中華大學 博士論文 -...

112
可見光二氧化鈦奈米光觸媒效能之研究 Investigation on Photocatalytic Efficiency of TiO 2 Photocatalysts under Visible Illumination 別:土木與工程資訊學系 學號姓名:D09404009 指導教授: 博士 共同指導: 博士 中華民國 九十七 PDF created with pdfFactory trial version www.pdffactory.com

Transcript of 中華大學 博士論文 -...

  • Investigation on Photocatalytic Efficiency of TiO2

    Photocatalysts under Visible Illumination

    D09404009

    PDF created with pdfFactory trial version www.pdffactory.com

    http://www.pdffactory.comhttp://www.pdffactory.com
  • I

    2007 11

    PDF created with pdfFactory trial version www.pdffactory.com

    http://www.pdffactory.comhttp://www.pdffactory.com
  • II

    ()

    400700 nm

    Kubelka-Munk

    (2.98eV)

    (2.88eV)(2.63eV) Langmuir-Hinshelwood

    /

    PDF created with pdfFactory trial version www.pdffactory.com

    http://www.pdffactory.comhttp://www.pdffactory.com
  • III

    ABSTRACT KeywordsTitania nanoparticle, Hydrothermal treatment, Visible-light

    photocatalysis, Methylene blue

    In this dissertation, a hydrothermal treatment was employed to doping three types

    of metal ions (Fe, Co, and Ni) into commercial TiO2 photocatalysts for improving the

    photocatalytic reactivity of methylene blue (MB) under visible light irradiation.

    Nitrogen physisorption measurement indicated that surface areas and porosities of

    metal-doped titania powders still maintain an identical value, comparing to the starting

    material. The diffuse reflection spectra of metal-doped titania reflected a light

    absorption edge, shifting to the visible light range of ca. 400700 nm. According to

    Kubelka-Munk plot, the optical band gaps were found to have the following order

    Fe-doping (2.98 eV) > Co-doping (2.88 eV) > Ni-doping (2.63 eV), based on the fixed

    dopant concentration. A Langmuir-Hinshelwood model was used to investigate the

    photocatalytic activity for removing MB from liquid phase. It was found that the

    decreasing optical band gap is accompanied by increasing photo degradation activity of

    MB. This result can be attributed to a fact that metal-doped titania photocatalyst with

    the narrowest band gap is capable of generating better redox ability of electronhole

    pairs under visible light, thus leading to the greatest photocatalytic activity.

    According to the results, the visible-light-derived photocatalysts prepared by the

    above hydrothermal synthesis exhibit an excellent photocatalytic capability in

    decomposing organic dyes. In practical operation, we employed ceramic tile and toast

    as substrates for evaluating the photocatalytic ability under visible illumination.

    Experimental results indicated that the metal-doped titania photocatalysts enable to

    prevent the growth of E. coli, thus extending the anti-spoiled period of toast. After

    coating them onto ceramic tile, the prepared tile leads to keep a cleaner surface than the

    tile coated with commercial photocatalysts after two weeks. This fascinating effect

    proves that this fabrication technique is an efficient method in preparing

    visible-light-derived photocatalysts that can be extensively used in a variety of

    applications such as indoor decoration, ceramic tile, glass, house furnishings, and so on.

    PDF created with pdfFactory trial version www.pdffactory.com

    http://www.pdffactory.comhttp://www.pdffactory.com
  • IV

    .......................................................................................1

    1.1 ............................................................................1

    1.2 ............................................................................2

    1.3 ............................................................................3

    1.4 ............................................................................4

    1.5 ............................................................................5

    ...................................................................6

    2.1 ....................................................6

    2.1.1 .............................................................8

    2.1.2 ..................................................8

    2.1.3 ......................................9

    2.2 .........................................................................12

    2.2.1 ...............................................................13

    2.2.2 ...............................................................13

    2.2.3 ........................14

    2.3 .....................................................17

    2.3.1 ....................................18

    2.3.2 ....................................21

    .............................................................26

    3.1 ..................................................26

    3.2 ..............................................31

    3.3 TiO2 .........................................32

    3.4 TiO2 .............................36

    PDF created with pdfFactory trial version www.pdffactory.com

    http://www.pdffactory.comhttp://www.pdffactory.com
  • V

    3.5 TiO2 .............................41

    .................................................................................43

    4.1 .........................................................................43

    4.2 .................................................................44

    4.3 .........................................................................45

    4.4 .........................................................................46

    4.5 .....................................................47

    4.5.1 ................................47

    4.5.2 ........................................49

    4.5.3 ........................................51

    4.5.4 ...................................................54

    4.5.5 ........................................55

    .................................................................58

    5.1 TiO2 .........................................58

    5.1.1 TiO2 ..................58

    5.1.2 TiO2 ..................................60

    5.1.3 TiO2 ..................................62

    5.2 TiO2- ................................64

    5.3 TiO2 .............................69

    5.4 .........................................................................74

    TiO2.........................................75

    6.1 .........................................................................75

    6.2 .........................................................................76

    6.3 ..........................................................................77

    6.4 ...........................................78

    PDF created with pdfFactory trial version www.pdffactory.com

    http://www.pdffactory.comhttp://www.pdffactory.com
  • VI

    .............................................................................93

    7.1 .................................................................................93

    7.2 ..............................................................95

    ................................................................................................97

    PDF created with pdfFactory trial version www.pdffactory.com

    http://www.pdffactory.comhttp://www.pdffactory.com
  • VII

    3.1 ...............................................................35

    3.2 ............................................41

    4.1 ...................................................................43

    4.2 .......................................................................43

    4.3 ...................................................................................44

    5.1 . .......................59

    5.2 . 73

    6.1 ...................................................................75

    PDF created with pdfFactory trial version www.pdffactory.com

    http://www.pdffactory.comhttp://www.pdffactory.com
  • VIII

    1.1 .................................................................................5

    2.1 .............................................................................9

    2.2 ...............................................................10

    2.3 ................................................12

    3.1 (a)(b) ...............................28

    3.2 ...................................................................30

    3.3 ...................................................................31

    3.4 ........................33

    4.1 ....................................46

    4.2 FE-SEM ....................................................................48

    4.3 ................................................50

    4.4 (a)BET (b)

    ...................................................................................53

    4.5 X .......................................................................54

    4.6 - ..............................................55

    4.7 -(Varian Cary100) .......................57

    5.1 .....61

    5.2 XRD..........................................63

    5.3 . ...................................65

    5.4 KM. ..........................................68

    5.5 . ........70

    6.1 TiO2 ......................77

    6.2 (a)(b)................79

    6.3 (a)(b) ........80

    PDF created with pdfFactory trial version www.pdffactory.com

    http://www.pdffactory.comhttp://www.pdffactory.com
  • IX

    6.4 TiO2 ..........................82

    6.5

    ..................................................................................................83

    6.6 .....85

    6.7 TiO2 ...................87

    6.8 ............................................89

    6.9 ............................90

    6.10 .................91

    7.1 ....................................96

    PDF created with pdfFactory trial version www.pdffactory.com

    http://www.pdffactory.comhttp://www.pdffactory.com
  • 1

    1.1

    WTO

    (2006~2008 ) 60

    ( 17%)

    (

    SARS)

    (TiO2)

    PDF created with pdfFactory trial version www.pdffactory.com

    http://www.pdffactory.comhttp://www.pdffactory.com
  • 2

    1.2

    (TiO2)(ZnO)

    (NOx)

    [1,2]

    N(energy band gap)

    3.2 eV 385 nm

    [2] 45%

    3-4

    ( 400-700 nm)

    PDF created with pdfFactory trial version www.pdffactory.com

    http://www.pdffactory.comhttp://www.pdffactory.com
  • 3

    1.3

    (Pt)(V)(Ni)(Mn)(Cr)(Fe)

    [3](N)[2]

    (TiO2)

    PDF created with pdfFactory trial version www.pdffactory.com

    http://www.pdffactory.comhttp://www.pdffactory.com
  • 4

    1.4

    (sol-gel method)[3](DC plasma)[4]

    (hydrothermal or solvthermal)[5]

    110 150 24

    (Fe)

    (Co) (Ni)

    135 1

    (pseudo first-order)

    (methylene blue, MB)

    PDF created with pdfFactory trial version www.pdffactory.com

    http://www.pdffactory.comhttp://www.pdffactory.com
  • 5

    1.5

    1.1

    1.1

    TiO2

    TiO2 TiO2 TiO2

    BET

    XRDTEM

    SEM

    UV-Visible

    TiO2

    TiO2 TiO2 TiO2

    BET

    XRDTEM

    SEM

    UV-Visible

    TiO2

    TiO2 TiO2 TiO2

    BET

    XRDTEM

    SEM

    UV-Visible

    TiO2

    TiO2 TiO2 TiO2

    BET

    XRDTEM

    SEM

    UV-Visible

    TiO2

    TiO2 TiO2 TiO2

    BET

    XRDTEM

    SEM

    UV-Visible

    TiO2

    TiO2 TiO2 TiO2

    BET

    XRDTEM

    SEM

    UV-Visible

    TiO2

    TiO2 TiO2 TiO2

    BET

    XRDTEM

    SEM

    UV-Visible

    TiO2

    TiO2 TiO2 TiO2

    BET

    XRDTEM

    SEM

    UV-Visible

    TiO2

    TiO2 TiO2 TiO2

    TiO2

    TiO2 TiO2 TiO2

    BET

    XRDTEM

    SEM

    UV-Visible

    TiO2

    TiO2 TiO2 TiO2

    BET

    XRDTEM

    SEM

    UV-Visible

    TiO2

    TiO2 TiO2 TiO2

    BET

    XRDTEM

    SEM

    UV-Visible

    TiO2

    TiO2 TiO2 TiO2

    BET

    XRDTEM

    SEM

    UV-Visible

    TiO2

    TiO2 TiO2 TiO2

    BET

    XRDTEM

    SEM

    UV-Visible

    TiO2

    BET

    XRDTEM

    SEM

    UV-Visible

    TiO2

    TiO2 TiO2 TiO2

    BET

    XRDTEM

    SEM

    UV-Visible

    TiO2

    TiO2 TiO2 TiO2

    BET

    XRDTEM

    SEM

    UV-Visible

    TiO2

    TiO2 TiO2 TiO2

    BET

    XRDTEM

    SEM

    UV-Visible

    PDF created with pdfFactory trial version www.pdffactory.com

    http://www.pdffactory.comhttp://www.pdffactory.com
  • 6

    2.1

    (Nanotechnology)

    (Richard Feynman) 1959

    McKeownNario Taniguchi

    1974 Nanotechnology[6]

    0.1 nm- 100 nm

    (Top-down)1982 (Scanning

    Tunneling Microscope, STM)

    1989 Foresight Stanford University

    1990(Baltimore) STM

    2000

    National Nanotechnology

    Initiative (NNI)

    [7]

    Research and technology development at the atomic, molecular or

    macromolecular levels, in the length scale of approximately 1 - 100

    nanometer range, to provide a fundamental understanding of phenomena

    and materials at the nanoscale and to create and use structures, devices

    and systems that have novel properties and functions because of their small

    and/or intermediate size. The novel and differentiating properties and

    functions are developed at a critical length scale of matter typically under

    PDF created with pdfFactory trial version www.pdffactory.com

    http://www.pdffactory.comhttp://www.pdffactory.com
  • 7

    100 nm. Nanotechnology research and development includes manipulation

    under control of the nanoscale structures and their integration into larger

    material components, systems and architectures. Within these larger scale

    assemblies, the control and construction of their structures and

    components remains at the nanometer scale. In some particular cases, the

    critical length scale for novel properties and phenomena may be under 1

    nm (e.g., manipulation of atoms at ~0.1 nm) or be larger than 100 nm (e.g.,

    nanoparticle reinforced polymers have the unique feature at ~ 200-300 nm

    as a function of the local bridges or bonds between the nano particles and

    the polymer).

    1 nm 100 nm

    1 nm-100 nm(Mesoscopic)

    PDF created with pdfFactory trial version www.pdffactory.com

    http://www.pdffactory.comhttp://www.pdffactory.com
  • 8

    2.1.1

    nanometer (nm)1

    (nm)=10-3()=10-9(m) 110

    [8]

    2.1.2

    ///

    [/ (Carbon Nanotube, CNT)]/

    (Supermolecule) /

    /

    (Single Electron Transistors)

    (Spintronics) (Magnetic Random Access Memory,

    MRAM) Terabyte

    //

    PDF created with pdfFactory trial version www.pdffactory.com

    http://www.pdffactory.comhttp://www.pdffactory.com
  • 9

    2.1.3

    (structure)

    (properties) (process)

    (top-down) 2.1

    2.1

    1 nm 10 nm 20 nm 100 nm 1m

    Bottom up

    (Self-assembly

    process)(Supramolecule)

    Top Down

    1 nm 10 nm 20 nm 100 nm 1m

    Bottom up

    (Self-assembly

    process)(Supramolecule)

    Top Down

    PDF created with pdfFactory trial version www.pdffactory.com

    http://www.pdffactory.comhttp://www.pdffactory.com
  • 10

    2.2

    2.2

    1990

    1990 1994

    1994

    nanostructured assembling system

    I IIII I1990 1994

    :

    (nanocrystalline or nanophase)

    (0D-0D) (0D-3D)(0D-2D)

    (nanostructuredassembling system)

    1D2D3Dnano-patterning

    STM

    I IIII I1990 1994I IIIIIII II I1990 1994

    :

    (nanocrystalline or nanophase)

    (0D-0D) (0D-3D)(0D-2D)

    (nanostructuredassembling system)

    1D2D3Dnano-patterning

    STM

    PDF created with pdfFactory trial version www.pdffactory.com

    http://www.pdffactory.comhttp://www.pdffactory.com
  • 11

    (hard

    materials)

    (soft materials)

    (flexibility)

    [9]

    PDF created with pdfFactory trial version www.pdffactory.com

    http://www.pdffactory.comhttp://www.pdffactory.com
  • 12

    2.2

    100

    /

    2.3

    /()-

    [10]

    2.3

    /

    /

    /

    /

    /

    PDF created with pdfFactory trial version www.pdffactory.com

    http://www.pdffactory.comhttp://www.pdffactory.com
  • 13

    2.2.1

    (

    )

    1 nm""

    20 nm 105

    [10]

    2.2.2

    100 nm

    (Sphere Equivalent)

    6000~9000 nm() 2000~3000 nm

    400~760 nm

    1~100 nm

    103~105()

    (1 nm~100 nm)

    PDF created with pdfFactory trial version www.pdffactory.com

    http://www.pdffactory.comhttp://www.pdffactory.com
  • 14

    (tunneling

    effect)

    [10]

    2.2.3

    (Quantum Size Effect)

    (sintering temperature)

    (Pb) 600K

    20 nm Pb 288K (Ag) 373K

    Ag 1173K

    PDF created with pdfFactory trial version www.pdffactory.com

    http://www.pdffactory.comhttp://www.pdffactory.com
  • 15

    (Al2O3) 2073~2173K

    Al2O3 1423~1773K

    99.7%[10]

    ()

    [11]

    () ()

    [10]

    PDF created with pdfFactory trial version www.pdffactory.com

    http://www.pdffactory.comhttp://www.pdffactory.com
  • 16

    (Magnetic Domains)

    Hc(Coercive Field)

    Hc(Superparamagnetic

    Phase)

    FeCoNi

    Pd

    [12]

    PDF created with pdfFactory trial version www.pdffactory.com

    http://www.pdffactory.comhttp://www.pdffactory.com
  • 17

    2.3

    (Top-Down)

    (High Energy Mechanical Milling)

    /

    60

    (Oxide-dispersion Strengthened)

    /

    (Bottom-up)

    (Gas Phase Condensation GPC)

    (Liquid Phase Chemical Precipitation) (Sol-Gel)

    (Hydrothermal) (Vapor Phase Chemical Reaction)

    (Spray Conversion Process SCP)

    (Self-assembly)

    PDF created with pdfFactory trial version www.pdffactory.com

    http://www.pdffactory.comhttp://www.pdffactory.com
  • 18

    Bottom-up

    [12]

    2.3.1

    0.01~0.05m

    1 mm 1~2m

    PDF created with pdfFactory trial version www.pdffactory.com

    http://www.pdffactory.comhttp://www.pdffactory.com
  • 19

    1m 20%

    2m 90%

    0.5m 70

    (300~500 m/s)(300~450 )

    80

    Alpine

    1~5m

    1m

    0.1m

    PDF created with pdfFactory trial version www.pdffactory.com

    http://www.pdffactory.comhttp://www.pdffactory.com
  • 20

    5 nm~100

    nm

    [10]

    (Precursor)

    (Cluster)

    (Cold-trap)

    [13]

    (1980 )

    (1 Pa)102~103 Pa

    PDF created with pdfFactory trial version www.pdffactory.com

    http://www.pdffactory.comhttp://www.pdffactory.com
  • 21

    [10]

    2.3.2

    --

    -

    PDF created with pdfFactory trial version www.pdffactory.com

    http://www.pdffactory.comhttp://www.pdffactory.com
  • 22

    A () B () + C () (2.1)

    Fe(CO)5SiH4Si(NH)2

    A () + B ()C () + D () (2.5)

    SiH4NH3C2H4 CO2

    Fe(CO)5(g) Fe(s) + 5CO(g)

    SiH4 Si(s) + 2H2

    3[Si(NH)2] Si3N4(s) + 2NH3(g)

    Fe(CO)5(g) Fe(s) + 5CO(g)

    SiH4 Si(s) + 2H2

    3[Si(NH)2] Si3N4(s) + 2NH3(g)

    Fe(CO)5(g) Fe(s) + 5CO(g)

    SiH4 Si(s) + 2H2

    3[Si(NH)2] Si3N4(s) + 2NH3(g)

    Fe(CO)5(g) Fe(s) + 5CO(g)

    SiH4 Si(s) + 2H2

    3[Si(NH)2] Si3N4(s) + 2NH3(g)

    (2.2)

    (2.3)

    (2.4)

    Fe(CO)5(g) Fe(s) + 5CO(g)

    SiH4 Si(s) + 2H2

    3[Si(NH)2] Si3N4(s) + 2NH3(g)

    Fe(CO)5(g) Fe(s) + 5CO(g)

    SiH4 Si(s) + 2H2

    3[Si(NH)2] Si3N4(s) + 2NH3(g)

    (2.6)

    (2.7)

    (2.8)

    PDF created with pdfFactory trial version www.pdffactory.com

    http://www.pdffactory.comhttp://www.pdffactory.com
  • 23

    (precursor)

    1 m

    [14]

    pH

    pH

    PDF created with pdfFactory trial version www.pdffactory.com

    http://www.pdffactory.comhttp://www.pdffactory.com
  • 24

    100~350

    (dialysis)

    (autoclave)

    [10,15]

    (ZrO2)(Al2O3)

    (Fe2O3)

    -

    -

    1 nm

    PDF created with pdfFactory trial version www.pdffactory.com

    http://www.pdffactory.comhttp://www.pdffactory.com
  • 25

    -

    pH

    [10]

    Hydrolysis()

    Ti-OR+H2O Ti-OH+ROH

    Condensation oxolation (dehydration)()

    Ti-OH+HO-Ti Ti-O-Ti +HOH

    Alcoxolation (dealcoholation)()

    Ti-OH+RO-Ti Ti-O-Ti +ROH

    Polymerization()

    O O

    Ti-O-Ti + Ti-O-Ti O-Ti-O-Ti-O

    O O

    Hydrolysis()

    Ti-OR+H2O Ti-OH+ROH

    Condensation oxolation (dehydration)()

    Ti-OH+HO-Ti Ti-O-Ti +HOH

    Alcoxolation (dealcoholation)()

    Ti-OH+RO-Ti Ti-O-Ti +ROH

    Polymerization()

    O O

    Ti-O-Ti + Ti-O-Ti O-Ti-O-Ti-O

    O O

    (2.9)

    (2.10)

    (2.11)

    (2.12)

    PDF created with pdfFactory trial version www.pdffactory.com

    http://www.pdffactory.comhttp://www.pdffactory.com
  • 26

    1972Fujishima et al.[16]

    (TiO2)

    [17]

    3.1

    (catalyst)

    [18]

    A+BAB

    A B AB

    AB

    PDF created with pdfFactory trial version www.pdffactory.com

    http://www.pdffactory.comhttp://www.pdffactory.com
  • 27

    A+BAB (3.1)

    ABAB (3.2)

    A+[Cat.] A[Cat.] (3.3)

    A[Cat.]+BAB[Cat.] (3.4)

    AB[Cat.] AB+[Cat.] (3.5)

    (TiO2ZnONb2O5WO3SnO2ZrO2

    KTaO3CdSZnSCdSeGaPCdTeMoSe2WSe2 )

    (Semiconductor, SC)(Insulator)(Conductor)

    (band gap)

    3.1(a)

    (Shells) 3.1(a)

    (Valence Shell)

    (Free Electron)

    (

    3.1b)

    PDF created with pdfFactory trial version www.pdffactory.com

    http://www.pdffactory.comhttp://www.pdffactory.com
  • 28

    3.1(a)

    3.1(b)

    , Ev

    , Ec

    , Eg

    , Ev

    , Ec

    , Eg

    PDF created with pdfFactory trial version www.pdffactory.com

    http://www.pdffactory.comhttp://www.pdffactory.com
  • 29

    (Conducting Band)

    (Valence Band)

    (1 eV)(1V)

    4 eV

    1.1 eV 0.67 eV 3.2[19]

    [20]

    A P

    (B) A N (P)

    (As)(Sb)(Carrier)

    ()

    N

    (Donor)(Hole)

    P

    (Acceptor)[20]

    PDF created with pdfFactory trial version www.pdffactory.com

    http://www.pdffactory.comhttp://www.pdffactory.com
  • 30

    3.2[19]

    V-2.0

    -1.0

    0

    1.0

    2.0

    3.0

    4.0

    TiO2 Nb2O5ZnO Fe2O3 WO3SnO2

    SrTiO3CdSeCdS KTaO3

    KTa0.77Nb0.2303SiGaP ZrO2

    2.2

    eV

    1.1

    eV

    5.0

    eV

    2.5

    eV 3.2

    eV

    3.4

    eV

    3.2

    eV

    3.0

    eV

    3.4

    eV

    1.7

    eV

    2.5

    eV

    2.2

    eV

    3.2

    eV

    3.5

    eV

    H2/H2O

    O2/H2O

    pH=0

    (

    )

    V-2.0

    -1.0

    0

    1.0

    2.0

    3.0

    4.0

    TiO2 Nb2O5ZnO Fe2O3 WO3SnO2

    SrTiO3CdSeCdS KTaO3

    KTa0.77Nb0.2303SiGaP ZrO2

    2.2

    eV

    1.1

    eV

    5.0

    eV

    2.5

    eV 3.2

    eV

    3.4

    eV

    3.2

    eV

    3.0

    eV

    3.4

    eV

    1.7

    eV

    2.5

    eV

    2.2

    eV

    3.2

    eV

    3.5

    eV

    H2/H2O

    O2/H2O

    V-2.0

    -1.0

    0

    1.0

    2.0

    3.0

    4.0

    TiO2 Nb2O5ZnO Fe2O3 WO3SnO2

    SrTiO3CdSeCdS KTaO3

    KTa0.77Nb0.2303SiGaP ZrO2

    2.2

    eV

    1.1

    eV

    5.0

    eV

    2.5

    eV 3.2

    eV

    3.4

    eV

    3.2

    eV

    3.0

    eV

    3.4

    eV

    1.7

    eV

    2.5

    eV

    2.2

    eV

    3.2

    eV

    3.5

    eV

    V-2.0

    -1.0

    0

    1.0

    2.0

    3.0

    4.0

    TiO2 Nb2O5ZnO Fe2O3 WO3SnO2

    SrTiO3CdSeCdS KTaO3

    KTa0.77Nb0.2303SiGaP ZrO2

    V-2.0

    -1.0

    0

    1.0

    2.0

    3.0

    4.0

    V-2.0

    -1.0

    0

    1.0

    2.0

    3.0

    4.0

    TiO2 Nb2O5ZnO Fe2O3 WO3SnO2

    SrTiO3CdSeCdS KTaO3

    KTa0.77Nb0.2303SiGaP ZrO2

    2.2

    eV

    1.1

    eV

    5.0

    eV

    2.5

    eV 3.2

    eV

    3.4

    eV

    3.2

    eV

    3.0

    eV

    3.4

    eV

    1.7

    eV

    2.5

    eV

    2.2

    eV

    3.2

    eV

    3.5

    eV

    H2/H2O

    O2/H2O

    pH=0

    (

    )

    PDF created with pdfFactory trial version www.pdffactory.com

    http://www.pdffactory.comhttp://www.pdffactory.com
  • 31

    3.2

    -

    3.3[21]

    --

    O2-OH

    [22]

    3.3 [21]

    PDF created with pdfFactory trial version www.pdffactory.com

    http://www.pdffactory.comhttp://www.pdffactory.com
  • 32

    3.3 TiO2

    (Photonic crystal)

    (Gas senser)(Wave guide)(Ceramics membrane)

    [23,24]

    (Anatase)(Rutile)(Brookite)

    [23]

    600~700

    TiO2

    edge-sharing

    corner-sharing

    3.4[25]

    PDF created with pdfFactory trial version www.pdffactory.com

    http://www.pdffactory.comhttp://www.pdffactory.com
  • 33

    3.4

    PDF created with pdfFactory trial version www.pdffactory.com

    http://www.pdffactory.comhttp://www.pdffactory.com
  • 34

    N

    1200

    Anatase Anatase

    Rutile Rutile

    Anatase Rutile

    Anatase Anatase

    Rutile 3.1 [26]

    Anatase(3.79 3.04 )(3.57 2.96 )

    (1.949 1.980 )(1.934 1.980

    )(mass density, )(band

    structure) Anatase 3.9 g/cm3

    3.2 eV Rutile 4.23 g/cm3 3.0 eV

    [27,28]

    PDF created with pdfFactory trial version www.pdffactory.com

    http://www.pdffactory.comhttp://www.pdffactory.com
  • 35

    3.1 [26]

    79.9 79.9

    (g/cm3) 4.23 3.9

    a () 4.58 3.78

    c () 2.95 9.49

    2.71 2.52

    () 6.0 ~ 7.0 5.5 ~ 6.0

    (eV) 3.0 3.2

    114 31

    1858 600

    (HCl)

    (NaOH)

    PDF created with pdfFactory trial version www.pdffactory.com

    http://www.pdffactory.comhttp://www.pdffactory.com
  • 36

    3.4 TiO2

    385 nm

    OH O2-

    TiO2

    [29]

    1240 / Ebge (3.6)

    (nm)

    Ebge (band gap energy (eV))

    TiO2 3.2 eV

    385 nm TiO2

    TiO2 UV

    TiO2

    6[30]

    TiO2

    PDF created with pdfFactory trial version www.pdffactory.com

    http://www.pdffactory.comhttp://www.pdffactory.com
  • 37

    TiO2

    (H2O/O2)

    TiO2

    O2- OH

    OH O2-

    TiO2

    [31]

    TiO2 (anatase) + h TiO2(h+) + TiO2 (e-) (3.7)

    TiO2(h+) + H2O H+ + OH (3.8)

    TiO2(e-) + O2 O2- (3.9)

    e-+ O2 O2- HO2 (3.10)

    2HO2 O2 + H2O2 OH +OH- + O2 (3.11)

    OH + Ared Aoxd (3.12)

    H+

    O2-

    PDF created with pdfFactory trial version www.pdffactory.com

    http://www.pdffactory.comhttp://www.pdffactory.com
  • 38

    [32]

    (Direct photolysis)

    A+ hA (3.13)

    AD1 + D2 (3.14)

    A

    h

    A

    D1, D2

    290 nm

    PDF created with pdfFactory trial version www.pdffactory.com

    http://www.pdffactory.comhttp://www.pdffactory.com
  • 39

    (Indirect photolysis)

    A+ hA (3.13)

    A+BA+B (3.15)

    BD1 + D2 (3.16)

    A

    (

    )

    1.

    2.

    3.

    4.

    (Homogeneous Photo- catalysis)

    (Hetergeneous Photocatalysis)[33]

    PDF created with pdfFactory trial version www.pdffactory.com

    http://www.pdffactory.comhttp://www.pdffactory.com
  • 40

    (TiO2(ZnO)(CdS)

    PDF created with pdfFactory trial version www.pdffactory.com

    http://www.pdffactory.comhttp://www.pdffactory.com
  • 41

    3.5 TiO2

    3.2

    3.2

    1994 M. R.

    Hoffmann

    [34]

    1995 N. Serpone CdS

    [28]

    1995 K.

    Vinodgopal

    SnO2TiO2

    [35]

    1999 H. D.

    Breuer

    CrMo

    [36]

    2001 R. Asahi N

    [37]

    2002 T.

    Umebayashi

    S

    [38]

    2003 D. W. Park Si Fe

    [24]

    PDF created with pdfFactory trial version www.pdffactory.com

    http://www.pdffactory.comhttp://www.pdffactory.com
  • 42

    3.2

    2003 H. Kisch C

    [39]

    2004 L. Miao N2/H2 RF

    [40]

    2004 H. Luo Br Cl

    [41]

    2004 S.

    Sakthivel

    N

    [42]

    2005 J. C. Yu S

    [43]

    PDF created with pdfFactory trial version www.pdffactory.com

    http://www.pdffactory.comhttp://www.pdffactory.com
  • 43

    4.1

    4.1 4.2

    4.1

    potassium

    hydroxide KOH R.D.H. ACS

    (P25,

    20-40 nm)

    Titanium

    Dioxide TiO2 Degussa Co. 99%

    Nickel nitrate Ni (NO3) 2 R.D.H. ACS

    Cobalt nitrate Co (NO3) 2 R.D.H. ACS

    Iron nitrate Fe (NO3)3 R.D.H. ACS

    4.2

    () (g/mol)

    (nm)

    Methylene Blue (C16H18ClN3S)

    319.8 664 280

    PDF created with pdfFactory trial version www.pdffactory.com

    http://www.pdffactory.comhttp://www.pdffactory.com
  • 44

    4.2

    4.3

    4.3

    ()

    Precisa XB220A(4)

    Power Sonic 420

    DSC158

    pH Hanna Instrument pH211

    Heldolph MR3001

    EYELA VOS-201SD(493K)

    DENG YNG DH400(773K)

    50 mm () x 100 mm (L)

    (1473K)

    PDF created with pdfFactory trial version www.pdffactory.com

    http://www.pdffactory.comhttp://www.pdffactory.com
  • 45

    4.3

    20-40 nm TiO2(P25,

    Degussa Co.)

    X-ray [3,5]

    (Anatase)(Rutile)

    TiO2 0.01 M

    () 10 M KOH

    TiO2 1g 50 ml

    TiO2 1 %

    50 mm 100 mm(SUS 306)

    135 TiO2

    TiO2

    pH 6

    400

    TiO2

    PDF created with pdfFactory trial version www.pdffactory.com

    http://www.pdffactory.comhttp://www.pdffactory.com
  • 46

    4.4

    4.1

    1g 50 ml A

    30 min

    50 mL 135 1 hr

    pH 6

    4001 hr

    A 10 M 0.01M(Fe(NO3)3 Ni(NO3)2Co(NO3)2)

    PDF created with pdfFactory trial version www.pdffactory.com

    http://www.pdffactory.comhttp://www.pdffactory.com
  • 47

    4.5

    4.5.1

    (field emission scanning electron

    microscopy, FE-SEM, LEO 1530)

    ( 4.2)

    FE-SEM(emissive- mode)

    CRT(cathode radiation tube)

    CRT

    PDF created with pdfFactory trial version www.pdffactory.com

    http://www.pdffactory.comhttp://www.pdffactory.com
  • 48

    4.2 FE-SEM

    PDF created with pdfFactory trial version www.pdffactory.com

    http://www.pdffactory.comhttp://www.pdffactory.com
  • 49

    4.5.2

    (HR-TEM High

    resolution transmission electron microscopyJEOL 2010)

    ( 4.3)

    ( 1 )

    HR-TEM

    X

    100

    PDF created with pdfFactory trial version www.pdffactory.com

    http://www.pdffactory.comhttp://www.pdffactory.com
  • 50

    4.3

    PDF created with pdfFactory trial version www.pdffactory.com

    http://www.pdffactory.comhttp://www.pdffactory.com
  • 51

    4.5.3

    BET(Brunauer-Emmett-Teller)

    Langmuir equationBJH t-plot

    BET

    77 K Point B P/P0 = 0.05

    ~ 0.1 isotherm ( 4.4 a) BET Langmuir equation

    molecular crossing area

    BET equation

    V P

    Vm

    P

    P0

    C

    P

    V(P0-P) VmCP0

    (C-1)1

    VmC= +

    P

    V(P0-P) VmCP0

    (C-1)1

    VmC= + (4.1)

    PDF created with pdfFactory trial version www.pdffactory.com

    http://www.pdffactory.comhttp://www.pdffactory.com
  • 52

    P/P0( 4.4 b)Kelvin equation

    Kelvin equation

    Rk Kelvin

    R

    T

    VL

    Rk=(-2VL)/RT ln(P/P0)Rk=(-2VL)/RT ln(P/P0) (4.2)

    PDF created with pdfFactory trial version www.pdffactory.com

    http://www.pdffactory.comhttp://www.pdffactory.com
  • 53

    (a) (b)

    4.4 (a) BET ;

    (b)

    PDF created with pdfFactory trial version www.pdffactory.com

    http://www.pdffactory.comhttp://www.pdffactory.com
  • 54

    4.5.4

    X (X-ray diffraction XRDPhilip PW

    1700) X

    4.5 X

    PDF created with pdfFactory trial version www.pdffactory.com

    http://www.pdffactory.comhttp://www.pdffactory.com
  • 55

    4.5.5

    (methylene blue) 664 nm

    Beer-Lambert Law

    20 mg/L

    -(UV-visible spectrometerShimadzu UV-2550)

    ( 4.6)

    -

    4.6 -

    PDF created with pdfFactory trial version www.pdffactory.com

    http://www.pdffactory.comhttp://www.pdffactory.com
  • 56

    Beer-Lambert Law

    Iin

    Iout Iin Iout

    (Transmittance)T

    (4.3)

    A(Absorbance)(-1)

    (4.4)

    Beer-Lambert Law

    A=lc (4.5)

    l c

    A olar absorptivity)

    20 mgL-1 0.2

    wt.% TiO2 13 W 750

    Wcm-2

    (Newport FSQ-GG 400)

    -( 4.7) (Varian Cary100)

    TiO2 /

    200 800 nm

    T=Iin

    IoutT=

    Iin

    Iout

    A=-logT= -logIin

    Iout=log

    Iin

    IoutA=-logT= -log

    Iin

    Iout=log

    Iin

    Iout

    PDF created with pdfFactory trial version www.pdffactory.com

    http://www.pdffactory.comhttp://www.pdffactory.com
  • 57

    /

    -

    4.7-(Varian Cary100)

    (diffuse reflection)

    Kubelka-Munk

    S

    R

    F(R)

    F(R)=(1-R)2

    2R=

    SF(R)=

    (1-R)2

    2R=

    S(4.6)

    PDF created with pdfFactory trial version www.pdffactory.com

    http://www.pdffactory.comhttp://www.pdffactory.com
  • 58

    5.1 TiO2

    5.1.1 TiO2

    -196

    TiO2

    5.1 TiO2

    ( TiP) 46 m2/g

    TiO2( Fe-TiPCo-TiP Ni-TiP)

    TiO2

    TiO2 TiO2

    5.1 TiO2

    79-86%

    (mesopore)

    TiO2

    TiO2

    TiO2

    PDF created with pdfFactory trial version www.pdffactory.com

    http://www.pdffactory.comhttp://www.pdffactory.com
  • 59

    5.1

    Sample SBET a Vt b Pore size distribution Mean pore

    type (m2g-1) (cm3g-1) Vmicro c (%) Vmeso d (%) size, D e ().

    TiP 46 0.123 0.020 (16) 0.103 (84) 4

    Fe-TiP 56 0.141 0.020 (14) 0.121 (86) 42

    Co-TiP 55 0.130 0.023 (18) 0.107 (82) 41

    Ni-Tip 58 0.151 0.023 (15) 0.128 (79) 43

    a SBET BET b Vt 0.98 c Vmicro Dubinin-Radushkevish d Vmeso e D Barrett-Joyner-Halenda

    PDF created with pdfFactory trial version www.pdffactory.com

    http://www.pdffactory.comhttp://www.pdffactory.com
  • 60

    5.1.2 TiO2

    CoTiO2FE-SEMHR-TEM

    5.1(a)(b)TiO2

    20-40 nm

    5.1(b) TiO2

    5.1(b) 4.757

    (anatase) TiO2

    PDF created with pdfFactory trial version www.pdffactory.com

    http://www.pdffactory.comhttp://www.pdffactory.com
  • 61

    5.1

    (a) FE-SEM(b) HR-TEM

    (a)

    (b)

    100 nm

    PDF created with pdfFactory trial version www.pdffactory.com

    http://www.pdffactory.comhttp://www.pdffactory.com
  • 62

    5.1.3 TiO2

    TiO2

    5.2XRD TiO2

    400

    5.2(a) TiO2(P25)

    rutile anatase anatase

    (2) 25.28 rutile

    (2) 27.44 [14]

    TiO2 rutile

    anatase TiO2

    PDF created with pdfFactory trial version www.pdffactory.com

    http://www.pdffactory.comhttp://www.pdffactory.com
  • 63

    20 30 40 50 60 702

    Inte

    nsity

    (arb

    . uni

    t)

    (a)

    (b)

    (c)

    (d)

    : anatase: rutile

    (degrees)

    5.2 XRD (a)(b)

    (c)(d)

    PDF created with pdfFactory trial version www.pdffactory.com

    http://www.pdffactory.comhttp://www.pdffactory.com
  • 64

    5.2 TiO2-

    TiO2 (diffuse

    reflection spectra) 5.3

    TiO2 385 nm

    TiO2

    5.3 400-700 nm

    TiO2

    TiO2 (band gap)

    TiO2

    PDF created with pdfFactory trial version www.pdffactory.com

    http://www.pdffactory.comhttp://www.pdffactory.com
  • 65

    5.3 (Diffuse reflection

    spectra)

    200 300 400 500 600 700 800Wavelength (nm)

    0

    1

    2

    3D

    iffus

    e R

    efle

    ctan

    ce,

    Fe-TiPCo-TiP

    Ni-TiP

    F(R)

    PDF created with pdfFactory trial version www.pdffactory.com

    http://www.pdffactory.comhttp://www.pdffactory.com
  • 66

    135

    TiO2 Ti-O-Ti Ti-O-K

    Ti-OH [14]

    Ti-O-M TiO2

    TiO2

    [5] 0

    10% 3.2eV 2.3eV[44]

    TiO2

    5.3 TiO2

    TiO2

    Ni TiO2

    475 nm 730 nm Fe TiO2

    485 nm Co TiO2 605

    nm TiO2

    Kubelka-Munk(KM)

    [45-47] R KM

    (5.1)

    S

    KM

    [48][F(R)hv]1/ hv

    KM hv

    F(R)=(1-R)2

    2R=

    SF(R)=

    (1-R)2

    2R=

    S

    PDF created with pdfFactory trial version www.pdffactory.com

    http://www.pdffactory.comhttp://www.pdffactory.com
  • 67

    [46]

    KM ( =2)

    ( 5.4)

    (Co-TiP(2.88 eV)>Ni-TiP(2.63 eV) TiO2(3.2 eV)

    (1)

    (2)

    Ti-O-M

    (M=Fe, Co, Ni)

    PDF created with pdfFactory trial version www.pdffactory.com

    http://www.pdffactory.comhttp://www.pdffactory.com
  • 68

    5.4 KM

    2.0 2.5 3.0 3.5 4.0(eV)

    0

    1

    2

    3

    4

    hv

    h

    v1/2

    Fe-TiP

    Ni-TiP

    F(R)

    Co-TiP

    [

    ]

    PDF created with pdfFactory trial version www.pdffactory.com

    http://www.pdffactory.comhttp://www.pdffactory.com
  • 69

    5.3 TiO2

    5.5

    PDF created with pdfFactory trial version www.pdffactory.com

    http://www.pdffactory.comhttp://www.pdffactory.com
  • 70

    5.5

    Langmuir-Hinshelwood

    0 20 40 60 80 100 120 140 160 180 200Visible light irradiation (min)

    0

    10

    20

    30

    40

    50

    60R

    emov

    al e

    ffic

    ienc

    y (%

    )Ni-TiP

    Co-TiP

    Fe-TiP

    PDF created with pdfFactory trial version www.pdffactory.com

    http://www.pdffactory.comhttp://www.pdffactory.com
  • 71

    (e-)-(h+)[4]

    (5.2) TiO2

    (OH)(5.3) TiO2

    (O2-)(5.4)

    (5.5)(5.7)

    (MB+)

    (5.8)

    5.5

    Ni-TiP(59.3 %) >Co-TiP(54.6 %)>

    Fe-TiP(49.8 %)

    TiO2

    Ni-TiPNi-TiP

    Ni-TiP 2.63 eV

    TiO2 -(5.2)

    TiO2 + h e + h+ (5.2)

    H2O + h+ OH + H+ (5.3)

    O2 + e O2 (5.4)

    O2 + H+ HO2 (5.5)

    2 HO2 H2O2 + O2 (5.6)

    H2O2 + O2 OH + O2 + OH (5.7)

    OH + MB+ colorless compound (5.8)

    PDF created with pdfFactory trial version www.pdffactory.com

    http://www.pdffactory.comhttp://www.pdffactory.com
  • 72

    Langmuir-Hinshelwood(LH)

    [49,50]

    -(OH)

    LH

    ra C

    k ()

    K Ci

    (Ci=20 mgL-1=6.2510-5 molL-1) KC

    tka(pseudo first-order)

    (5.10)

    Ct t

    ra=k=kKC

    1+KCra=k=

    kKC

    1+KC(5.9)

    ra= -dC

    dt=kKC=kaCra= -

    dC

    dt=kKC=kaC (5.10)

    lnCi

    Ct

    =katlnCi

    Ct

    =kat(5.11)

    PDF created with pdfFactory trial version www.pdffactory.com

    http://www.pdffactory.comhttp://www.pdffactory.com
  • 73

    ln(Ci/Ct)(t)

    ka TiO2 ka 5.2

    Ni-TiP

    Ni TiO2

    -

    ( OH)

    [50] 5.1

    TiO2

    TiO2

    5.2

    Sample type ka102 (min-1)

    Fe-TiP 1.37

    Co-TiP 1.61

    Ni-TiP 1.92

    PDF created with pdfFactory trial version www.pdffactory.com

    http://www.pdffactory.comhttp://www.pdffactory.com
  • 74

    5.4

    TiO2

    (Fe, Co Ni) TiO2

    TiO2

    KM

    Fe-TiP(2.98 eV)>Co-TiP(2.88 eV)>Ni-TiP(2.63 eV)

    NiTiO2

    Ni-TiP(59.3 %) >Co-TiP(54.6 %)> Fe-TiP(49.8 %)

    TiO2

    Ni

    -

    PDF created with pdfFactory trial version www.pdffactory.com

    http://www.pdffactory.comhttp://www.pdffactory.com
  • 75

    TiO2

    6.1

    6.1

    6.1

    Ni-TiP(20-40

    nm)

    Nickel-doped Titanium Dioxide

    Ni-TiO2 99%

    Titanium Dioxide TiO2

    99%

    Acetone C3H6O Echo

    37%

    Alcohol C2H5OH

    95%

    PDF created with pdfFactory trial version www.pdffactory.com

    http://www.pdffactory.comhttp://www.pdffactory.com
  • 76

    6.2

    Ni-TiP

    TiO2

    0.5 g 50 ml 10

    ml 20

    2 ml

    (Escherichia coli E. Coli) 0.5

    ml

    PDF created with pdfFactory trial version www.pdffactory.com

    http://www.pdffactory.comhttp://www.pdffactory.com
  • 77

    6.3

    6.1

    6.1 TiO2

    2ml

    0.5 ml E. Coli

    PDF created with pdfFactory trial version www.pdffactory.com

    http://www.pdffactory.comhttp://www.pdffactory.com
  • 78

    6.4

    (O2)

    (O2-)(H2O)

    ( OH)

    / 6.2 6.3

    /

    PDF created with pdfFactory trial version www.pdffactory.com

    http://www.pdffactory.comhttp://www.pdffactory.com
  • 79

    6.2 (a)(b)

    (a)

    (b)

    PDF created with pdfFactory trial version www.pdffactory.com

    http://www.pdffactory.comhttp://www.pdffactory.com
  • 80

    6.3 (a)(b)

    (a)

    (b)

    (a)

    (b)

    PDF created with pdfFactory trial version www.pdffactory.com

    http://www.pdffactory.comhttp://www.pdffactory.com
  • 81

    6.4

    E. Coli/E. Coli

    Ni-TiP

    Ni-TiP

    6.5

    Ni-TiP E. Coli

    PDF created with pdfFactory trial version www.pdffactory.com

    http://www.pdffactory.comhttp://www.pdffactory.com
  • 82

    6.4 TiO2(a)(b)

    (c)

    (d)(e)(f)

    (a)

    (b)

    (c)

    (d)

    (e)

    (f)

    PDF created with pdfFactory trial version www.pdffactory.com

    http://www.pdffactory.comhttp://www.pdffactory.com
  • 83

    6.5

    Aspergillus niger BCRC31512

    PDF created with pdfFactory trial version www.pdffactory.com

    http://www.pdffactory.comhttp://www.pdffactory.com
  • 84

    6.6

    (

    ) TiO2

    /

    Ni-TiP

    PDF created with pdfFactory trial version www.pdffactory.com

    http://www.pdffactory.comhttp://www.pdffactory.com
  • 85

    6.6 (a)

    (b)(c) TiO2

    (d)(e)(f)

    (a)

    (b)

    (c)

    (d)

    (e)

    (f)

    PDF created with pdfFactory trial version www.pdffactory.com

    http://www.pdffactory.comhttp://www.pdffactory.com
  • 86

    Ni-TiP

    Ni-TiP 6.7

    PDF created with pdfFactory trial version www.pdffactory.com

    http://www.pdffactory.comhttp://www.pdffactory.com
  • 87

    6.7 TiO2(a)(b)

    (a)

    (b)

    (a)

    (b)

    PDF created with pdfFactory trial version www.pdffactory.com

    http://www.pdffactory.comhttp://www.pdffactory.com
  • 88

    6.8

    Ni-TiP

    6.9

    6.10

    PDF created with pdfFactory trial version www.pdffactory.com

    http://www.pdffactory.comhttp://www.pdffactory.com
  • 89

    6.8 (a)

    (b)

    (a)

    (b)

    PDF created with pdfFactory trial version www.pdffactory.com

    http://www.pdffactory.comhttp://www.pdffactory.com
  • 90

    6.9 (a)

    (b)

    (a)

    (b)

    PDF created with pdfFactory trial version www.pdffactory.com

    http://www.pdffactory.comhttp://www.pdffactory.com
  • 91

    6.10

    PDF created with pdfFactory trial version www.pdffactory.com

    http://www.pdffactory.comhttp://www.pdffactory.com
  • 92

    /

    PDF created with pdfFactory trial version www.pdffactory.com

    http://www.pdffactory.comhttp://www.pdffactory.com
  • 93

    7.1

    /

    P25

    () XRD anatase

    rutile

    UVVisible

    () TiO2

    KM

    Fe-TiP (2.98 eV) > Co-TiP (2.88 eV) > Ni-TiP

    (2.63 eV)NiTiO2

    PDF created with pdfFactory trial version www.pdffactory.com

    http://www.pdffactory.comhttp://www.pdffactory.com
  • 94

    ()

    Ni-TiP (59.3 %) >

    Co-TiP (54.6 %) > Fe-TiP (49.8 %)

    TiO2

    Ni

    -

    /

    PDF created with pdfFactory trial version www.pdffactory.com

    http://www.pdffactory.comhttp://www.pdffactory.com
  • 95

    7.2

    (Dye sensitized

    solar cellDSSC) 7.1

    (1)( FTO

    TiO2)(2) I/I3

    (3) (Counter Electrode)

    DSSC

    DSSC

    PDF created with pdfFactory trial version www.pdffactory.com

    http://www.pdffactory.comhttp://www.pdffactory.com
  • 96

    7.1

    Light

    Electrolyte( S+ / S )

    ( S+ / S* )

    ( A / A- )

    Load

    Anchored dye

    Counter electrode

    TCO

    h V e-

    e-

    e-

    e-

    e-

    e-

    cb

    vb

    n-SC( TiO2 )

    -0.9

    2.5

    0.8

    0.2

    -0.7

    V, vs SCE

    Pt-loaded CNT arrays

    PDF created with pdfFactory trial version www.pdffactory.com

    http://www.pdffactory.comhttp://www.pdffactory.com
  • 97

    1. Ohko Y., Tatsuma T. and Fujishima A., Characterization of TiO2

    photocatalysis in the gas phase as a photoelectrochemical system:

    Behavior of salt-modified systems. Journal of Physical Chemistry B

    105: 10016-10021 (2001).

    2. Asahi R., Morikawa T., Ohwaki T., Aoki K. and Taga Y., Visible-light

    photocatalysis in nitrogen-doped titanium oxides. Science 293:

    269-271 (2001).

    3. Dvoranov D., Brezov V., Mazr M. and Malati MA., Investigations

    of metal-doped titanium dioxide photocatalysts. Applied Catalysis B

    37: 91-105 (2002).

    4. Lin HF., Liao SC. and Hung SW., The dc thermal plasma synthesis of

    ZnO nanoparticles for visible-light photocatalyst. Journal of

    Photochemistry and Photobiology A 174: 82-87 (2005).

    5. Tsai CC. and Teng H., Regulation of the physical characteristics of

    titania nanotube aggregates synthesized from hydrothermal treatment.

    Chemistry of Materials 16: 4352-4358 (2004).

    6. Pat M., From micro-to nanomachining-towards the nanometer ear,

    Sensor Review 16(2): 4-10 (1996).

    7.

    (2003)

    8.

    (2004)

    9. (2004)

    10.

    (2002)

    PDF created with pdfFactory trial version www.pdffactory.com

    http://www.pdffactory.comhttp://www.pdffactory.com
  • 98

    11. Sun X., Yao L., Mo C., Shi G., Cai W., Zhang Y. and Zhang, L.,

    Synthesis, microstructure and optical absorption of coatings with

    doping of nano-TiO2 for protection against ultraviolet irradiation

    Journal of Materials Science and Technology 16 (3): 277-280 (2000).

    12. Du YW., Journal of Applied Physics 63: 4100-4104 (1998).

    13.

    (2003)

    14. Nam HD., Lee BH., Kim SJ., Jung CH., Lee JH. and Park S.,

    Preparation of ultrafine crystalline TiO2 powder from aqueous TiCl4

    solution by precipitation, Japanese Journal of Applied Physics 37:

    4603-4608 (1998).

    15. Zheng Y., Shi E., Chen Z. and Li W., Influence of solution

    concentration on the hydrothermal preparation of titania crystallites,

    Journal of Materials Chemistry 11: 1547-1551 (2001).

    16. Fujishima A. and Homda K., Electrochemical photolysis

    of water at a semiconductor electrode, Nature 238(1): 37-38

    (1972).

    17. Sakai H., Ito E., Cai R., Yoshioka T., Hashimoto K. and Fujishima A.,

    Intracellular Ca2+ concentration change of T24 cell under irradiation in

    the presence of TiO2 ultrafine particles, Biochimica et Biophysica Acta

    - General Subjects 1201(2): 259-265 (1994).

    18. (1999)

    19. Beck JS., Vartuli JC., Roth WJ., Leonowicz ME., Kresge CT., Schmitt

    KD., Chu CTW., Olson DH. and Sheppard EW., A new family of

    mesoporous molecular sieves prepared with liquid crystal templates,

    Journal of the American Chemical Society 114(27): 10834-10843

    (1992).

    PDF created with pdfFactory trial version www.pdffactory.com

    http://www.pdffactory.comhttp://www.pdffactory.com
  • 99

    20. (2002)

    21. http://www.photocatalyst-aon-net.com.

    22. Yates Jr. JT., Linsebigler AL. and Lu G., Photocatalysis on TiO2

    surfaces: principles, mechanisms, and selected results, Chemical

    Reviews 95: 735-758 (1995).

    23. Hiroshi T, (2003)

    24. Park DW., Oh SM., Kim SS., Lee JE. and Ishigaki T., Effect of

    additives on photocatalytic active of titanium dioxide powders

    synthesized by thermal plasma, Thin Solid Films 453: 252-258 (2003).

    25. Diebold U., The surface science of titanium dioxide, Surface Science

    Reports 48: 53-229 (2003).

    26. Fujishima A., Hashimoto K. and Watanabe T., TiO2 photocatalysis

    fundamentals and application, Badger Kennel Club 124-126 (1999).

    27. Borgarello E., Kiwi J., Gratzel M., Pelizzetti E. and Visca M., Visible

    light induced water cleavage in colloidal solutions of chromium-doped

    titanium dioxide particles, Journal of the American Chemical Society

    104(11): 2996-3002 (1982).

    28. Serpone N., Maruthamuthu P., Pichat P., Pelizzetti E. and Hidaka H.,

    Exploiting the interparticle electron transfer process in the

    photocatalysed oxidation of phenol, 2-chlorophenol and

    pentachlorophenol: chemical evidence for electron and hole transfer

    between coupled semiconductors, Journal of Photochemistry and

    Photobiology A 85(3): 247-255 (1995).

    29. Vohra MS. and Tanaka K., Photocatalytic degradation of aqueous

    pollutants using silica-modified TiO2, Water Research 36(16):

    3992-3996 (2002).

    30. Eqling GA. and Lin C., Photoassisted bleaching of dyes utilizing TiO2

    and visible light, Chemosphere 46(4): 561-570 (2002).

    PDF created with pdfFactory trial version www.pdffactory.com

    http://www.photocatalyst-aon-net.comhttp://www.pdffactory.comhttp://www.pdffactory.com
  • 100

    31. Gratzel M., Ultrafast colour displays, Nature 409(6820): 575-576

    (2001).

    32. Yasumori A., Ishizu K., Hayashi S. and Okada K., Preparation of a

    TiO2 based multiple layer thin film photocatalyst, Journal of Materials

    Chemistry 8(11): 2521-2524 (1998).

    33. Childs LP., Studied in photoassisted heterogeneous catalysis rate

    equation for 2-methyl-2-butyl alcohol and isobutane oxidation and

    degradation of trichloroethylene and chloroform in dilute aqueous

    suspensions of titanium-dioxide, PhD Dissertation, Princeton

    University (1980).

    34. Choi W., Termin A. and Hoffmann MR., The role of metal ion dopants

    in quantum-sized TiO2: correlation between photoreactivity and charge

    carrier recombination dynamics Journal of Physical Chemistry 98:

    13669-13679 (1994).

    35. Vinodgopal K. and Kamat PV., Electrochemically assisted

    photocatalysis using nanocrystalline semiconductor thin films, Solar

    Energy Materials and Solar Cells 38(1-4): 401-410 (1995).

    36. Wilke K. and Breuer HD., The influence of transition metal doping on

    the physical and photocatalytic properties of titania, Journal of Photochemistry and Photobiology A 121: 49-53 (1999).

    37. Asahi R., Morikawa T., Ohwaki T., Aoki K. and Taga Y., Visible-light

    photocatalysis in nitrogen-doped titanium oxides, Science 293:

    269-271 (2001).

    38. Umebayashi T., Yamaki T., Itoh H. and Asai K., Band gap narrowing

    of titanium dioxide by sulfur doping, Applied Physics Letters 81 (3):

    454 (2002).

    39. Sakthivel S. and Kisch H., Daylight photocatalysis by carbon-modified

    titanium dioxide, Angewandte Chemie 42 (40): 4908-4911 (2003).

    PDF created with pdfFactory trial version www.pdffactory.com

    http://www.pdffactory.comhttp://www.pdffactory.com
  • 101

    40. Miao L., Tanemura S., Watanabe H., Mori Y., Kaneko K. and Toh S.,

    The improvement of optical reactivity for TiO2 thin films by N2-H2

    plasma surface treatment, Journal of Crystal Growth 260 (1-2):

    118-124 (2004).

    41. Luo H., Takata T., Lee Y., Zhao J., Domen K. and Yan Y.,

    Photocatalytic activity enhancing for titanium dioxide by co-doping

    with bromine and chlorine, Chemistry of Materials 16 (5): 846-849

    (2004).

    42. Sakthivel S., Janczarek M. and Kisch H., Visible light activity and

    photoelectrochemical properties of nitrogen-doped TiO2, Journal of

    Physical Chemistry B 108 (50): 19384-19387 (2004).

    43. Yu JC., Ho W., Yu J., Yip H., Wong PK. and Zhao J., Efficient

    visible-light-induced photocatalytic disinfection on sulfur-doped

    nanocrystalline titania, Environmental Science and Technology 39 (4):

    1175-1179 (2005).

    44. Futsuhara M., Yoshioka K. and Takai O., Optical properties of zinc

    oxynitride thin films, Thin Solid Films 317 (1-2): 322-325 (1998).

    45. Brigham ES., Weisbecker CS., Rudzinski WE. and Mallouk TE.,

    Stabilization of intrazeolitic cadmium telluride nanoclusters by ion

    exchange, Chemistry of Materials 8 (8): 2121-2127 (1996)

    46. Barton DG., Shtein M., Wilson RD., Soled SL. and Iglesia E.,

    Structure and electronic properties of solid acids based on tungsten

    oxide nanostructures, Journal of Physical Chemistry B 103 (4):

    630-640 (1999).

    47. Argyle MD., Chen K., Resini C., Krebs C., Bell AT. and Iglesia E.,

    Extent of reduction of vanadium oxides during catalytic oxidation of

    alkanes measured by in-situ UV-visible spectroscopy, Journal of

    Physical Chemistry B 108 (7): 2345-2353 (2004).

    PDF created with pdfFactory trial version www.pdffactory.com

    http://www.pdffactory.comhttp://www.pdffactory.com
  • 102

    48. Brigham ES., Weisbecker CS., Rudzinski WE. and Mallouk TE.,

    Stabilization of intrazeolitic cadmium telluride nanoclusters by ion

    exchange, Chemistry of Materials 8: 2121-2127 (1996).

    49. Yu Y., Yu JC., Chan CY., Che YK., Zhao JC., Ding L., Ge WK. and

    Wong PK., Enhancement of adsorption and photocatalytic activity of

    TiO2 by using carbon nanotubes for the treatment of azo dye, Applied

    Catalysis B: Environmental 61: 1-11 (2005).

    50. Yu Y., Yu JC., Yu JG., Kwok YG., Che YK., Zhao JC., Ding L, Ge

    WK. and Wong PK., Enhancement of photocatalytic activity of

    mesoporous TiO2 by using carbon nanotubes, Applied Catalysis A:

    General 289: 186-196 (2005).

    PDF created with pdfFactory trial version www.pdffactory.com

    http://www.pdffactory.comhttp://www.pdffactory.com