ECE145C/218C# Prof.#Buckwalter# 1) a. channel)model)and ...

3
ECE 145C/218C Laboratory Prof. Buckwalter 1) Intrinsic IIP3 of NMOS devices (20) a. Simulate a 100um NMOS device (20 x 5 um x 0.18um) to verify the nonlinear short channel model and the high IIP3 bias condition in saturation (Vds = 1.8 V). Plot the I d versus V gs on one plot and three transconductance coefficients on another. (16) b. Find the Vgs which gives infinite IIP3 and plot IIP3 as a function of gate voltage. If the Vgs changes by +/10 mV, what is the IIP3? (4) 2) LNA IIP3. Last quarter you designed an LNA. You used transient simulations to calculated the IIP3. Now let’s revisit your LNA design to look at the effect of cross modulation distortion. A tripletone test is used to characterize the crossmodulation distortion (XMD). To start, we will demonstrate the tripletone test with a transient simulation. Then, the waveform at the output will be transferred to the frequency spectrum using a discrete Fourier Transform (DFT). We can find the XMD tone with the frequency spectrum. a. Now take a resistive feedback LNA for example. (This is just for demonstration. For your practice, you might have a different LNA) Note that the port is defined at the input and output of the LNA. b. Open ADE and load the setup. Run an Sparameter (smallsignal) simulation of your LNA and generate a plot of S21. Record the center of your LNA band. (10 pts) c. In the analysis, select the tran simulation and set F1, F2 and F3 are three frequencies and P1, P2 and P3 are the respective powers in dBm for the triple tone test. For our purposes use F3 to be the center of your LNA band and F1 to

Transcript of ECE145C/218C# Prof.#Buckwalter# 1) a. channel)model)and ...

ECE  145C/218C  Laboratory    

Prof.  Buckwalter  

1) Intrinsic  IIP3  of  NMOS  devices  (20)    a. Simulate   a   100um   NMOS   device   (20   x   5   um   x   0.18um)   to   verify   the   nonlinear   short  

channel  model   and   the  high   IIP3  bias   condition   in   saturation   (Vds  =  1.8  V).   Plot   the   Id  versus  Vgs  on  one  plot  and  three  transconductance  coefficients  on  another.  (16)  

 b. Find  the  Vgs  which  gives   infinite   IIP3  and  plot   IIP3  as  a   function  of  gate  voltage.   If   the  

Vgs  changes  by  +/-­‐10  mV,  what  is  the  IIP3?  (4)    

 2) LNA   IIP3.   Last   quarter   you   designed   an   LNA.   You   used   transient   simulations   to  

calculated   the   IIP3.   Now   let’s   revisit   your   LNA   design   to   look   at   the   effect   of   cross  modulation  distortion.      A   triple-­‐tone   test   is   used   to   characterize   the   cross-­‐modulation   distortion   (XMD).   To  start,   we  will   demonstrate   the   triple-­‐tone   test   with   a   transient   simulation.   Then,   the  waveform  at  the  output  will  be  transferred  to  the  frequency  spectrum  using  a  discrete  Fourier  Transform  (DFT).  We  can  find  the  XMD  tone  with  the  frequency  spectrum.    

a. Now  take  a  resistive  feedback  LNA  for  example.  (This   is   just  for  demonstration.  For  your  practice,  you  might  have  a  different  LNA)  Note  that  the  port  is  defined  at  the  input  and  output  of  the  LNA.  

 b. Open  ADE  and   load   the   setup.  Run  an  S-­‐parameter   (small-­‐signal)   simulation  of  

your  LNA  and  generate  a  plot  of  S21.  Record  the  center  of  your  LNA  band.   (10  pts)  

c.  In   the   analysis,   select   the   tran   simulation   and   set   F1,   F2   and   F3   are   three  frequencies  and  P1,  P2  and  P3  are   the   respective  powers   in  dBm  for   the   triple  tone  test.  For  our  purposes  use  F3  to  be  the  center  of  your  LNA  band  and  F1  to  

be  50  MHz  below  the  receive  band  and  F2  to  be  60  MHz  below  the  receive  band.  Use  P1  of  -­‐40  dBm  and  P1/P2  of  0  dBm.    

 3) You  have  to  calculate  how  long  you  should  run  for  tran  simulation.  For  example,  If  you  

use  895M,  905M  and  995M,  then  the  greatest  common  divisor  is  5M.  It  means  at  least  you  have  to  run  1/5M  =  200ns.  Make  sure  all  the  options  in  the  Output  box  are  selected.  Also,  click  the  “RFout  Frespec  in  dBm”  in  Output  box.    

 4) In  the  Expression,  the  time  slot  you  chose  to  do  DFT  should  be  appropriate  for  the  time  

period   of   the   beat   frequency.   In   this   example,   the   DFT   is   calculated   from   200ns   to  400ns.   For   the   first   200ns,   it   is   used   to  make   sure   the   circuit   goes   into   steady   state.  (depends  on  your  architecture).  Close  setting  Outputs  box.  Run  the  simulation.  

5) When  the  simulation  is  done.  A  frequency  spectrum  will  show  up.  Try  to  zoom  in  to  the  frequency  range  you  are  interested.    For  this  case,  three  input  tones  are  at  895M,  905M  and  995MHz.  The  output  IM3  tone  is  located  at  995  +  (905  -­‐  895)  =  1005MHz.  Provide  a  plot  of  the  FFT  spectrum  and  calculate  the  IIP3  from  your  result.  (20  pts)      

 6) The  transient  technique  while  effective  is  very  time-­‐consuming;  particularly  to  make  the  

IM3   versus   PIN   plot   that   is   common   in   receiver   characterization.   A   more   common  approach  to  do  an  IIP3  simulation  is  based  on  Harmonic  Balance  or  Periodic  Steady  State  (PSS)   simulation.   Rather   than   explain   PSS   here,   please   use   the   application   note   from  Cadence  (LNA  Design  Using  SpectreRF)  that  explains  how  to  setup  a  PSS  simulation  on  page  37.  The  entire  application  note  might  be  worth  perusing  if  you  are  lost  when  you  skip  to  page  37.  For  two  tones  separated  by  10  MHz  that  fall  in  the  center  of  your  LNA  band,  sweep  the  power  of  the  tones  from  -­‐50  dBm  to  -­‐10  dBm.  Show  a  single  plot  of  the  IM3  and  the  fundamental  tone  versus   input  power  and  extrapolate   IIP3  and  P1dB.  (20  pts)