Edwards - NMR Presentation

64
Process NMR Associates High field and Compact Low Field 1 H and 13 C NMR Applications for Petroleum and Refinery Stream Analysis, Process Control, and Reaction Monitoring Presented By John Edwards, Ph.D. Process NMR Associates, LLC Danbury, Connecticut May 17, 2013 Petrobras Reseach Center, Rio de Janeiro

description

 

Transcript of Edwards - NMR Presentation

Page 1: Edwards - NMR Presentation

Process NMR Associates

High field and Compact Low Field 1H and 13C NMR Applications for Petroleum and Refinery Stream Analysis, Process Control, and

Reaction Monitoring

Presented By

John Edwards, Ph.D.

Process NMR Associates, LLCDanbury, Connecticut

May 17, 2013Petrobras Reseach Center, Rio de Janeiro

Page 2: Edwards - NMR Presentation

TTC Labs, Inc.

Process Engineering Excellence

Process NMR Associates

TopNIR Systems

250+ Analytical NMR Customers

Analytical ServicesAndConsulting

Page 3: Edwards - NMR Presentation

Process NMR Associates

Superconducting NMR Systems

Page 4: Edwards - NMR Presentation

Process NMR Associates

High Resolution FT-NMR – Online / in Process

First Generation NMR – 1998Elbit-ATI/Foxboro NMR Second Generation NMR – 2003

Qualion

Page 5: Edwards - NMR Presentation

Lab version On-Line version

New magnet design – 30mm bore size

• The amount of magnetic pieces that assemble the magnet reduced from 34 to 10. Reduction in

Mechanical Complexity

• Bore size of the magnet was increased to 30 mm - improved temperature susceptibility

• Improved temperature and shim stability.

New Digital Spectrometer Design - reduces footprint, improves signal processing capabilities

Probe - Improved Probe Q for Higher Sensitivity.

Software – Windows 7 – Improved Chemometric Capabilities

Third Generation NMR –Aspect AI NMR System

Page 6: Edwards - NMR Presentation

NMR Sample System and Placement

Process NMR Associates

Page 7: Edwards - NMR Presentation

Process NMR Associates

NMR Lock - External 7Li Lock @ 22.5 MHz Shim DACs Built into the Magnet Enclosure

Matrix Shimming Performed

by Optimizing FID RMS

Page 8: Edwards - NMR Presentation

Process NMR Associates

p p m1234567

CH3

CH3

CH3

O

OH

A

B

C

D E F

G

H

A

F

B

CG

H

D E

PEG OH

PEG

p p m4 06 08 01 0 01 2 01 4 01 6 0

CH3

CH3

CH3

O

OH

A

B

C

D E F

G

H

I J

H

IJ

DE

F

A

B

G

C

PEG

CDCl3

FT-13C FT-1H

300 MHz

A

F

B

C

G

H

D E

PEG OH

PEG

58 MHz

Page 9: Edwards - NMR Presentation

60 MHz NMR of Essential Oils

Page 10: Edwards - NMR Presentation

Adhesive Prepolymers

Page 11: Edwards - NMR Presentation

Bio Oils and Hydrotreated Biomass Pyrolysis Products

-1.5-1.0-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.0f1 (p pm )

K ior-0 01 -HB io-O il V1 20 91 3- 04 KH D T Liq.Fr ac._D O_ Lo w C on v1 H N MR in DM SOJCE-P NA-Merc3 00

60 MHz

300 MHz

Labile OHGroupsand Aldehydes

WaterandResidualAlcohol/Ether

Aromatics

Olefin

alphaProtons

AliphaticCH2/CH3

TMS

-1.5-1.0-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.0f1 (ppm)

Kior-004-H_D2OSample 1 Bio-Oil1H NMR in DMSO+D2O +45 DaysJCE-PNA-MVX300

60 MHz

300 MHz

D2O Added to SolutionDeuterium Exchange between D2O and labile protonsOH/NH/SH drastically reduced in intensityWater Resonance Shifts

Labile OHGroupsReduced

Water

Aromatics

Olefin

alphaProtons

AliphaticCH2/CH3

TMS

EtherAlcohol

-1 .5-1.0-0.50.00.51.01.52.02.53.03.54 .04.55.05.56.06.57.07.58.08.59.09.510 .010.511.01 1.512.0f1 (p p m )

K io r-0 0 2 -H

H yd r otr ea te d H e a vy O il Z 13 2 8 00 0 1 20 0 0 pp mKHD T-A 1 H NM R in CDCl3

JCE -P NA-Merc3 00

60 MHz

300 MHz

TMS

Aliphatic

alphaCH3

alphaCH2/CH

Could sharp peak becyclohexane

C 3H

-1.5-1.0-0.50.00.51.01 .52.02 .53.03.54.04.55 .05.56 .06.57.07.58.08.59 .09.510.010.511.011 .512.0f1 (p p m )

K io r-0 0 3 -H

H yd ro tr e a te d H e a vy O il D r u m #3 KHD T We e k ly F e e d1 H N M R in DM S OJCE -P N A-Merc 3 0 0

60 MHz

300 MHz

Labile OHGroups

WaterandResidualAlcohol/Ether

Aromatics

Olefin

alphaProtons

AliphaticCH2/CH3

TMS

Page 12: Edwards - NMR Presentation
Page 13: Edwards - NMR Presentation

Process NMR Associates

ppm12345678

300 MHz

CH3

CH2

CH

a-CH3

a-CH2

AromaticsEthanol

Alkenes

60 MHz

Gasoline 1H NMR

Page 14: Edwards - NMR Presentation

Process NMR Associates

Gasoline Parameters:

Octane Numbers

Distillation Properties (T10, T50, T90)

Benzene Content (wt%)

Total Aromatics (Wt%)

Total Olefins (Wt%)

Total Saturates (Wt%)

Oxygenates (Wt%)

Reid Vapor Pressure

Page 15: Edwards - NMR Presentation

Process NMR Associates

Application: Closed Loop Reformer Control - Installed 1998Reformer Capacity: 34,000 Barrels per Day

Control Strategy: Control on MON and Benzene Content

NMR Analysis: 2 Minute Analysis

NMR PLS Outputs: RON, MON, Benzene (Wt%) Total Aromatics (Wt%)

RON Validation - April 2001 - April 2002

100

101

102

103

104

105

106

107

108

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

NMR

CFR

Page 16: Edwards - NMR Presentation

Process NMR Associates

Application: Steam Cracking Optimization Installed 2000Cracker Facility Capacity: 600,000 Tonnes per Year

Control Strategy: Feed Forward Detailed Hydrocarbon Analysis to SPYRO Optimization

NMR Analysis: 3-4 Minute Cycle (Single Stream)

NMR PLS Outputs: Naphtha – Detailed PIONA

C4-C10 normal-paraffin, iso-paraffin, aromatics, naphthenes

Page 17: Edwards - NMR Presentation

Process NMR Associates

Page 18: Edwards - NMR Presentation

Process NMR Associates

Toluene

Actual Toluene (Wt%)

Pre

dic

ted T

olu

ene (

Wt%

) (

F9 C

1 )

1

1

23

45

6

7

8

9

10

11

12

1314

15

16

17

18

1920

21

22

2325

26

2728

2930

31

32

33

34

35

36

37

383940

4142

43

44

45

46

4950

51

53

5456

58

59

6263

66

68

69

70

71

73

75

76

77

78

79

80

82

83

84

85

86

87

88

90

91

929394

95

9697

98

99

101

102

103

104

105

106

108

109

110

111

112

113

114

115

116

117

118119120

121

122123

124

125126

127128

129130131132133134135136137

138139140141142143

144145146

147148149

150151152

156157158159160161

162163164

165166167168169170

171172173

174175176

177178179

180181182

183184185186187188

189190191

192193194195196197

198199200

201202203

204205206

207208209210211212

213214215

216217218219220221222223224

225226227228229230

231232233

234235236

237238239240241242243244245246247248249250251

252253254

255256257258259260261262263

264265266

267268269270271272

273274275

279280281282

283284285

286287288

289290291

292293294

295296297298299300

301302303

304305306

307308309

310311312

313314315

319320321

322323324325326327

328329330

331332333334335336

337338339

340341342343344345

346347348349350351

352353354

355356357358359360

361362363364365366367368369

370371372

373374375

376377378

379380381382383384385386387

388389390391392393

394395396397398399400401402

403404405

406407408

409410411

412413414

427428429 430431432433434435

436437438

439440441

445446447

448449450

451452453454455456

457458459

460461462

463464

465466467

471472473

477478

481482

483484485489490493494495496

-.5

1

2.5

4

5.5

0 1.5 3 4.5

Spectral Units ( )

Be

ta C

oe

ffic

ient (

F9

C1

)

-1.5

0

1.5

10 40 70 100 130

-1.5

0

1.5

10 40 70 100 130

Page 19: Edwards - NMR Presentation

Process NMR Associates

Cyclohexane

Beta Coefficients

Spectral Units ( )Spectral Units ( )

Beta

Coeff

icie

nt (

F9 C

1 )

-2

-.5

1

2.5

10 40 70 100 130

-2

-.5

1

2.5

10 40 70 100 130

Pre

dic

ted

Cyclo

he

xa

ne

( F

9 C

1 )

1

4

7

10

1 4 7 10 1 4 7 10

1

23

45

6

78

910

11

12

1314

15

16

17

18

19

2021

22

23

2425

26

27

28

29

30

3132

33

34

35

36

37

38

39

4041

42

4346

47

48

49

50

51

52

53

54

55

56

58

596067

68

69

70

71

72

73

74

75

76

77

7879

80

81

82

84

85

8687

88

89

91

92

93

9495

96

97

98

99

100

101

102103

104

105

106

108109

110111

112

113

115116

117118

119120121

122123124

125126127

128129130131132133

134135136

137138139

140141142

143144145146

147148149150151152153154

161162163164165166

167168169170171172173

174175176177178

179180181

182183184

185186187

191192193194195196

197198199

200201202

203204205

206207208

209210211

212213214

215216217

218219220

221

222

223

224225226

227228229

230231232

233234235

236237238239240241

243244

245246247248249250251

252253

254255256

257258259

260261262

263264265

266267268

269270271272

273274275

276277278

279280281

282283284

285286287

288289290

291292293294295296

297298299

300301302

303304305

309310311

312313314

315316317

318319320

321322323

324325326

327328329

330331332333334335

336337338339340341

342343

345346347

348349350

351352353354355356357358359

360361362

363364365

366367368

369370371

372373374375376377

378379380381382383

384385386

387388389390391392

393394395396397398

399400401

402403404

405406407408409410

414415416417418419

420421422423424425429430431

432433434438439440441442443

444445446

447448449

453454455

456457

458459460

464465466

482483484485

486487488489

1

4

7

10

1 4 7 10

Actual Cyclohexane (Wt%)

Page 20: Edwards - NMR Presentation

Process NMR Associates

Page 21: Edwards - NMR Presentation

Process NMR Associates

Page 22: Edwards - NMR Presentation

Process NMR Associates

Cyclopentane

Date

Wt% GC

NMR

Page 23: Edwards - NMR Presentation

Process NMR Associates

Page 24: Edwards - NMR Presentation

Process NMR Associates

0

2

4

6

8

10

12

14

16

1 147 293 439 585 731 877 1023 1169 1315 1461 1607 1753

iso-C5

iso-C6

iso-C7

iso-C8

iso-C9

96 Hours of NMR Process Output – iso-Paraffin Components

Page 25: Edwards - NMR Presentation

Process NMR Associates

0

0.5

1

1.5

2

2.5

3

3.5

4

1 167 333 499 665 831 997 1163 1329 1495 1661

Benzene

Toluene

Ethyl-Benzene

Xylenes

96 Hours of NMR Process Output –Aromatic Components

Page 26: Edwards - NMR Presentation

Application: Crude Distillation Unit Optimization and Control Installed 2001Crude Unit Capacity: 180,000 Barrels per Day

Control Strategy: Control on Kero Freeze Point and Crude Tower Optimization

NMR Analysis: 15 Minute Cycle - NMR Results into ROMEO CDU Optimization

NMR PLS Outputs: Naphtha – T10, T50, T90, EP - D86 Distillation

Kero – Freeze, Flash

Crude – API, Sulfur, TBP (38, 105, 165, 365, 565C)

Process NMR Associates

Kero Freeze Lab Vs NMR

-65

-60

-55

-50

-45

-40

2002

/05/

01

2002

/05/

03

2002

/05/

05

2002

/05/

07

2002

/05/

09

2002

/05/

11

2002

/05/

13

2002

/05/

15

2002

/05/

17

2002

/05/

19

Lab Freeze (DegC)

NMR Freeze (DegC)

Page 27: Edwards - NMR Presentation

Process NMR Associates

Page 28: Edwards - NMR Presentation

Process NMR Associates

Crude Adjustment

0

10

20

30

40

50

60

70

80

90

100

-150 50 250 450 650 850 1050

CutPoint Deg C

WT

% Y

ield

Before

After

NMR

Crude Reconciliation

Page 29: Edwards - NMR Presentation

Process NMR Associates

20 40 60 80 100 120 140

VI 103

FACTOR1

FACTOR3

ILVI 115

VI 103

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

DewaxingDearomatization

VI 100

AL

Base Oil Manufacturing – NMR Control

Page 30: Edwards - NMR Presentation

Col 4, line 5-14, “with at least 50% of the oil molecules containing at least one branch, at least half of which are methyl

branches. At least half, and more preferably at least 75% of the remaining branches are ethyl, with less than 25% and

preferably less than 15% of the total number of branches having three or more carbon atoms. The total number of branch

carbon atoms is typically less than 25%, preferably less than 20% and more preferably no more than 15% (e.g., 10-15%) of

the total number of carbon atoms comprising the hydrocarbon molecules.”

Col 4, line 24-29, “Thus, the molecular make up of a base stock of the invention comprises at least 95 wt. % isoparaffins

having a relatively linear molecular structure, with less than half the branches having two or more carbon atoms and less

than 25% of the total number of carbon atoms present in the branches.”

Col 12, Line 4-21, “What is claimed is:

1. A lubricant base stock comprising at least 95 wt. % non-cyclic iso-paraffins having a molecular structure in which less

than 25% of the total number of carbon atoms of the isoparaffin structure are contained in the branches and less than half of

the total iso-paraffin branches contain two or more carbon atoms.

2. A base stock according to claim 1 wherein at least half of the iso-paraffin branches are methyl branches.

3. A base stock according to claim 2 wherein at least half of the remaining, non-methyl branches are ethyl, with less than

25% of the total number of branches having three or more carbon atoms.

4. A base stock according to claim 3 wherein at least 75% of the non-methyl branches are ethyl.

5. A base stock according to claim 4 wherein of the total number of carbon atoms contained in the iso-paraffin molecule, 10-

15% of the carbon atoms are located in the branches.”

Col 2, line 8, “These base stocks are premium

synthetic lubricating oil base stocks of high

purity having a high VI, a low pour point and are

iso-paraffinic, in that they comprise at least 95

wt. % of non-cyclic iso-paraffins having a

molecular structure in which less than 25% of the

total number of carbon atoms are present in the

branches, and less than half the branches have

two or more carbon atoms.”

Page 31: Edwards - NMR Presentation

Process NMR Associates

Quantitative 13C NMR of F-T Wax

Page 32: Edwards - NMR Presentation

p p m1 01 52 02 53 03 54 04 5

Process NMR Associates

1H-13C DEPT NMR of F-T Wax

All Protonated Carbons

CH Carbons

CH2 Carbons

CH3 Carbons

Page 33: Edwards - NMR Presentation

Process NMR Associates Exxon FT-wax Patent

Page 34: Edwards - NMR Presentation

Process NMR Associates

ppm15202530354045505560

b

g

d

e

a' b'

g'

t-etp-et

p-pr

t-pr

Sub-Me

4-Me

Adj-Me

3-Me

2-Me

t-Bu

p-Bu

Reg1 Reg2 Reg3 Reg4 Reg5 Reg6

a

Peak X

Page 35: Edwards - NMR Presentation

Process NMR Associates

ppm12141618202224262830

d b'

g'

b

t-et

p-et

p-pr

t-pr

Sub-Me

4-Me

Adj-Me

3-Me

2-Me

t-Bu

a

p-Bu

Peak X

Reg6Reg5Reg4Reg3

Page 36: Edwards - NMR Presentation

Process NMR Associates

Page 37: Edwards - NMR Presentation
Page 38: Edwards - NMR Presentation

Process NMR Associates

Residual Catalytic Cracking – Feed-stream Analysis

Analysis – Refractive Index, Distillation, Specific Gravity

Calculation – Watson K-Factor

Outcome: aromatic carbon number

aromatic hydrogen number

total hydrogen content

Proposition: Detailed hydrocarbon analysis for kinetic model development

Page 39: Edwards - NMR Presentation

0

5

10

15

20

25

20 40 60 80 100 120 140

0

.05

.1

.15

.2

.25

30 35 40 45 50 55 60

0

5

10

15

20

85 90 95 100 105 110 115 120 125

Aliphatic Region

CH3

CH2

Aromatic Region

60 MHz Process – 1H NMR Data

50 Samples

Page 40: Edwards - NMR Presentation

Process NMR Associates

0

20

40

60

80

100

120

0 20 40 60 80 100

300 MHz - 1H NMR – RCC Feeds

0

20

40

60

80

100

120

0 20 40 60 80 100

Page 41: Edwards - NMR Presentation

Aromatic Region

15 20 25 30 35

Mono

Di

Tri

0

50

100

150

200

250

55 60 65 70 75 80 85 90 95 100

Aliphatic Region

CH3

CH2

Alpha-Protons

CH+Nap

Page 42: Edwards - NMR Presentation

Process NMR Associates

0

20

40

60

80

0 5 10 15 20

Parameter 1H - Type Analysis

1 Total aromatic

2 Diaromatic+ protons

3 Monoaromatic protons

4 Total olefinic

5 RHC=CH2

6 RHC=CHR

7 RHC=CH2

8 Oxygenates protons

9 Total a protons to aromatics

10 a-CH to aromatics

11 a-CH2 to aromatics

12 a-CH3 to aromatics

13 Saturates

14 Paraffinic CH

15 Paraffinic CH3

16 Paraffinic CH3

17 Substituted aromatic carbon

18 Bridgehead carbons

19 Total aromatics (wt %)

20 Mono aromatics (wt %)

21 Di+ aromatics (wt %)

22 Benzene (wt %)

23 Olefin functions (wt %)

24 Oxygenates (wt %)

25 Saturates (wt %)

H-Type NMR Analysis

Depicted as a “Spectrum”

Page 43: Edwards - NMR Presentation

Process NMR Associates

0

50

100

150

200

0 50 100 150 200

Aromatics

Aliphatics

13C NMR Data

Page 44: Edwards - NMR Presentation

Process NMR Associates

Aromatic Region

40 50 60 70 80 90

140 150 160 170 180 190

Aliphatic Region

Page 45: Edwards - NMR Presentation

Index

Carbon Type Parameters (%C Unless Otherwise

Listed)

1 Ketone carbonyl carbon %c

2 Aldehyde carbonyl carbon

3 Carboxylic acids, esters and amides carbonyl carbon

4 Phenoxy carbon

5 CH2 & CH sub aromatic carbon

6 Naphthenic sub aromatic carbon

7 CH3 sub aromatic carbon

8 Half of internal aromatic carbon

9 Protonated Internal aromatic C+ 1/2 internal aromatic C

10 Protonated aromatic carbon

11 Heteroaromatic other than phenoxy carbon

12 Methine carbon

13 Methylene carbon

14 Methyl carbon

15 Total carbonyl carbon

16 Total aromatic carbon

17 Aliphatic sub aromatic carbon

18 Methyl-substituted aromatic carbon

19 CH2 & CH substituted aromatic carbon

20 Naphthenic substituted aromatic carbon

21 Internal aromatic carbon

22 Peripheral unsubstituted aromatic carbon

23 Total heteroaromatic carbon

24 Total olefinic carbon

25 Total aliphatic carbon

Index

Carbon Type Parameters (%C Unless Otherwise

Listed)

26 Aliphatic methine carbon (CH)

27 Aliphatic methylene carbon (CH2)

28 Aliphatic methyl carbon (CH3)

29 Total paraffinic carbon

30 Paraffinic methine carbon (CH)

31 Paraffinic methylene carbon (CH2)

32 Paraffinic methyl carbon (CH3)

33 Total naphthenic carbon

34 Naphthenic methine carbon (CH)

35 Naphthenic methylene carbon (CH2)

36 Naphthenic methyl carbon (CH3)

37 Reg1

38 a'

39 Reg2

40 g

41 Reg3

42 g'

43 e

44 d

45 Reg4

46 b'

47 Reg5

48 p-Bu

49 t-Bu

50 Peak x

Index Carbon Type Parameters (%C Unless Otherwise Listed)

51 b

52 2-Me

53 Aromatic a methyl carbon

54 All other-Me

55 3-Me

56 Reg7

57 p-Pr

58 t-Pr

59 4-Me

60 a

61 t-Ethyl

62 p-Ethyl

63

Linear Paraffin Structure: % Linear Paraffin/Total

Paraffin

64 Waxiness : % Epsilon C/Total Paraffin

65 Branching Index: %Branching CC/Total Paraffin

66

Total Branching Content: % C Near Branching C/Total

C

67

C in Branched Environment: % 1-linear paraffin

structure

68 Average Straight Chain Length (C No.)

69 Methyl branching index

70 Ethyl branching Index

71 Propyl branching Index

72 Butyl branching Index

73 Total ethyl branching content

74 Total propyl branching content

75 Total butyl branching content

Calculated C-Type Parameters

Page 46: Edwards - NMR Presentation

Process NMR Associates

0

20

40

60

80

0 10 20 30 40 50 60 70

C-Type NMR Parameters

Depicted as a “Spectrum”

Page 47: Edwards - NMR Presentation

Process NMR Associates

Resonance Frequency

60 MHz Proton 300 MHz Proton 75 MHz Carbon-13

Parameter 1H NMR 0.1 ppm Bin 1H NMR - 0.1 ppm Bin H-Type Spectrum 13C NMR- 1 ppm Bin C-Type Spectrum

Density at 15oC 0.961 0.983 0.924 0.982 0.974

Viscosity Index - 0.951 - 0.935 -

MCRT 0.940 0.952 0.727 0.931 0.875

SULPHUR 0.931 0.964 0.855 0.979 0.962

Carbon Aromaticity 0.958 0.951 0.926 0.998 0.997

HYDROGEN 0.925 0.914 0.819 0.922 0.862

Total Aromatics 0.936 0.946 0.904 0.965 0.941

Monoaromatics 0.930 0.941 0.912 0.954 0.897

Diaromatics 0.927 0.945 0.866 0.951 0.897

TriAromatics 0.941 0.911 0.862 0.939 0.863

Tetra+ aromatics 0.913 0.921 0.656 0.912 0.934

Summary of RCC Feed NMR Analysis – Correlations to Physical/Chemical Properties

Page 48: Edwards - NMR Presentation

density _13c_calculated.tdf ,5 (R² = 0.980019145)density _13c_calculated.tdf ,5 (R² = 0.980019145)

Actual Concentration ( C1 )Actual Concentration ( C1 )

Pre

dic

ted

Co

nce

ntr

ati

on (

F6

C1

)P

redic

ted

Co

nce

ntr

ati

on (

F6

C1

)

.85

.88

.91

.94

.97

.86 .89 .92 .95 .98

.85

.88

.91

.94

.97

.86 .89 .92 .95 .98

1

2

3

4

5

6

7

8

9

10

12

1415

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

37

38

39

4041

42

43

44

46

4748

49

50

51

52

54

55

56

.85

.88

.91

.94

.97

.86 .89 .92 .95 .98

Variable Selection Process

Reduces Number of Variables

Linear Equations that Describe

Density in terms of 13 Carbon

Type Parameters

Page 49: Edwards - NMR Presentation

13C Parameter1H

NMR

13C

NMR

Total aromatic carbon 0.980 0.996

Aliphatic substituted aromatic carbon 0.962 0.999

Methyl-substituted aromatic carbon 0.970 0.994

CH2 & CH substituted aromatic carbon 0.935 0.996

Naphthenic substituted aromatic carbon 0.973 0.996

Internal aromatic carbon 0.949 0.994

Peripheral unsubstituted aromatic carbon 0.950 0.996

Total heteroaromatic carbon 0.275 0.976

Total aliphatic carbon 0.952 0.997

Aliphatic methine carbon (CH) 0.932 0.999

Aliphatic methylene carbon (CH2) 0.976 1.000

Aliphatic methyl carbon (CH3) 0.610 0.996

Total paraffinic carbon 0.984 0.995

P methine carbon (CH) 0.876 0.940

P methylene carbon (CH2) 0.987 0.998

P methyl carbon (CH3) 0.810 0.960

Total naphthenic carbon 0.964 0.989

N methine carbon (CH) 0.927 0.996

N methylene carbon (CH2) 0.957 0.987

N methyl carbon (CH3) 0.809 0.966

N methine/N methylene ratio 0.085 0.878

Mole fraction of bridgehead aromatic carbon 0.448 0.899

Aromatic carbons per aromatic group 0.697 0.895

13C Parameter

Cluster number (=aromatic group number)

1H NMR0.941

13C NMR0.995

Aliphatic substitutions per cluster 0.087 0.906

Methyl-substitutions per cluster 0.379 0.909

CH2 & CH substitutions per cluster 0.063 0.899

Naphthenic substitutions per cluster 0.227 0.910

Heteroatoms per cluster 0.032 0.926

Naphthenic CH3 per cluster 0.449 0.906

# of naphthenic ring carbons per cluster 0.524 0.924

Naphthenic rings per cluster 0.317 0.939

# of paraffinic carbons per cluster 0.892 0.934

Average chain length of paraffinic substitutions 0.913 0.932

Linear paraffin structure 0.972 0.976

Waxiness : e/total paraffin 0.977 0.983

Branching index 0.973 0.972

Total branching content 0.964 0.972

Carbons in branched environment 0.972 0.976

Average straight chain length 0.967 0.986

Methyl branching index 0.972 0.962

Ethyl branching Index 0.945 0.945

Propyl branching Index 0.919 0.932

Butyl branching Index 0.919 0.951

Total ethyl branching content 0.946 0.946

Total propyl branching content 0.919 0.933

Total butyl branching content 0.917 0.950

Correlation of 1H and 13C NMR Spectra to 13C Derived Parameters

Page 50: Edwards - NMR Presentation

Process NMR Associates

Carbon Aromaticity Corrletaed by 1H NMR

5

10

15

20

25

30

5 10 15 20 25 30

Actual Fa (%C)

Pred

icte

d F

a (

%C

)

Carbon Aromaticity Correlated to 13C Spectra

5

10

15

20

25

30

5 10 15 20 25 30

Actual Fa (%C)

Pre

dic

ted

Fa (

%C

)

1H and 13C NMR Correlation to Carbon Aromaticity

Page 51: Edwards - NMR Presentation

Process NMR Associates

13C NMR Branching Index - 1H NMR

3

4

5

6

7

8

9

10

11

12

3 4 5 6 7 8 9 10 11 12

Actual Branching Index

Pred

icte

d B

ran

ch

ing

In

dex

13C NMR Branching Index - 13C NMR

3

4

5

6

7

8

9

10

11

12

3 4 5 6 7 8 9 10 11 12

Actual Branching Index

Pred

icte

d B

ran

ch

ing

In

dex

1H and 13C NMR Correlation to Branching Index Branching Carbons/Total Paraffinic Carbons

Page 52: Edwards - NMR Presentation

1H NMR Reaction Monitoring – Esterification of t-butanol with acetic anhydride

Page 53: Edwards - NMR Presentation

CH3

CH3

CH3

O

O

CH3

CH3

CH3

CH3

OH

OH

O

CH3CH3

O

O

O

CH3

A

B

C

D

E

E

B

D

A

C

Page 54: Edwards - NMR Presentation

2.5 2.0 1.5 1.0 ppm

Esterification of t-BuOH

Integral GraphAnd Integration Plot

AcAn

Acetic Acid

T-Bu-Ester

Ac-Ester

Page 55: Edwards - NMR Presentation

1H NMR Zreaction Monitoring –propanol esterified with acetic anhydride

Page 56: Edwards - NMR Presentation
Page 57: Edwards - NMR Presentation

Sucrosea-glucose

1H NMR – Sucrose Hydrolysis

Page 58: Edwards - NMR Presentation

Microreactor Process Monitoring – 1H NMR – Reaction: Cyclohexene -- Cyclohexane

Page 59: Edwards - NMR Presentation

At-Line Analyzer 1H NMR Observation of Alkene Saturation

Starting Material and Product

Dissolved in CDCl3

Comparison of 60 MHz and 300 MHz

Page 60: Edwards - NMR Presentation
Page 61: Edwards - NMR Presentation

Process NMR Associates

Page 62: Edwards - NMR Presentation

Process NMR Associates

Page 63: Edwards - NMR Presentation

Process NMR Associates

Page 64: Edwards - NMR Presentation

Process NMR Associates

Acknowledgements

Paul Giammatteo – PNA

Tal Cohen – ASPECT AI and Modcon

Cosa-Xentaur