Dynamics of Phase Transitions: SU(3) Lattice Gauge TheoryDynamics of Phase Transitions: SU(3)...

26
Dynamics of Phase Transitions: SU (3) Lattice Gauge Theory Alexei Bazavov 1 Bernd A. Berg 1 Alexander Velytsky 2 1 Department of Physics, FSU 2 Department of Physics and Astronomy, UCLA July 31, 2006 . Reference: Phys. Rev. D 74, 014501 (2006) AB, BB, AV (FSU, UCLA) Dynamics of Phase Transitions: SU(3) July 31, 2006 1 / 26

Transcript of Dynamics of Phase Transitions: SU(3) Lattice Gauge TheoryDynamics of Phase Transitions: SU(3)...

Page 1: Dynamics of Phase Transitions: SU(3) Lattice Gauge TheoryDynamics of Phase Transitions: SU(3) Lattice Gauge Theory Alexei Bazavov1 Bernd A. Berg1 Alexander Velytsky2 1Department of

Dynamics of Phase Transitions:SU(3) Lattice Gauge Theory

Alexei Bazavov1 Bernd A. Berg1 Alexander Velytsky2

1Department of Physics, FSU

2Department of Physics and Astronomy, UCLA

July 31, 2006.

Reference: Phys. Rev. D 74, 014501 (2006)

AB, BB, AV (FSU, UCLA) Dynamics of Phase Transitions: SU(3) July 31, 2006 1 / 26

Page 2: Dynamics of Phase Transitions: SU(3) Lattice Gauge TheoryDynamics of Phase Transitions: SU(3) Lattice Gauge Theory Alexei Bazavov1 Bernd A. Berg1 Alexander Velytsky2 1Department of

IntroductionRHICThe Order ParameterThe Structure Factor

Dynamics of Phase TransitionScenarios of Phase TransitionsSpin SystemsGauge SystemsThe Linear TheoryThe Debye Screening MassThe Energy and Pressure DensityPolyakov loop correlations

Open Questions and Conclusion

AB, BB, AV (FSU, UCLA) Dynamics of Phase Transitions: SU(3) July 31, 2006 2 / 26

Page 3: Dynamics of Phase Transitions: SU(3) Lattice Gauge TheoryDynamics of Phase Transitions: SU(3) Lattice Gauge Theory Alexei Bazavov1 Bernd A. Berg1 Alexander Velytsky2 1Department of

Introduction: RHIC

Central collision of heavy ions followed by formation of fireballs

���������������������������������������������������������������������������������������������������������������������������������������������������������

���������������������������������������������������������������������������������������������������������������������������������������������������������

���������������������������������������������������������������������������������������������������������������������������������������������������������

���������������������������������������������������������������������������������������������������������������������������������������������������������

���������������������������������������������������������������

���������������������������������������������������������������

Fire-tunnel evolution (target rest frame)

���������������������������������������������������������������

���������������������������������������������������������������

���������������������������������������������������������������

���������������������������������������������������������������

AB, BB, AV (FSU, UCLA) Dynamics of Phase Transitions: SU(3) July 31, 2006 3 / 26

Page 4: Dynamics of Phase Transitions: SU(3) Lattice Gauge TheoryDynamics of Phase Transitions: SU(3) Lattice Gauge Theory Alexei Bazavov1 Bernd A. Berg1 Alexander Velytsky2 1Department of

Introduction: Setup

I SU(3) pure gauge theory on a Nτ N3s lattice

I For a system in equilibrium notion of time is lost, so it hasto be reintroduced

I We study the Glauber (heatbath) dynamics under a heatingquench driving the system from the disordered into theordered phase

AB, BB, AV (FSU, UCLA) Dynamics of Phase Transitions: SU(3) July 31, 2006 4 / 26

Page 5: Dynamics of Phase Transitions: SU(3) Lattice Gauge TheoryDynamics of Phase Transitions: SU(3) Lattice Gauge Theory Alexei Bazavov1 Bernd A. Berg1 Alexander Velytsky2 1Department of

Introduction: Dynamical Studies

Non-equilibrium studies performed along these lines include:

I Pioneering study of SU(2) and SU(3) pure gauge

I q-state Potts models, scaling in the infinite volume limit

I SU(3) pure gauge theory, scaling in the infinite volume limit

I SU(3) pure gauge theory, spatial expansion

I SU(3) pure gauge theory, the finite volume continuum limit

AB, BB, AV (FSU, UCLA) Dynamics of Phase Transitions: SU(3) July 31, 2006 5 / 26

Page 6: Dynamics of Phase Transitions: SU(3) Lattice Gauge TheoryDynamics of Phase Transitions: SU(3) Lattice Gauge Theory Alexei Bazavov1 Bernd A. Berg1 Alexander Velytsky2 1Department of

The Order ParameterThe Polyakov loop is defined as

l(~x) = trNt−1∏m=0

U~x+mt,0 (1)

where U are SU(3) matrices on the links of a hypercubic lattice.Its average value serves as the order parameter of the theory.

I The symmetry group of the order parameter in the SU(3)gauge theory is Z3

I Symmetric (confined) phase 〈l〉 = 0

I Broken (deconfined) phase 〈l〉 6= 0

I The transition is weak 1st order

I Quarks smooth out this behavior, the transition becomes arapid crossover

AB, BB, AV (FSU, UCLA) Dynamics of Phase Transitions: SU(3) July 31, 2006 6 / 26

Page 7: Dynamics of Phase Transitions: SU(3) Lattice Gauge TheoryDynamics of Phase Transitions: SU(3) Lattice Gauge Theory Alexei Bazavov1 Bernd A. Berg1 Alexander Velytsky2 1Department of

The Structure Factor

Two-point correlation function of the Polyakov loops (〈...〉L isthe lattice average)

〈l(0)l †(~j)〉L =1

N3σ

∑~i

l(~i)l †(~i +~j) (2)

The structure factor F (~p) is a Fourier transform of (2). Afterdiscretization and using periodicity of the boundary conditionsone arrives at the expression

F (~p) =a3

N3σ

∣∣∣∣∣∣∑

~i

e−i ~k~i l(~i )

∣∣∣∣∣∣2

(3)

AB, BB, AV (FSU, UCLA) Dynamics of Phase Transitions: SU(3) July 31, 2006 7 / 26

Page 8: Dynamics of Phase Transitions: SU(3) Lattice Gauge TheoryDynamics of Phase Transitions: SU(3) Lattice Gauge Theory Alexei Bazavov1 Bernd A. Berg1 Alexander Velytsky2 1Department of

Scenarios of Phase Transitions

I Nucleation:I instability against finite amplitudeI localized fluctuationsI has an activation barrierI metastable regionI dominated by the growth of the largest clusters

I Spinodal decomposition:I instability against infinitesimal amplitudeI nonlocalized fluctuationsI no activation energyI unstable regionI signaled by exponential growth of the structure functions

AB, BB, AV (FSU, UCLA) Dynamics of Phase Transitions: SU(3) July 31, 2006 8 / 26

Page 9: Dynamics of Phase Transitions: SU(3) Lattice Gauge TheoryDynamics of Phase Transitions: SU(3) Lattice Gauge Theory Alexei Bazavov1 Bernd A. Berg1 Alexander Velytsky2 1Department of

Spin Systems: Domains

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 100 200 300 400

Vd

t

FKgeometrical

Geometrical vs. Fortuin-Kasteleyn clusters in 3-state 3D Pottsmodel on a 403 lattice

AB, BB, AV (FSU, UCLA) Dynamics of Phase Transitions: SU(3) July 31, 2006 9 / 26

Page 10: Dynamics of Phase Transitions: SU(3) Lattice Gauge TheoryDynamics of Phase Transitions: SU(3) Lattice Gauge Theory Alexei Bazavov1 Bernd A. Berg1 Alexander Velytsky2 1Department of

Spin Systems: The Structure Factor

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0 200 400 600 800 1000

F 1/V

t

Ns=020Ns=040Ns=060Ns=080

The first structure factor mode on N3σ lattices for 3-state 3D

Potts model

AB, BB, AV (FSU, UCLA) Dynamics of Phase Transitions: SU(3) July 31, 2006 10 / 26

Page 11: Dynamics of Phase Transitions: SU(3) Lattice Gauge TheoryDynamics of Phase Transitions: SU(3) Lattice Gauge Theory Alexei Bazavov1 Bernd A. Berg1 Alexander Velytsky2 1Department of

Gauge Systems: The Structure Factor

0

0.0005

0.001

0.0015

0.002

0.0025

0 400 800 1200 1600 2000

F 1/V

t

Nσ=16Nσ=32Nσ=64

The first structure factor mode on 4× N3σ lattices in SU(3)

AB, BB, AV (FSU, UCLA) Dynamics of Phase Transitions: SU(3) July 31, 2006 11 / 26

Page 12: Dynamics of Phase Transitions: SU(3) Lattice Gauge TheoryDynamics of Phase Transitions: SU(3) Lattice Gauge Theory Alexei Bazavov1 Bernd A. Berg1 Alexander Velytsky2 1Department of

Gauge Systems: The Structure Factor

I Infinite volume limit: Nτ = const, Nσ →∞I Finite volume continuum limit: Nτ/Nσ = const, Nσ →∞,

we study Nτ = 4, 6, 8

I Rescale time axis so that all maxima coincide

t ′ =t

λt(Nτ , Tf /Tc), (4)

corresponding ratios of λt(Nτ , 1.25) are 1:2.655:5.457 andλt(Nτ , 1.57) are 1:2.768:6.362

I To overcome the renormalization problem of (bare)Polyakov loop correlations divide all structure factors bytheir equilibrium values at Tf

AB, BB, AV (FSU, UCLA) Dynamics of Phase Transitions: SU(3) July 31, 2006 12 / 26

Page 13: Dynamics of Phase Transitions: SU(3) Lattice Gauge TheoryDynamics of Phase Transitions: SU(3) Lattice Gauge Theory Alexei Bazavov1 Bernd A. Berg1 Alexander Velytsky2 1Department of

Gauge Systems: The Structure Factor

0

1

2

3

4

5

6

7

0 200 400 600

F 1/F

1,f

t’

4×163

6×243

8×323

The first structure factor mode on different lattices with thesame physical volume for Tf = 1.25Tc

AB, BB, AV (FSU, UCLA) Dynamics of Phase Transitions: SU(3) July 31, 2006 13 / 26

Page 14: Dynamics of Phase Transitions: SU(3) Lattice Gauge TheoryDynamics of Phase Transitions: SU(3) Lattice Gauge Theory Alexei Bazavov1 Bernd A. Berg1 Alexander Velytsky2 1Department of

Gauge Systems: The Structure Factor

0

2

4

6

8

10

12

0 200 400 600

F 1/F

1,f

t’

4×163

6×243

8×323

The first structure factor mode on different lattices with thesame physical volume for Tf = 1.57Tc

AB, BB, AV (FSU, UCLA) Dynamics of Phase Transitions: SU(3) July 31, 2006 14 / 26

Page 15: Dynamics of Phase Transitions: SU(3) Lattice Gauge TheoryDynamics of Phase Transitions: SU(3) Lattice Gauge Theory Alexei Bazavov1 Bernd A. Berg1 Alexander Velytsky2 1Department of

The Linear Theory

Dynamical generalization of the Landau-Ginzburg theory in thelinear approximation results in the following equation for astructure factor:

∂F (~p, t)

∂t= 2ω(~p) F (~p, t) (5)

with the solution

F (~p, t) = F (~p, 0) exp (2ω(~p)t) , (6)

ω(~p) > 0 for |~p| > pc

Rescale ω′(~p) = λt(Nτ , Tf /Tc) ω(~p) so ω′(~p)t ′ = ω(~p)t

AB, BB, AV (FSU, UCLA) Dynamics of Phase Transitions: SU(3) July 31, 2006 15 / 26

Page 16: Dynamics of Phase Transitions: SU(3) Lattice Gauge TheoryDynamics of Phase Transitions: SU(3) Lattice Gauge Theory Alexei Bazavov1 Bernd A. Berg1 Alexander Velytsky2 1Department of

The Critical Momentum

-0.1

-0.05

0

0.05

0.1

0 1 2 3 4 5 6

2ω’(p

)

p2/Tc2

Nτ=4Nτ=6Nτ=8

SU(3) determination of pc for Tf /Tc = 1.25

AB, BB, AV (FSU, UCLA) Dynamics of Phase Transitions: SU(3) July 31, 2006 16 / 26

Page 17: Dynamics of Phase Transitions: SU(3) Lattice Gauge TheoryDynamics of Phase Transitions: SU(3) Lattice Gauge Theory Alexei Bazavov1 Bernd A. Berg1 Alexander Velytsky2 1Department of

The Critical Momentum

-0.1

-0.05

0

0.05

0.1

0 2 4 6 8 10

2ω’(p

)

p2/Tc2

Nτ=4Nτ=6Nτ=8

SU(3) determination of pc for Tf /Tc = 1.57

AB, BB, AV (FSU, UCLA) Dynamics of Phase Transitions: SU(3) July 31, 2006 17 / 26

Page 18: Dynamics of Phase Transitions: SU(3) Lattice Gauge TheoryDynamics of Phase Transitions: SU(3) Lattice Gauge Theory Alexei Bazavov1 Bernd A. Berg1 Alexander Velytsky2 1Department of

The Debye Screening MassFit results for pc/Tc

Tf /Tc Nτ = 4 Nτ = 6 Nτ = 8 Nτ = ∞1.25 1.613 (18) 1.424 (26) 1.37 (10) 1.058 (79)1.568 2.098 (19) 2.058 (22) 2.29 (15) 2.006 (73)

The critical momentum pc is related1 by

mD =√

3 pc (7)

to the Debye screening mass at the final temperature Tf afterthe quench:

mD = 1.83 (14) Tc for Tf /Tc = 1.25 , (8)

mD = 3.47 (13) Tc for Tf /Tc = 1.568 (9)

1T.R. Miller and M.C. Ogilvie, Nucl. Phys. B (Proc. Suppl.) 106(2002) 537; Phys. Lett. B 488 (2000) 313AB, BB, AV (FSU, UCLA) Dynamics of Phase Transitions: SU(3) July 31, 2006 18 / 26

Page 19: Dynamics of Phase Transitions: SU(3) Lattice Gauge TheoryDynamics of Phase Transitions: SU(3) Lattice Gauge Theory Alexei Bazavov1 Bernd A. Berg1 Alexander Velytsky2 1Department of

Energy and Pressure Density

0

1

2

3

4

5

6

200 300 400 500 600

ε/T4 , 3

p/T4

t’

ε/T4, Nτ=4

ε/T4, Nτ=6

ε/T4, Nτ=83p/T4, Nτ=4

3p/T4, Nτ=6

3p/T4, Nτ=8

The gluonic energy and pressure2 density, Tf = 1.25Tc

2G. Boyd, J. Engels, F. Karsch, E. Laermann, C. Legeland, M.Lutgemeier, B. Peterson, Nucl. Phys. B469, 419 (1996)AB, BB, AV (FSU, UCLA) Dynamics of Phase Transitions: SU(3) July 31, 2006 19 / 26

Page 20: Dynamics of Phase Transitions: SU(3) Lattice Gauge TheoryDynamics of Phase Transitions: SU(3) Lattice Gauge Theory Alexei Bazavov1 Bernd A. Berg1 Alexander Velytsky2 1Department of

The Order Parameter

The histogram for the order parameter (Polyakov loop) at thefirst time step on 6× 243 lattice, Tf = 1.57Tc

lattice, Tf = 1.568Tc

AB, BB, AV (FSU, UCLA) Dynamics of Phase Transitions: SU(3) July 31, 2006 20 / 26

Page 21: Dynamics of Phase Transitions: SU(3) Lattice Gauge TheoryDynamics of Phase Transitions: SU(3) Lattice Gauge Theory Alexei Bazavov1 Bernd A. Berg1 Alexander Velytsky2 1Department of

The Order Parameter

The histogram for the order parameter (Polyakov loop) at thetime step where the structure function reaches maximum on

6× 243 lattice, Tf = 1.57Tc

AB, BB, AV (FSU, UCLA) Dynamics of Phase Transitions: SU(3) July 31, 2006 21 / 26

Page 22: Dynamics of Phase Transitions: SU(3) Lattice Gauge TheoryDynamics of Phase Transitions: SU(3) Lattice Gauge Theory Alexei Bazavov1 Bernd A. Berg1 Alexander Velytsky2 1Department of

The Order Parameter

The histogram for the order parameter (Polyakov loop) at thelast time step (equilibrium) on 6× 243 lattice, Tf = 1.57Tc

lattice, Tf = 1.568Tc

AB, BB, AV (FSU, UCLA) Dynamics of Phase Transitions: SU(3) July 31, 2006 22 / 26

Page 23: Dynamics of Phase Transitions: SU(3) Lattice Gauge TheoryDynamics of Phase Transitions: SU(3) Lattice Gauge Theory Alexei Bazavov1 Bernd A. Berg1 Alexander Velytsky2 1Department of

Polyakov loop correlations

0

0.001

0.002

1 2 3 4 5 6

Co

d

0.5 tmaxtmax

5 tmax

Co(d , t) = 〈l(0, t)l(d , t)〉L − (〈|l(0, t)|〉L)2 (10)

AB, BB, AV (FSU, UCLA) Dynamics of Phase Transitions: SU(3) July 31, 2006 23 / 26

Page 24: Dynamics of Phase Transitions: SU(3) Lattice Gauge TheoryDynamics of Phase Transitions: SU(3) Lattice Gauge Theory Alexei Bazavov1 Bernd A. Berg1 Alexander Velytsky2 1Department of

Open Questions

I No natural physical time scale

I Quarks: no heatbath dynamics

I Initial heating is not instantaneous

AB, BB, AV (FSU, UCLA) Dynamics of Phase Transitions: SU(3) July 31, 2006 24 / 26

Page 25: Dynamics of Phase Transitions: SU(3) Lattice Gauge TheoryDynamics of Phase Transitions: SU(3) Lattice Gauge Theory Alexei Bazavov1 Bernd A. Berg1 Alexander Velytsky2 1Department of

The Structure Factor in Effective Model3

0

0.01

0.02

0.03

0.04

0 100 200 300 400

F 1/V

t

The first structure factor mode on 643 lattice, Tf = 1.25Tc

3R.D. Pisarski, Phys. Rev. D62, 111501(R)(2000); A. Dumitru and R.Pisarski, Phys. Lett. B504, 282 (2001)AB, BB, AV (FSU, UCLA) Dynamics of Phase Transitions: SU(3) July 31, 2006 25 / 26

Page 26: Dynamics of Phase Transitions: SU(3) Lattice Gauge TheoryDynamics of Phase Transitions: SU(3) Lattice Gauge Theory Alexei Bazavov1 Bernd A. Berg1 Alexander Velytsky2 1Department of

Conclusion

I The phase transition proceeds through the spinodaldecomposition scenario

I Domains of different triality slow down the equilibration

I The energy and pressure density evolve to equilibrium values

I The critical momentum is related to the Debye screeningmass

I Correlations in equilibrium are weaker than in theout-of-equilibrium state

I Physical time scale can be set in effective models

AB, BB, AV (FSU, UCLA) Dynamics of Phase Transitions: SU(3) July 31, 2006 26 / 26