power Devices 4 10/5/16 Power Electronics

An Example of Optimization• Trade-off parameters against one another to maximize a figure of merit.

• In this case, parameters are panel voltage and current.

• Figure of merit is power.

• Optimization is done real-time because temperature and irradiance change.– Sometimes optimization is done at design time, or calibration time.

EE155/255 Lecture 4 - Power Circuits

Page 31: EE155/255 Green Electronicsweb.stanford.edu/class/ee152/lecture_slides/... · 3 10/3/16 Power Electronics - 1 (switches) 2 1 2 1 AC Energy Meter Power Devices 4 10/5/16 Power Electronics

MPPT Power Path(Boost Converter with Energy Meter)

Ci

VPV

PV Panel

RS

M1G

CO

L1

Load

M2G

VL

IPV

MPPT is a boost converter that regulates its INPUT voltage

EE155/255 Lecture 5 - Photovoltaics

Page 32: EE155/255 Green Electronicsweb.stanford.edu/class/ee152/lecture_slides/... · 3 10/3/16 Power Electronics - 1 (switches) 2 1 2 1 AC Energy Meter Power Devices 4 10/5/16 Power Electronics

PV Systems

EE155/255 Lecture 5 - Photovoltaics

Page 33: EE155/255 Green Electronicsweb.stanford.edu/class/ee152/lecture_slides/... · 3 10/3/16 Power Electronics - 1 (switches) 2 1 2 1 AC Energy Meter Power Devices 4 10/5/16 Power Electronics

Microinverter

Panel InverterAC Line240 Vrms~1Arms

30-40V0-10A

EE155/255 Lecture 5 - Photovoltaics

Page 34: EE155/255 Green Electronicsweb.stanford.edu/class/ee152/lecture_slides/... · 3 10/3/16 Power Electronics - 1 (switches) 2 1 2 1 AC Energy Meter Power Devices 4 10/5/16 Power Electronics

Store Energy During AC Null

EE155/255 Lecture 5 - Photovoltaics

Page 35: EE155/255 Green Electronicsweb.stanford.edu/class/ee152/lecture_slides/... · 3 10/3/16 Power Electronics - 1 (switches) 2 1 2 1 AC Energy Meter Power Devices 4 10/5/16 Power Electronics

Approach 1 – DC Link

Boost

30-40V0-10A

340-600V0-1A

Buck Unfold

Rectified AC240V, 1A rms

EE155/255 Lecture 5 - Photovoltaics

Page 36: EE155/255 Green Electronicsweb.stanford.edu/class/ee152/lecture_slides/... · 3 10/3/16 Power Electronics - 1 (switches) 2 1 2 1 AC Energy Meter Power Devices 4 10/5/16 Power Electronics

Approach 2 – Single Stage

30-40V0-10A

Convert Unfold

Rectified AC240V, 1A rms

EE155/255 Lecture 5 - Photovoltaics

Page 37: EE155/255 Green Electronicsweb.stanford.edu/class/ee152/lecture_slides/... · 3 10/3/16 Power Electronics - 1 (switches) 2 1 2 1 AC Energy Meter Power Devices 4 10/5/16 Power Electronics

Buck

Boost

400VDC Unfold

400-600V120Hz Buck

240V 120Hz rectified sine240V AC 60Hz

2/3 of power through main pathLower path levels input current

Two-Path

EE155/255 Lecture 5 - Photovoltaics

Page 38: EE155/255 Green Electronicsweb.stanford.edu/class/ee152/lecture_slides/... · 3 10/3/16 Power Electronics - 1 (switches) 2 1 2 1 AC Energy Meter Power Devices 4 10/5/16 Power Electronics

3-Phase

String ofPanels

Inverter

AC Line480 V20 A3 phase

600-1000V10A

No need for energy storage

EE155/255 Lecture 5 - Photovoltaics

Page 39: EE155/255 Green Electronicsweb.stanford.edu/class/ee152/lecture_slides/... · 3 10/3/16 Power Electronics - 1 (switches) 2 1 2 1 AC Energy Meter Power Devices 4 10/5/16 Power Electronics

48V34AH

RCSF1

C1

A

A

B

B

C

C

A B C

3-F Inverter Power Path

EE155/255 Lecture 5 - Photovoltaics

Page 40: EE155/255 Green Electronicsweb.stanford.edu/class/ee152/lecture_slides/... · 3 10/3/16 Power Electronics - 1 (switches) 2 1 2 1 AC Energy Meter Power Devices 4 10/5/16 Power Electronics

Transformerless

EE155/255 Lecture 5 - Photovoltaics

Page 41: EE155/255 Green Electronicsweb.stanford.edu/class/ee152/lecture_slides/... · 3 10/3/16 Power Electronics - 1 (switches) 2 1 2 1 AC Energy Meter Power Devices 4 10/5/16 Power Electronics

Typical Utility-Scale PV System

EE155/255 Lecture 5 - Photovoltaics

Page 42: EE155/255 Green Electronicsweb.stanford.edu/class/ee152/lecture_slides/... · 3 10/3/16 Power Electronics - 1 (switches) 2 1 2 1 AC Energy Meter Power Devices 4 10/5/16 Power Electronics

Typical Utility-Scale PV System• 8,000 Modules – 400 strings of 20 modules each

– 325W/module – 2.6MW DC total• Central 2MW inverter• Central 2MW step-up transformer to 34.5kv• Single axis tracking• This 2MW “block” is repeated for larger systems

EE155/255 Lecture 5 - Photovoltaics

Page 43: EE155/255 Green Electronicsweb.stanford.edu/class/ee152/lecture_slides/... · 3 10/3/16 Power Electronics - 1 (switches) 2 1 2 1 AC Energy Meter Power Devices 4 10/5/16 Power Electronics

PV Economics 1• Utility scale costs

– PV Module $0.60/W– Inverter $0.10/W– Mounting $0.15/W– Balance $0.65/W– TOTAL $1.50/W

• Return– Hours/year 2,200– Wholesale $0.05/kWh– TOTAL $0.11/Wyear– 7.3% ROI

• Residential costs– PV Module $0.60– Microinverter $0.50– Mounting $0.20– Balance $1.70– TOTAL $3.00

• Return– Hours/year 2,200– Retail $0.15-$0.35/kWh– TOTAL $0.33-0.77/Wyear– 11% - 26% ROI

EE155/255 Lecture 5 - Photovoltaics

Page 44: EE155/255 Green Electronicsweb.stanford.edu/class/ee152/lecture_slides/... · 3 10/3/16 Power Electronics - 1 (switches) 2 1 2 1 AC Energy Meter Power Devices 4 10/5/16 Power Electronics

PV Economics 2• Module is only 40% of cost (20% for residential)• Real issue is balance-of-system (installation labor)

EE155/255 Lecture 5 - Photovoltaics

Page 45: EE155/255 Green Electronicsweb.stanford.edu/class/ee152/lecture_slides/... · 3 10/3/16 Power Electronics - 1 (switches) 2 1 2 1 AC Energy Meter Power Devices 4 10/5/16 Power Electronics

VOC Limiting• Typical module (Trina TSM-310-PD14)

– Vmp = 36V, Voc = 46V (worst-case cold temperature)• Inverter input limited to 1kV

– Limits strings to 21 modules– At Vmp could have 27 modules – 29% increase– Reduces string cost by ~30%.

EE155/255 Lecture 5 - Photovoltaics

Page 46: EE155/255 Green Electronicsweb.stanford.edu/class/ee152/lecture_slides/... · 3 10/3/16 Power Electronics - 1 (switches) 2 1 2 1 AC Energy Meter Power Devices 4 10/5/16 Power Electronics

Module (and Cell) Mismatch• String current limited to current from weakest cell• Module current mismatch s = 5%• Worse for residential installations (partial shading)

• Two questions:– What is the typical mismatch profile of a 10-module string?– What power reduction does a X % current mismatch result in?

EE155/255 Lecture 5 - Photovoltaics

Page 47: EE155/255 Green Electronicsweb.stanford.edu/class/ee152/lecture_slides/... · 3 10/3/16 Power Electronics - 1 (switches) 2 1 2 1 AC Energy Meter Power Devices 4 10/5/16 Power Electronics

Individual MPPT with per-module buck

EE155/255 Lecture 5 - Photovoltaics

Module

Buck

Page 48: EE155/255 Green Electronicsweb.stanford.edu/class/ee152/lecture_slides/... · 3 10/3/16 Power Electronics - 1 (switches) 2 1 2 1 AC Energy Meter Power Devices 4 10/5/16 Power Electronics

Individual MPPT with incremental harvesting

EE155/255 Lecture 5 - Photovoltaics

Module

Flyback

Page 49: EE155/255 Green Electronicsweb.stanford.edu/class/ee152/lecture_slides/... · 3 10/3/16 Power Electronics - 1 (switches) 2 1 2 1 AC Energy Meter Power Devices 4 10/5/16 Power Electronics

Smart PV Systems

EE155/255 Lecture 5 - Photovoltaics

Inverter…

Conv

……

Conv

Page 50: EE155/255 Green Electronicsweb.stanford.edu/class/ee152/lecture_slides/... · 3 10/3/16 Power Electronics - 1 (switches) 2 1 2 1 AC Energy Meter Power Devices 4 10/5/16 Power Electronics

Smart PV Systems• Smart inverter provides central control over panels• Turns off some substrings

– Voc clipping– Smart bypass– Converter (if present) incrementally harvests mismatch

• Without adding connections

EE155/255 Lecture 5 - Photovoltaics

Page 51: EE155/255 Green Electronicsweb.stanford.edu/class/ee152/lecture_slides/... · 3 10/3/16 Power Electronics - 1 (switches) 2 1 2 1 AC Energy Meter Power Devices 4 10/5/16 Power Electronics

Faults and Failures• Cell open/short• Diode open/short• Arc fault

EE155/255 Lecture 5 - Photovoltaics

Page 52: EE155/255 Green Electronicsweb.stanford.edu/class/ee152/lecture_slides/... · 3 10/3/16 Power Electronics - 1 (switches) 2 1 2 1 AC Energy Meter Power Devices 4 10/5/16 Power Electronics

PV Monitoring• https://enlighten.enphaseenergy.com/systems/153078/graphs?range=last

7Days&view=power_production• https://enlighten.enphaseenergy.com/systems/153078/arrays?range=last

7Days&view=power_production

EE155/255 Lecture 5 - Photovoltaics

Page 53: EE155/255 Green Electronicsweb.stanford.edu/class/ee152/lecture_slides/... · 3 10/3/16 Power Electronics - 1 (switches) 2 1 2 1 AC Energy Meter Power Devices 4 10/5/16 Power Electronics

Summary of PV• PV cells/strings are voltage-dependent current sources (Diode in parallel with current

source)• PV controllers regulate their input voltage/current to maximize power

– Maximum power-point tracking

• Can apply almost any converter topology– Boost used for illustration– Regulate input rather than output

• Gradient search for convex optimization• More sophisticated search needed for multi cell/panel string • Single phase systems must store energy during AC cycle• PV economics dominated by “balance of system”• Opportunities for “intelligent” PV systems

EE155/255 Lecture 5 - Photovoltaics

Page 54: EE155/255 Green Electronicsweb.stanford.edu/class/ee152/lecture_slides/... · 3 10/3/16 Power Electronics - 1 (switches) 2 1 2 1 AC Energy Meter Power Devices 4 10/5/16 Power Electronics

No Date Topic HWout HWin Labout Labck Lab HW1 9/26/16 Intro(basicconverters) 1 1 IntrotoST32F3 PeriodicSteadyState2 9/28/16 EmbeddedProg/PowerElect.3 10/3/16 PowerElectronics-1(switches) 2 1 2 1 ACEnergyMeter PowerDevices4 10/5/16 PowerElectronics-2(circuits)5 10/10/16 Photovoltaics 3 2 3 2 PVMPPT PVSPICE6 10/12/16 FeedbackControl7 10/19/16 ElectricMotors 4 3 4 3 MotorcontrolMatlab Feedback8 10/21/16 IsolatedConverters9 10/24/16 SolarDay 5/PP 4 5 4 Motorcontrol-Lab/ IsolatedConverters10 10/26/16 Magnetics11 10/31/16 SoftSwitching 6 5/PP 6 5 PS MagneticsandInverters12 11/2/16 ProjectDiscussions13 11/7/16 Inverters,Grid,PF,andBatteries 6 P 6 Project14 11/9/16 Thermal&EMI15 11/14/16 QuizReview C116 11/16/16 Grounding,andDebuggingQ 11/16/16 Quiz-intheevening C2

11/21/16 ThanksgivingBreak11/23/16 ThanksgivingBreak

17 11/28/1618 11/30/16 MartinFornage,enPhase C319 12/5/16 ColinCampbell,Tesla20 12/7/16 Wrapup

TBD Projectpresentations PTBD Projectwebpagedue

Page 55: EE155/255 Green Electronicsweb.stanford.edu/class/ee152/lecture_slides/... · 3 10/3/16 Power Electronics - 1 (switches) 2 1 2 1 AC Energy Meter Power Devices 4 10/5/16 Power Electronics

Feedback Control

EE155/255 Lecture 5 - Photovoltaics

Page 56: EE155/255 Green Electronicsweb.stanford.edu/class/ee152/lecture_slides/... · 3 10/3/16 Power Electronics - 1 (switches) 2 1 2 1 AC Energy Meter Power Devices 4 10/5/16 Power Electronics

Control• Most dynamic systems require control• Some are inherently unstable • Humans often close the control loop (bicycle, car)• Most Green-Electronic systems require a controller• Most use layered control

– Each level of control presents simpler interface to higher levels• Feedback control

– Feedback output or error signal to produce input• Model-based control

– Explore possible input sequences with model and pick the best

Page 57: EE155/255 Green Electronicsweb.stanford.edu/class/ee152/lecture_slides/... · 3 10/3/16 Power Electronics - 1 (switches) 2 1 2 1 AC Energy Meter Power Devices 4 10/5/16 Power Electronics

Feedback Control in a Nutshell• The Plant (system being controlled) is described by ODEs.

– Linearize and describe as P(s)• Controller applies input(s) to Plant to get desired output

– Linearize and describe as C(s)• Apply “error signal” as controller input

• Verify stability by checking unity-gain phase– Across operating conditions

G(s) = C(s)P(s)1+C(s)P(s)

=H (s)1+H (s)

Page 58: EE155/255 Green Electronicsweb.stanford.edu/class/ee152/lecture_slides/... · 3 10/3/16 Power Electronics - 1 (switches) 2 1 2 1 AC Energy Meter Power Devices 4 10/5/16 Power Electronics

System with Feedback

Controller Plantx e a y

+

_

Page 59: EE155/255 Green Electronicsweb.stanford.edu/class/ee152/lecture_slides/... · 3 10/3/16 Power Electronics - 1 (switches) 2 1 2 1 AC Energy Meter Power Devices 4 10/5/16 Power Electronics

System with Feedback

Controller Plantx e a y

+

_

Can also have feed-forward control

Page 60: EE155/255 Green Electronicsweb.stanford.edu/class/ee152/lecture_slides/... · 3 10/3/16 Power Electronics - 1 (switches) 2 1 2 1 AC Energy Meter Power Devices 4 10/5/16 Power Electronics

Linearize and Model with Laplace Xform

C(s) P(s)X(s) E(s) A(s) Y(s)+

_

G(s) = C(s)P(s)1+C(s)P(s)

=H (s)1+H (s)

E(s) = X(s)−Y (s)E(s) = X(s)−H (s)E(s)(1+H (s))E(s) = X(s)

E(s) = X(s)1+H (s)

Y (s) = E(s)H (s)

Y (s) = X(s) H (s)1+H (s)

Page 61: EE155/255 Green Electronicsweb.stanford.edu/class/ee152/lecture_slides/... · 3 10/3/16 Power Electronics - 1 (switches) 2 1 2 1 AC Energy Meter Power Devices 4 10/5/16 Power Electronics

Example, driving a car• x – position of car in lane• q – angle of car on road• f – angle of wheels

• dq/dt = f• dx/dt = q

• How do you stay on the road?– Need a control law

x(s) = aφ(s)s2

Page 62: EE155/255 Green Electronicsweb.stanford.edu/class/ee152/lecture_slides/... · 3 10/3/16 Power Electronics - 1 (switches) 2 1 2 1 AC Energy Meter Power Devices 4 10/5/16 Power Electronics

Feedback Control

Controller Plantx e a y

+

_

P(s) = 1s2

C(s)

Y (s) = X(s)−Y (s)( )C(s)P(s)

Y (s) = X(s) C(s)P(s)1+C(s)P(s)"

#$

%

&'

Page 63: EE155/255 Green Electronicsweb.stanford.edu/class/ee152/lecture_slides/... · 3 10/3/16 Power Electronics - 1 (switches) 2 1 2 1 AC Energy Meter Power Devices 4 10/5/16 Power Electronics

Consider Proportional Control

C(s) = p

H (s) =C(s)P(s) = ps2

G(s) = Y (s)X(s)

=H (s)1+H (s)

=p

s2 + p

Page 64: EE155/255 Green Electronicsweb.stanford.edu/class/ee152/lecture_slides/... · 3 10/3/16 Power Electronics - 1 (switches) 2 1 2 1 AC Energy Meter Power Devices 4 10/5/16 Power Electronics

Three Ways to See this is Unstable

C(s) = p

H (s) =C(s)P(s) = ps2

G(s) = Y (s)X(s)

=H (s)1+H (s)

=p

s2 + p

1. Unity-gain phase of open loop response H(s)2. Damping factor of closed loop response3. Simulation

Page 65: EE155/255 Green Electronicsweb.stanford.edu/class/ee152/lecture_slides/... · 3 10/3/16 Power Electronics - 1 (switches) 2 1 2 1 AC Energy Meter Power Devices 4 10/5/16 Power Electronics

10−1 100 101 102 10310−4

10−2

100

102

104

|H(s

)|

10−1 100 101 102 103−200

−150

−100

−50

0

∠H

(s) (

degr

ees)

ω (rad/s)

Open Loop ResponseH (s) =C(s)P(s) = p

s2

Page 66: EE155/255 Green Electronicsweb.stanford.edu/class/ee152/lecture_slides/... · 3 10/3/16 Power Electronics - 1 (switches) 2 1 2 1 AC Energy Meter Power Devices 4 10/5/16 Power Electronics

Damping Factor

G(s) = Y (s)X(s)

=H (s)1+H (s)

=p

s2 + p=

ks2 + 2ζω0s+ω

20

ζ = 0,

ω0 = p

Page 67: EE155/255 Green Electronicsweb.stanford.edu/class/ee152/lecture_slides/... · 3 10/3/16 Power Electronics - 1 (switches) 2 1 2 1 AC Energy Meter Power Devices 4 10/5/16 Power Electronics

Damping Factor

G(s) = Y (s)X(s)

=H (s)1+H (s)

=p

s2 + p=

ks2 + 2ζω0s+ω

20

ζ = 0,

ω0 = p

Frequency scales with sqrt of proportional gain

Page 68: EE155/255 Green Electronicsweb.stanford.edu/class/ee152/lecture_slides/... · 3 10/3/16 Power Electronics - 1 (switches) 2 1 2 1 AC Energy Meter Power Devices 4 10/5/16 Power Electronics

Simulation

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

Time (s)

x (m

), θ

(rad) x

q

Page 69: EE155/255 Green Electronicsweb.stanford.edu/class/ee152/lecture_slides/... · 3 10/3/16 Power Electronics - 1 (switches) 2 1 2 1 AC Energy Meter Power Devices 4 10/5/16 Power Electronics

PD ControlProportional feedback oscillatesAdd derivative term to “look ahead” Td

C(s) = p+ rs

H (s) =C(s)P(s) = p+ rss2

G(s) = Y (s)X(s)

=H (s)1+H (s)

=p+ rs

s2 + rs+ p

ω0 = p

ζ =r2ω0

=r

2 pWith p=100, pick r=20

Zero at s = p/r

Page 70: EE155/255 Green Electronicsweb.stanford.edu/class/ee152/lecture_slides/... · 3 10/3/16 Power Electronics - 1 (switches) 2 1 2 1 AC Energy Meter Power Devices 4 10/5/16 Power Electronics

PD is Predictive

Page 71: EE155/255 Green Electronicsweb.stanford.edu/class/ee152/lecture_slides/... · 3 10/3/16 Power Electronics - 1 (switches) 2 1 2 1 AC Energy Meter Power Devices 4 10/5/16 Power Electronics

10−1 100 101 102 10310−4

10−2

100

102

104

|H(s

)|

10−1 100 101 102 103−200

−150

−100

−50

0

∠H

(s) (

degr

ees)

ω (rad/s)

ω1 = 20.5116

θ1 = −103.699

PD Open LoopH (s) =C(s)P(s) = p+ rs

s2

Zero at w=5

Page 72: EE155/255 Green Electronicsweb.stanford.edu/class/ee152/lecture_slides/... · 3 10/3/16 Power Electronics - 1 (switches) 2 1 2 1 AC Energy Meter Power Devices 4 10/5/16 Power Electronics

10−1 100 101 102 10310−4

10−2

100

102

104

|H(s

)|

10−1 100 101 102 103−200

−150

−100

−50

0

∠H

(s) (

degr

ees)

ω (rad/s)

ω1 = 20.5116

θ1 = −103.699

What happens if zero is moved left or right?H (s) =C(s)P(s) = p+ rs

s2

Zero at w=5

Page 73: EE155/255 Green Electronicsweb.stanford.edu/class/ee152/lecture_slides/... · 3 10/3/16 Power Electronics - 1 (switches) 2 1 2 1 AC Energy Meter Power Devices 4 10/5/16 Power Electronics

PD Simulation

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

Time (s)

x (m

), θ

(rad)

q

x

Page 74: EE155/255 Green Electronicsweb.stanford.edu/class/ee152/lecture_slides/... · 3 10/3/16 Power Electronics - 1 (switches) 2 1 2 1 AC Energy Meter Power Devices 4 10/5/16 Power Electronics

Effect of damping factor

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2−0.01

−0.008

−0.006

−0.004

−0.002

0

0.002

0.004

0.006

0.008

0.01

Time (s)

x (m

), θ

(rad) 1

.5

.25

.125

Page 75: EE155/255 Green Electronicsweb.stanford.edu/class/ee152/lecture_slides/... · 3 10/3/16 Power Electronics - 1 (switches) 2 1 2 1 AC Energy Meter Power Devices 4 10/5/16 Power Electronics

Summary• Plant is described by ODEs (possibly non-linear)• Controller drives plant input(s) to achieve goal• Feedback control, input is function of “error”• Stable if

– z >= 1– H(s) has phase margin at unity gain

• PD and PI controllers– Derivative feedback stabilizes 2nd order system– Integral feedback cancels residual error (but avoid wind up)

• Motor control with current limit• Analog and digital implementations• Can also implement “model-based” control

G(s) = C(s)P(s)1+C(s)P(s)

=H (s)1+H (s)

Page 76: EE155/255 Green Electronicsweb.stanford.edu/class/ee152/lecture_slides/... · 3 10/3/16 Power Electronics - 1 (switches) 2 1 2 1 AC Energy Meter Power Devices 4 10/5/16 Power Electronics

No Date Topic HWout HWin Labout Labck Lab HW1 9/26/16 Intro(basicconverters) 1 1 IntrotoST32F3 PeriodicSteadyState2 9/28/16 EmbeddedProg/PowerElect.3 10/3/16 PowerElectronics-1(switches) 2 1 2 1 ACEnergyMeter PowerDevices4 10/5/16 PowerElectronics-2(circuits)5 10/10/16 Photovoltaics 3 2 3 2 PVMPPT PVSPICE6 10/12/16 FeedbackControl7 10/19/16 ElectricMotors 4 3 4 3 MotorcontrolMatlab Feedback8 10/21/16 IsolatedConverters9 10/24/16 SolarDay 5/PP 4 5 4 Motorcontrol-Lab/ IsolatedConverters10 10/26/16 Magnetics11 10/31/16 SoftSwitching 6 5/PP 6 5 PS MagneticsandInverters12 11/2/16 ProjectDiscussions13 11/7/16 Inverters,Grid,PF,andBatteries 6 P 6 Project14 11/9/16 Thermal&EMI15 11/14/16 QuizReview C116 11/16/16 Grounding,andDebuggingQ 11/16/16 Quiz-intheevening C2

11/21/16 ThanksgivingBreak11/23/16 ThanksgivingBreak

17 11/28/1618 11/30/16 MartinFornage,enPhase C319 12/5/16 ColinCampbell,Tesla20 12/7/16 Wrapup

TBD Projectpresentations PTBD Projectwebpagedue