Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: [email protected]

145
1 udi Engelberg oom 1-517 el: 658 4718 -mail: [email protected]

description

Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: [email protected]. The central dogma of molecular biology. DNA. Transcription. RNA. Translation. Protein. Could proteins multiply ?. What do we have RNA for?. Same DNA content in all cells of the mulicellular organism? - PowerPoint PPT Presentation

Transcript of Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: [email protected]

Page 1: Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: engelber@cc.huji.ac.il

1

Dudi Engelberg

Room 1-517Tel: 658 4718e-mail: [email protected]

Page 2: Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: engelber@cc.huji.ac.il

2

The central dogmaof molecular biology

Page 3: Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: engelber@cc.huji.ac.il

3

DNA

RNA

Protein

Transcription

Translation

Page 4: Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: engelber@cc.huji.ac.il

4Could proteins multiply ?

Page 5: Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: engelber@cc.huji.ac.il

5

What do we have RNA for?

Page 6: Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: engelber@cc.huji.ac.il

Same DNA content in all cells of themulicellular organism?

What is the function of DNA?

Can cells function without DNA?

6

Page 7: Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: engelber@cc.huji.ac.il

7

Page 8: Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: engelber@cc.huji.ac.il

8

Page 9: Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: engelber@cc.huji.ac.il

9

Page 10: Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: engelber@cc.huji.ac.il

10

Page 11: Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: engelber@cc.huji.ac.il

Are these all nucleotides that appear in DNA and RNA?11

Page 12: Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: engelber@cc.huji.ac.il

12

Page 13: Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: engelber@cc.huji.ac.il

13

Page 14: Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: engelber@cc.huji.ac.il

14

What are the cellular functions of nucleotides?

Page 15: Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: engelber@cc.huji.ac.il

Some cellular functions of nucleotides1. Building blocks of nucleic acids.

2. Energy carrier (ATP, GTP).

3. Building parts of enzymes co-factors (e.g., NAD, FAD, CoenzymeA, S-adenosylmethionine).

4. Regulators in signal transduction processes.

5. Second messengers in signal transduction (cAMP, cGMP).

6. Phosphate donors in phosphorylation reactions. Involved in many more pottranslational modifications.

7. Serve as structural molecules (rRNA).

8. Activators of carbohydrates for synthesis (glycogen for example).15

Page 16: Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: engelber@cc.huji.ac.il

Some cellular functions of deoxynucleotides

1. Building blocks of nucleic acids (DNA).

16

Page 17: Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: engelber@cc.huji.ac.il

Some cellular functions of deoxynucleotides1. Building blocks of nucleic acids (DNA).

2. Energy carrier (ATP, GTP).

3. Building parts of enzymes co-factors (e.g., NAD, FAD, CoenzymeA, S-adenosylmethionine).

4. Regulators in signal transduction processes (GTP).

5. Second messengers in signal transduction (cAMP, cGMP).

6. Phosphate donors in phosphorylation reactions.

7. Serve as structural molecules (rRNA).

8. Activators of carbohydrates for synthesis (glycogen for example).17

Page 18: Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: engelber@cc.huji.ac.il

18

Page 19: Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: engelber@cc.huji.ac.il

19

Page 20: Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: engelber@cc.huji.ac.il

Some deviations from the averaged Watson & Crick model

The pitch angle between base pairs could be 28o - 42o.

Bases could propel (deviate from planarity).

Damages: kinks and covalent bonding inside the helix (usuallyBetween bases).

Presence of unusual bases (in tRNA for example) allows unusualbase pairing and novel structural motifs.

Presence of specific sequences (stretch of purines,palindromes, sequence repeats).

Page 21: Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: engelber@cc.huji.ac.il
Page 22: Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: engelber@cc.huji.ac.il

22

Page 23: Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: engelber@cc.huji.ac.il

23

Page 24: Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: engelber@cc.huji.ac.il

24

Page 25: Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: engelber@cc.huji.ac.il

25

Page 26: Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: engelber@cc.huji.ac.il

26

Page 27: Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: engelber@cc.huji.ac.il

27

Page 28: Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: engelber@cc.huji.ac.il

The driving force towardssynthesis is the breakdown ofPPi.

Phosphodiester bond

28

Page 29: Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: engelber@cc.huji.ac.il

29

Page 30: Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: engelber@cc.huji.ac.il

30

Page 31: Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: engelber@cc.huji.ac.il

31

Page 32: Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: engelber@cc.huji.ac.il

32

Page 33: Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: engelber@cc.huji.ac.il

33

Mechanism of the basic synthesis reaction of nucleic acids

Addition of nucleotide involves an attack by the 3’-hydroxyl group at the end of the growing RNA molecule on the a phosphate of the oncoming NTP.

Two Mg2+ ions coordinated to the phosphate groups of the NTP and to three Asp residues of the subunit of E. coli RNA polymerase (conserved in most RNA polymerasess in nature).

One Mg2+ ion facilitate the attack by the 3’-hydroxyl group on the a phosphate and the other ion facilitates the displacement of pyrophosphate.

The Mg2+ ions stabilize in fact the transition (intermediate) state.

Page 34: Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: engelber@cc.huji.ac.il

Polymerization of nucleotides - DNA and RNA biosynthesis1. The reaction is directional; proceeds from 5’end to 3’end. As a result the product is asymetric (5’end different than 3’end.2. The nucleotides (of the same strand) are always linked in a phospho-di-ester bond (a covalent bond).3. Energy is wasted in addition of each monomer. The driving force towards synthesis is degradation of pyrophosphate.4. The precursors are always nucleotides tri-phosphates (NTPs or dNTPs).6. The reaction is directed by a pre exist plan (a template).

(No polymerase is capable of adding nucleotides randomly).

May be there are some - quite important34

Page 35: Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: engelber@cc.huji.ac.il

35

Page 36: Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: engelber@cc.huji.ac.il

Basic characteristics of DNA Pol1. Is not capable of de novo synthesis. Requires: A. A template (as any other polymerase). B. A primer (RNA oligo, nicked DNA, protein?)

2. Possesses two catalytic activities: A. A 5’ to 3’ polymerase activity. B. A 3’ to 5’ exonuclease actiivty.

3. Substrates are only dNTPs.

36

Page 37: Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: engelber@cc.huji.ac.il

How DNA Pol is regulated?Does it possess regulatorysites?

37

Page 38: Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: engelber@cc.huji.ac.il

DNA replication is semi-conservative

DNA replication is bi-directional

38

Page 39: Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: engelber@cc.huji.ac.il

Schematic structure of E. coli replication origin (OriC)245 bp.3 repeats of 13 bp sequences + 4 repeats of 9 bp sequence.These elements are highly conserved in replicationorigins of bacteria.

39

Page 40: Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: engelber@cc.huji.ac.il

Initiation step: “opening” DNA “preparing the template beforeany DNA synthesis occurs.

40

Page 41: Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: engelber@cc.huji.ac.il

First key step in replication: binding of DnaA protein molecules to the four 9 bp repeats.DnaA binding requires ATP and HU

Second step: binding of DnaB (hexamerix helicase). Two hexamers bind to unwind DNA at two points creating two potential replicating forks.

Third step: binding of SSBs (essential for stabilizing single strand throughout thereplication process) and DNA gyrase (DNA topoII) - this step allows DnaBhelicase to unwind thousands of base-pairs.

41

Page 42: Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: engelber@cc.huji.ac.il

DnaA binds cooperatively to form a corearound which OriC DNA is wrapped.At the presence of ATP DnaA melts theDNA of the A-T rich 13 bp tandem repeats.

DnaA molecules recruit two DnaB-DnaCcomplexes, one for each replication forks. (6 DnaC monomers bind the DnaB hexamer.)

Gyrase must be present to relieve topologicalStress - otherwise helicase cannot furthercatalyze unwinding.

Altogether a pre-priming complex is formed:480 kD, 6 nm radius.

42

Page 43: Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: engelber@cc.huji.ac.il

Initiation step has prepared the template.

Moving to elongation step:Priming is required.A mechanism for bi-directionality is required.

Leading strand synthesis begins with The synthesis of a short primer (10-60 n)catalyzed by primase (DnaG - special RNA Pol).

43

Page 44: Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: engelber@cc.huji.ac.il

Both strands are sybthesized by DNA Pol3.Lagging strand:A new primer is synthesized nearthe replication fork.Synthesis continues until theFragment extends as far as the primerof the previous fragment.

44

Page 45: Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: engelber@cc.huji.ac.il

45

Page 46: Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: engelber@cc.huji.ac.il

Specific structural capabilities ofDNA Pol 3.

46

Page 47: Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: engelber@cc.huji.ac.il

DnaB (helicase) + DnaG (primase) form a functional unit within the replication fork, called primosome.

DNA pol3 - a dimer - one set of subunits synthesize the leading strand and other set the lagging strand.

Once DNA is unwound by DnaB, DnaG associates occasionally with DnaB and synthesizes a short RNA primer.

A new sliding clamp is then positioned at the primer by theclamp-loading complex of Pol 3.

When a synthesis of a fragment is completed, replication halts and the core subunits of Pol 3 dissociate from their sliding clamp and from the new fragment.

47

Page 48: Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: engelber@cc.huji.ac.il

subunits on DNA

48

Page 49: Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: engelber@cc.huji.ac.il

49

Page 50: Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: engelber@cc.huji.ac.il

50

Page 51: Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: engelber@cc.huji.ac.il

51

Page 52: Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: engelber@cc.huji.ac.il

Exonuclease activity is locatedahead of pol activity

52

Page 53: Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: engelber@cc.huji.ac.il

53

Page 54: Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: engelber@cc.huji.ac.il

54

Page 55: Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: engelber@cc.huji.ac.il

55

Page 56: Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: engelber@cc.huji.ac.il

56

Page 57: Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: engelber@cc.huji.ac.il

57

Page 58: Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: engelber@cc.huji.ac.il

58

Page 59: Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: engelber@cc.huji.ac.il

59

Page 60: Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: engelber@cc.huji.ac.il

60

Sequence of the RNA is identical to that of the coding strand(with the replacements of Us for Ts).

Page 61: Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: engelber@cc.huji.ac.il

61

Products of the transcription reaction (primary transcript):In prokaryotes: an unstable RNA- rapidly degraded (mRNAor cleaved to give mature products (rRNA, tRNA).

In eukaryotes: modified at the ends (mRNA) and/or cleavedto give mature products (all RNAs).

Page 62: Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: engelber@cc.huji.ac.il

62

With the exception of the RNA genomesof certain viruses, all RNA molecules innature (mRNA, tRNA, rRNA, miRNA, snRNA) are derived from information stored in DNA and obtained via transcription.

Namely, just like DNA during replication, RNA is synthesized on DNA template (DNA-dependent RNA synthesis).

Page 63: Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: engelber@cc.huji.ac.il

63

Transcription=DNA-dependent RNA synthesis

Page 64: Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: engelber@cc.huji.ac.il

64

Polymerization of nucleotides - DNA and RNA biosynthesis1. The reaction is directional; proceeds from 5’end to 3’end. As a result the product is asymetric (5’end different than 3’end.2. The nucleotides (of the same strand) are always linked in a phospho-di-ester bond (a saturated covalent bond).3. Energy is consumed during addition of each monomer. The driving force towards synthesis is degradation of pyrophosphate.4. The precursors are always nucleotides tri-phosphates (NTPs or dNTPs).6. The reaction is directed by a pre exist plan (a template). No plymerase is capable of adding nucleotides randomly.

Page 65: Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: engelber@cc.huji.ac.il

65

At its basic enzymatic level, transcription is areaction highly similar to replication

Page 66: Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: engelber@cc.huji.ac.il

66

Comparison of replication to transcription (some aspects)

Replication TranscriptionQuantity: The whole genome Parts of the genome

Timing: One time per life cycle some parts - all life time (time is determined by the some parts - some time checkpoint system) some parts - never

Location: From origin to end Many starts and many stops (starts and stops must be most accurate)

DNA substrate: The two strands One strand (could be a different for each particular case

Nucleotidesubstrates: dNTPs NTPs

Page 67: Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: engelber@cc.huji.ac.il

67

Comparison of replication to transcription (some aspects)

Replication TranscriptionProofreading: Always Never

Post-reaction repair: Always Never

Fate of product: Remains attached to Released from template template

Processivity: High or low High (from start to termination)

Ligating fragments: Yes No - products are

independent molecules

Page 68: Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: engelber@cc.huji.ac.il

68

Sequence of the RNA is identical to that of the coding strand(with the replacements of Us for Ts).

Page 69: Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: engelber@cc.huji.ac.il

69

Products of the transcription reaction (primary transcript):In prokaryotes: an unstable RNA- rapidly degraded (mRNAor cleaved to give mature products (rRNA, tRNA).

In eukaryotes: modified at the ends (mRNA) and/or cleavedto give mature products (all RNAs).

Page 70: Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: engelber@cc.huji.ac.il

70

RNA Polymerase - general properties

1. Properties similar to DNA Polymerases:- Basic chemical mechanisms: addition of ribonucleotides to the 3’-OH of thechain. Consequently determination of a 5’ to 3’ directionality.- Requires a template.- Adding nucleotides on the basis of optimal hydrogen bonds with the templatestrand (A-U, C-G).

2. Properties specific to RNA Pol- Using only one strand as a template (must make a choice).- Does not require a primer (pppN 5’ end).- Very complex regulation for “choosing” the starting points (which may be different in every cell, in every developmental stage and in ageing.- Does not have a 3’ 5’ exonuclease activity.- The rate of mistake in high (1/104-105).

Page 71: Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: engelber@cc.huji.ac.il

71

During a successful round: RNA Pol associates with the starting point and dissociates at the termination point, defining a transcription unit. A transcription unit may include more than one gene

Nomenclature: Upstream. Downstream; numbers; left to right; no base is defined as base zero.

Page 72: Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: engelber@cc.huji.ac.il

72

Rates (in E. coli):Transcription: 40 nuc../sec.Similar to rate of translation.

Replication: 1,000nuc./sec/strand

RNA pol creates the‘transcription bubble’ whenIt binds to a DNA. The bubblemoves with it.

Displacing of the product(RNA),reforming the dsDNA

Page 73: Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: engelber@cc.huji.ac.il

73

About 17 bp are unwound at any given time.Length of RNA:DNA hybrid within the bubble: up to 12 bp.Length of RNA within the bubble: ~25 b.

Page 74: Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: engelber@cc.huji.ac.il

74

Within the transcriptional bubble (in bacteria), RNA Pol :Unwinds and rewinds DNA

Maintains the conditions of the template and coding strands.

Synthesizes RNA.

Page 75: Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: engelber@cc.huji.ac.il

75

The transcription reaction can be divided into the Following stages:Template recognition - binding of RNA pol to DNAat a sequence known as promoter forming a “closedcomplex”, unwind the DNA to form an “open complex”,creating the ‘bubble’.

Initiation - synthesis of the first nucleotide bond. RNA polDoes not move while it synthesizes the first ~9 bases. Abortive events may occur, forcing initiation to start again.Initiation phase ends when the enzyme succeeds in extendingthe chain and clears the promoter.

Page 76: Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: engelber@cc.huji.ac.il

76

Elongation - enzymes moves along the DNA, extending the RNA, unwinding the DNA exposing new segments of the template and displace the RNA-DNA hybrid to re-formthe original double stranded DNA. RNA emerges as a freesingle strand.

Termination - recognition of the point at which no furtherbases should be added to the chain. The enzyme and theRNA should be released and the DNA re-forms the original duplex state.

Page 77: Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: engelber@cc.huji.ac.il

77

Initiation of transcription: a crucial(some time the only) regulatorystep in gene expression.Some key questions:How starting point is recognized?How initiation rate is determined?

The process of transcription: the usualcomplementary base pairing process.

The transcription bubble: transientlyand shortly separation of the DNAto single strands.

Page 78: Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: engelber@cc.huji.ac.il

78

Template recognition. Closed complex.

Local unwinding: open complex(template strand is available)

Initiation (up to 9 bases that could bereleased; no move)Promoter clearance

Elongation - Movement of the bubble.(inchworm move or fluent?)

Termination:1. Cease addition of nucleotides. 2. Set complex apart.Just like initiation, termination is sequence-dependent. Defines the terminator.

Stages in which the bubble is created

Page 79: Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: engelber@cc.huji.ac.il

79

Promoter: The sequence of DNA needed for RNApolymerase to bind to the template and accomplishthe initiation reaction (synthesis of the first nucleotidebonds).

Terminator: The sequence of DNA required for disrupting the bubble and reforming the DNA duplex(after the last base is added).

Page 80: Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: engelber@cc.huji.ac.il

80

an ’ subunits havea channel for the DNA

Page 81: Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: engelber@cc.huji.ac.il

81

Yeast RNA Pol II is composed of 12 subunits (holoenzyme). Two subunits form a different sub-complex. Two subunits are not essential for viability.

Page 82: Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: engelber@cc.huji.ac.il

82

Following DNA binding and melting, the “clamp” swings back to force a turn. [note, colors of subunits are the same as in the crystal structure]

Page 83: Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: engelber@cc.huji.ac.il

83

“wall” protein is enforcinga turn.The length of RNA hybridis limited by the activity ofthe “rudder” protein. TheRNA is forced to leave the DNAWhen it hits the protein rudder.

Page 84: Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: engelber@cc.huji.ac.il

84

The bridge protein is found in different conformationsIn different crystal structures.

Probably, breaking and re-making of contactsis mediated by conformational changesof the “bridge” protein:

A nucleotide addition cycle:1. The bridge is in a straight conformation adjacent tothe nucleotide entry site.2. After adding a nucleotide to the RNA the bridge protein is in contacts with the newly added nucleotide, undergoes a conformational change and moves one basepair along the template, obscuring the nucleotide entrysite. 3. The bridge returns to its straight conformation, allowingEntry of next nucleotide of the template - namely,the bridge acts as a ratchet.

Page 85: Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: engelber@cc.huji.ac.il

85

The core enzyme of E. coli has a general affinity for DNA (drivenby electrostatic attraction between the basic protein andthe acidic DNA). Yet, it does not distinguish between promoters andother sequences.

Any random sequence bound by core enzyme is describedas a “loose binding site”. No change occurs in the DNAwhich remains duplex.

Such a core enzyme-DNA complex is stable (half life fordissociation is 60 min.).

Properties of the core enzyme

Page 86: Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: engelber@cc.huji.ac.il

86

The holoenzyme has a drastically reduced abilityto recognize “loose bindingsites” (half life of <1sec. Kdreduced by a factor of 104).

The holoenzyme binds promoters with Kds 1,000time higher than core enzyme with half lives of hours.However, it manifests aspecific Kd to any specificpromoter.

Sigma confers the ability torecognize specific sites. It isalso involved in “melting”, creating an “open” complex.

Properties of the holoenzyme

Page 87: Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: engelber@cc.huji.ac.il

87

Depending of specific promoter the Kd for DNA:RNA polassociation is 106 - 1012 (first level of regulation of rate oftranscription).

Formation of an open complex by melting (that is driven by sigma) allows tight binding that is not reversible.

Initiation rate (frequency of initiation) also differs (dependent on other factors in addition to RNA pol:DNA associatio. Frequencies can range between 1/sec (rRNA genesto 1/30 min. (lacI promoter).

Page 88: Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: engelber@cc.huji.ac.il

88

Sigma factor is recycled.It becomes unnecessary whenabortive initiation is concluded.

The holoenzyme binds promoters with Kds 1,000time higher than core enzyme with half lives of hours.This property assists with promoterrecognition, but significantly interfereswith elongation. Therefore, sigma dissociatesfrom the enzyme when elongation starts.

Page 89: Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: engelber@cc.huji.ac.il

89

(sigma)

(promoterregion)

Sigma contacts mainly bases of the coding strand and continues to hold these contacts - an important step in melting (forming an “opencomplex and recognition of template strand.

Page 90: Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: engelber@cc.huji.ac.il

90

What is responsible for the ability of holoenzyme to bind specifically to promoters?

Sigma has domains that recognize promoter DNA, but as an independent proteinSigma does not bind to DNA. There is major change in conformation of sigmawhen it binds core enzyme. The N-terminal region of free sigma suppresses the

activity of the DNA-binding region - it is an autoinhibitory domain.

Page 91: Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: engelber@cc.huji.ac.il

91

How holoenzyme finds a specific promoter (60bp in a 4x106 stretch)?

The forward rate constant for RNA Pol binding to promoters is faster thanrandom diffusion (that limits the constant to 108/M-1Sec-1).

The measured rate constant for association with a 60 bp target is 1014/M-1Sec-1.

If the target is the whole genome the rate constant is around 1014/M-1Sec-1.But how does the polymerase move from random binding sites to promoters?

Perhaps RNA Pol binds DNA and remains contact (no simple diffusion that relies on random binding). Rather, a directDisplacement with other sequence occurs (no sliding).

Page 92: Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: engelber@cc.huji.ac.il

92

The “diffusion model: random association with loose sites on DNA,dissociation and re-bind, until occasionally (statistically) interacting with a promoter, and remains associated.

Page 93: Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: engelber@cc.huji.ac.il

93

Page 94: Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: engelber@cc.huji.ac.il

94

A direct displacementmodel - diffusion is notrequired

Page 95: Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: engelber@cc.huji.ac.il

95

Promoter’s function is provided directly byits DNA sequence/structure (it does not need to betranscribed or translated).

It is a cis-acting site.[in genetic terminology, sites that are located on thesame DNA are said to be in cis. Sites that are locatedon two different molecules of DNA are being in trans.]

Page 96: Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: engelber@cc.huji.ac.il

96

Conserved - a base most often present at a position.Perhaps the most striking feature of E. coli promoters is the lack of extensive conservationof sequence over the 60 bp associated with RNA Pol.

Promoter elements (in E. coli):Start point (a purine in 90% of the RNAs).-10 sequence-35 sequenceThe distance separating the -35 and the -10 sites.

Page 97: Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: engelber@cc.huji.ac.il

97

Page 98: Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: engelber@cc.huji.ac.il

98

The -10 sequence:

T80A95T45A60A50T96

Sequence that resides in poistions of -18 to -9 in all known E. coli promoters.

Subscripts denote the percent occurrence of the most frequent foundbase

Page 99: Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: engelber@cc.huji.ac.il

99

The -35 sequence:

T82T84G78A65C54A45

The distance separating the -35 and -10 sites is between 16-18 bpin 90% of promoters. In the exceptions it can go down to 15 or upto 20. Sequence itself is not important.

Some promoters have an A-T-rich sequence located farther upstream.It is called UP element and interacts with a subunit of RNA pol. ItIs typically found in promoters that are highly expressed, such as thepromoters of the rRNA genes.

Page 100: Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: engelber@cc.huji.ac.il

100

Up elements are associated with a subunit of RNA pol. Found in promoters thatare highly expressed.

Page 101: Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: engelber@cc.huji.ac.il

101

In spite of conservation of promoters there is ~1000 fold variationin the rate at which RNA polymerase binds to different promotersin vitro.

Binding rates correlate well with the frequencies of transcription in vivo.

Page 102: Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: engelber@cc.huji.ac.il

102

Sequences at prokaryotic terminatorsshow no similarities.

Many terminators require a hairpin toform.

Termination involves recognition ofsignals on the transcript.

Page 103: Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: engelber@cc.huji.ac.il

103

Intrinsic terminator - other factorsare not required. Works in vitrotoo.

Hairpins may cause polymerase to slow or even to stop.

Antitermination process may allow RNA Pol to continue(readthrough).

Downstream U-rich destabilizes RNA-DNA hybrid.

Hairpin structure+ U rich sequence

(1100 sequences inE. Coli fit these criteria.

Hairpin + U-rich areNecessary, but not sufficient.

Page 104: Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: engelber@cc.huji.ac.il

104

The weakest base-pair is the rU-dA

Page 105: Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: engelber@cc.huji.ac.il

105

Rho:A 275 Kd homo-hexamer.RNA binding domain + ATPase domain.Belong to a family of ATP-dependent helicases.

Functions as an ancillary factor for RNA Pol.Most efficient at 10% concentration.Accounts for about 50% of terminations in E. coli.

Rho-dependent termination sequences are rich inCs and poor in Gs. Reside 50-90 bases from termination sites.

Acts processively on a single RNA substrate.

Moves faster than RNA Pol.

Pausing is important for Rho-dependent terminationtoo.

Page 106: Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: engelber@cc.huji.ac.il

106

Page 107: Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: engelber@cc.huji.ac.il

107

Page 108: Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: engelber@cc.huji.ac.il

108

TranslationComponents involved in translation account for 35% of the dry weight of E. coli cells.

Page 109: Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: engelber@cc.huji.ac.il

109

Page 110: Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: engelber@cc.huji.ac.il

110

A condensation reaction: formation of the peptide bond by removal of water (dehydration) from the -carboxyl group of one amino acid and

the -amino group of another-----------------------------------------------------------------------------------

Page 111: Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: engelber@cc.huji.ac.il

111

Page 112: Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: engelber@cc.huji.ac.il

112

To make the reaction thermodynamically more favorable, the carboxyl group must be chemically modified or activated so that the hydroxyl group can be more readily eliminated

Page 113: Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: engelber@cc.huji.ac.il

113

Page 114: Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: engelber@cc.huji.ac.il

114

(Dihydrouridine)

Page 115: Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: engelber@cc.huji.ac.il

115

Page 116: Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: engelber@cc.huji.ac.il

116

First stage in translation: aminoacyl-tRNA synthetases esterifythe 20 amino acids to their corresponding tRNA.

Each enzyme is specific for one amino acid and one or more tRNAs.

Page 117: Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: engelber@cc.huji.ac.il

117

Step 1: An enzyme-bound intermediateAminoacyl-AMP forms when the carboxylgroup of the amino acid reacts with the-phosphoryl group of ATP, creating ananhydride linkage, with displacement ofpyrphosphate.

Step 2: The aminoacyl group istransferred to its corresponding tRNA.The resulting ester linkage has a highly negative standard free energy of hydrolysis.

Page 118: Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: engelber@cc.huji.ac.il

118

Page 119: Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: engelber@cc.huji.ac.il

119

Valine and isoleucine differ in only a single methylene group

Page 120: Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: engelber@cc.huji.ac.il

120

Proofreading by aminoacyl-tRNA synthetases

Two active sites in the Ile-tRNAIle synthetase:

- binding of the amino acid to the enzyme (affinity to Ile is only a little higher than affinity to Val (error in 1/200 entries.

- binding of aminoacyl-AMP product. This site has higher affinity to AMP-Val. A hydrolytic site.

Page 121: Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: engelber@cc.huji.ac.il

121

What is accomplished by aminoacylation of tRNA?

1. Activation of the amino acid for peptide bond formation.

2. Attachment of the amino acid to an adaptor tRNA that ensures appropriate placement of the amino acid in a growing polypeptide.

Page 122: Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: engelber@cc.huji.ac.il

122

Page 123: Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: engelber@cc.huji.ac.il

123

Page 124: Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: engelber@cc.huji.ac.il

124

N-formyl group is added to theamino group of methionine by transformylase.

Transformylase is specific toMet attached to tRNAfMet

Page 125: Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: engelber@cc.huji.ac.il

125

Page 126: Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: engelber@cc.huji.ac.il

126

Translation initiation in prokaryotes

IF-3 prevents combining of the 30S and 50S subunits

The initiating 5’AUG is guided to its correctposition by the Shine-Delgarno sequence in the 5’UTR of the mRNA (AUG is thebeginning of an ‘open reading frame’).

The initiating 5’AUG is positioned at a sitecalled the P site, the only site in the ribosometo which fMet-tRNAfMet can bind.

The fMet-tRNAfMet is the only aminoacyl-tRNA that binds first to the P site.

Page 127: Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: engelber@cc.huji.ac.il

127

Step 2 in translation initiation:

GTP-bound IF-2 and the fMet-tRNAfMet join the ribosome, guidedby the anticodon that pairs with the mRNA initiation codon.

Step 3 in translation initiation:

The complex (30S + IF1,IF2-GTP,IF3 + fMet-tRNAfMet) combines withthe 50S ribosomal subunit; simultaneously, the GTP bound to IF-2 is hydrolyzed to GDP and Pi which are released from the complex. All 3 initiation factors are also released from the complex.IF-2-GDP is re-loaded with GTP via a GDP/GTP exchange reaction.

Page 128: Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: engelber@cc.huji.ac.il

128

Page 129: Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: engelber@cc.huji.ac.il

129

Page 130: Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: engelber@cc.huji.ac.il

130

Page 131: Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: engelber@cc.huji.ac.il

131

Page 132: Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: engelber@cc.huji.ac.il

132

Page 133: Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: engelber@cc.huji.ac.il

133

Translational elongation

Step 1:Appropriate incoming aminoacyl-tRNAbinds to a complex of GTP bound EF-Tu.

The GTP-EF-Tu-aminacyl-tRNA complexbinds the A site of the 70S complex.

The GTP is hydrolyzed and the EF-Tu-GDPis released.

EF-Tu-GTP complex is regenerated via aGDP/GTP exchange reaction catalyzedby EF-Ts.

AA2

Page 134: Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: engelber@cc.huji.ac.il

134

The -amino group of the aminoacid in the A site acts as a nucleophile, displacing the tRNAin the P site to form a peptide bond.The tRNAfMet at the P site is nowuncharged.

The peptidyl transferase reaction is probably catalyzed by the 23S rRNA

Translation elongation, Step 2: Formation of the peptide bond:

Page 135: Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: engelber@cc.huji.ac.il

135

Move of the ribosome. The ribosomemoves one codon towards the 3’ end ofthe mRNA.Translocation is catalyzed by EF-G-GTP (translocase).

The ribosome is now ready for the next elongation cycle.

Translation elongation, Step 3: Translocation

Page 136: Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: engelber@cc.huji.ac.il

136

TerminationCatalyzed by RF1 or RF2. (depending on the particular stop codon).RF1 and RF2 are proposed to mimic thestructure of tRNA.RF-1 recognizes UAG and UAA. RF-2Recognizes UGA and UAA.In eukaryotes, a single RF, eRF, recognizes all 3 termination codons.Releasing factors:1. Hydrolyze the ester linkage of the peptydil-tRNA bond.2. Release the polypeptide and the last tRNA (now uncharged).3. Dissociate the ribosome to 30S and 50S subunits.

Page 137: Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: engelber@cc.huji.ac.il

137

EF-Tu EF-G

The carboxy terminal domain of EF-G mimics the structure of tRNA. Altogether EF-G mimics the structure of EF-Tu-tRNA complex and probably binds to the A site and displacing the peptidyl-tRNA.

Page 138: Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: engelber@cc.huji.ac.il

138

Translation is energy consuming:

On average, hydrolysis of more than 4 NTPs to NDPs is required for the formation of each peptide bond of a polypeptide.

Page 139: Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: engelber@cc.huji.ac.il

139

Bacterial ribosome’s M.W.: ~2.7 million

Components in the ribosome structure:Proteins: blue (in large subunit); Yellow (in small subunit). Bases of rRNA in large subunit: white. Backbone of rRNA in large subunit: green. rRNA in small subunit: white. tRNAs: purpule, mauve, gray. mRNA contacting tRNAs: red.

Page 140: Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: engelber@cc.huji.ac.il

140

In the 50S subunit, the 5S and 23S rRNAs form the structural core.The proteins are secondary elements in the complex, decorating thesurface.

No protein is detected within 18A of the active site for peptidebond formation.

Page 141: Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: engelber@cc.huji.ac.il

141

Page 142: Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: engelber@cc.huji.ac.il

142

50S subunit of a bacterialribosome.Red - a puromycine moleculeat the active peptidyl transferase site. Noteno proteins in the vicinity.

Page 143: Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: engelber@cc.huji.ac.il

143

Page 144: Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: engelber@cc.huji.ac.il

144

Steady state level of a protein (expression level) is determinedby a combination of regulation of:

Transcription initiation

mRNA degradation (mRNA stability)

mRNA processing

Transport to cytoplasm

Translational control

Folding and protein processing

Protein degradation (protein stability)

Page 145: Dudi Engelberg Room 1-517 Tel: 658 4718 e-mail: engelber@cc.huji.ac.il

145