Dr. M. Perumal - SWAT · 2012. 8. 13. · Dr. M. Perumal, Professor & Head, Dept. of Hydrology,...

28
1 ___________________________________________________________________ Dr. M. Perumal, Professor & Head, Dept. of Hydrology, I.I.T. Roorkee, India _________________________________________________________________ Dr. M. Perumal, Professor & Head, Dept. of Hydrology, I.I.T. Roorkee, India Dr. M. Perumal Professor & Head Department of Hydrology Indian Institute of Technology Roorkee INDIA Co-authors: Dr. B. Sahoo & Dr. C.M. Rao

Transcript of Dr. M. Perumal - SWAT · 2012. 8. 13. · Dr. M. Perumal, Professor & Head, Dept. of Hydrology,...

  • 1

    ___________________________________________________________________ Dr. M. Perumal, Professor & Head, Dept. of Hydrology, I.I.T. Roorkee, India

    _________________________________________________________________ Dr. M. Perumal, Professor & Head, Dept. of Hydrology, I.I.T. Roorkee, India

    Dr. M. Perumal Professor & Head

    Department of Hydrology Indian Institute of Technology Roorkee

    INDIA Co-authors: Dr. B. Sahoo & Dr. C.M. Rao

    http://en.wikipedia.org/wiki/Image:IITR_Logo.jpg

  • 2

    ___________________________________________________________________ Dr. M. Perumal, Professor & Head, Dept. of Hydrology, I.I.T. Roorkee, India

    _________________________________________________________________ Dr. M. Perumal, Professor & Head, Dept. of Hydrology, I.I.T. Roorkee, India

    Linearity of channel routing scheme in SWAT model using classical Muskingum (CM) method

    Frameworks of variable parameter Muskingum-Cunge (VPMC) & Muskingum-Cunge-Todini (MCT) routing methods available in literature

    Development of variable parameter McCarthy-Muskingum (VPMM) routing method

    Performance evaluation criteria Numerical Application

    Trapezoidal, Rectangular & Triangular channel sections

    Performance of CM, VPMC, MCT & VPMM methods Conclusions

    Presentation Outline

    http://en.wikipedia.org/wiki/Image:IITR_Logo.jpg

  • 3

    ___________________________________________________________________ Dr. M. Perumal, Professor & Head, Dept. of Hydrology, I.I.T. Roorkee, India

    _________________________________________________________________ Dr. M. Perumal, Professor & Head, Dept. of Hydrology, I.I.T. Roorkee, India

    Classification of River Flood Waves

    Bulk waves

    Dynamic waves

    Gravity waves

    Diffusion wave

    Kinematic wave

    Old classification by Ferrick (1985) :

    Bulk waves

    Dynamic waves

    Gravity waves

    Diffusion wave

    ACD wave

    New suggested classification :

    VPMM method

    • Kinematic wave (KW) is a special case of ACD wave

    • Works in transition range of DW & KW

    http://en.wikipedia.org/wiki/Image:IITR_Logo.jpghttp://en.wikipedia.org/wiki/Image:IITR_Logo.jpg

  • 4

    ___________________________________________________________________ Dr. M. Perumal, Professor & Head, Dept. of Hydrology, I.I.T. Roorkee, India

    VPMM- directly derived from Saint-Venant Equations. Can be used for routing flood waves in semi-infinite

    rigid bed prismatic channels having any cross-sectional shape. Allows simultaneous computations of stage and

    discharge hydrographs at any ungauged river site. During steady flow in the channel reach, there exists

    one-to-one discharge - depth relationship; which is not valid in case of unsteady flows. During unsteady flow in the channel reach, the

    discharge observed at any section has its corresponding normal depth at the upstream section.

    Development of VPMM Method

    Hypothesis used:

    http://en.wikipedia.org/wiki/Image:IITR_Logo.jpg

  • 5

    ___________________________________________________________________ Dr. M. Perumal, Professor & Head, Dept. of Hydrology, I.I.T. Roorkee, India 8/10/2012 5

    _________________________________________________________________ Dr. M. Perumal, Professor & Head, Dept. of Hydrology, I.I.T. Roorkee, India

    Definition Sketch of VPMM Method

    Δx

    Qd

    Qu

    1

    Q3 QM

    L Δx/2

    yu

    y3 yd

    M

    3 2

    yM

    3

    2 o M Mo

    QLS B c

    =

    xL ∆−= 5.0θ

    Mo

    xKV∆

    =

    Routing parameters

    http://en.wikipedia.org/wiki/Image:IITR_Logo.jpg

  • 6

    ___________________________________________________________________ Dr. M. Perumal, Professor & Head, Dept. of Hydrology, I.I.T. Roorkee, India

    Framework of VPMM Method (Perumal & Ponce, 2012)

    C1 C2 C3 :

    1,1 ++ ∆= jMoj VxK( )xcBSQ jMojMoojj ∆−= ++++ 1,1,1,31 25.0θ

    11111,3 )1( +++++ −+= jjjjj QIQ θθ

    1 2

    j

    j+1

    Δx

    Δt M

    Numerical scheme of VPMM method

    ( ) ( )( )( )

    1 11 1

    1 1 1 1 1 1

    2. . 12. . 2. .. . .

    2. . 1 2. . 1 2. . 1j jj j j j

    j j j jj j j j j j

    t Kt K t KO I I O

    t K t K t K

    θθ θ

    θ θ θ+ +

    + ++ + + + + +

    −∆ + −∆ − ∆ += + +∆ + − ∆ + − ∆ + −

    For derivation details of VPMM

    method, click here

    http://en.wikipedia.org/wiki/Image:IITR_Logo.jpg

  • 7

    ___________________________________________________________________ Dr. M. Perumal, Professor & Head, Dept. of Hydrology, I.I.T. Roorkee, India

    Framework of VPMC Method (Ponce and Chaganti, 1994)

    :

    13211 ++ ++= jjjj ICICOCO

    ( ) tKtKC∆+−

    ∆+−=

    5.015.0

    1 θθ

    ( ) tKtKC∆+−

    ∆+=

    5.015.0

    2 θθ ( )

    ( ) tKtKC

    ∆+−∆−−

    =5.015.01

    3 θθ

    cxK ∆= ( )xBcSQ o ∆−= 25.0θIn CM method, the routing parameters remain constant at every routing time step so that C1+C2+C3=1, making it mass conservative.

    http://en.wikipedia.org/wiki/Image:IITR_Logo.jpg

  • 8

    ___________________________________________________________________ Dr. M. Perumal, Professor & Head, Dept. of Hydrology, I.I.T. Roorkee, India

    Framework of MCT Method (Todini, 2007)

    :

    jj

    j

    jj

    jjj

    j

    j

    jj

    jjj

    jj

    jjj OC

    C

    DC

    DCI

    C

    C

    DC

    DCI

    DC

    DCO *

    *1

    *1

    *1

    **

    *

    *1

    *1

    *1

    **

    1*1

    *1

    *1

    *1

    1 1

    1

    1

    1

    1

    1 +

    ++

    +

    +++

    ++

    +++ ++

    +−+

    ++

    −++

    ++

    ++−=

    )/)(/(* xtcC jjj ∆∆= β

    )/)(/( 11*

    1 xtcC jjj ∆∆= +++ β

    jjj vc /=β

    111 / +++ = jjj vcβ

    )/(* xcBSQD jojjj ∆= β

    )/( 111*

    1 xcBSQD jojjj ∆= ++++ β

    http://en.wikipedia.org/wiki/Image:IITR_Logo.jpg

  • 9

    ___________________________________________________________________ Dr. M. Perumal, Professor & Head, Dept. of Hydrology, I.I.T. Roorkee, India 8/10/2012 9

    _________________________________________________________________ Dr. M. Perumal, Professor & Head, Dept. of Hydrology, I.I.T. Roorkee, India

    Comparative evaluation of CM, VPMC, MCT & VPMM methods with respect to benchmark solutions of the Saint-Venant equations.

    Evaluated these methods by routing a given hypothetical flood wave in uniform prismatic Trapezoidal, Rectangular and Triangular cross-section channel reaches of different configurations.

    Performance Evaluation

    http://en.wikipedia.org/wiki/Image:IITR_Logo.jpg

  • 10

    ___________________________________________________________________ Dr. M. Perumal, Professor & Head, Dept. of Hydrology, I.I.T. Roorkee, India 8/10/2012 10

    _________________________________________________________________ Dr. M. Perumal, Professor & Head, Dept. of Hydrology, I.I.T. Roorkee, India

    Performance Evaluation Criteria

    ( ) ( ) 10012

    1

    2

    −−−= ∑∑

    ==

    N

    ioioi

    N

    icioiq QQQQη

    ( ) 1001 ×−= popcper qqq( ) 1001 ×−= qpoqpcqper ttt

    1 11 100

    N N

    ci ii i

    EVOL Q I= =

    = − × ∑ ∑

    *Negative indicates–

    underestimation;

    *Positive indicates– over estimation

    Nash and Sutcliffe (1970)

    http://en.wikipedia.org/wiki/Image:IITR_Logo.jpghttp://en.wikipedia.org/wiki/Image:IITR_Logo.jpg

  • 11

    ___________________________________________________________________ Dr. M. Perumal, Professor & Head, Dept. of Hydrology, I.I.T. Roorkee, India

    Numerical Application

    Inflow discharge hydrographs corresponding to the input stage hydrographs in the form of

    Pearson type III distribution are used to generate random sizes of discharge hydrographs.

    # Total reach length= 40 km # ∆x = 1 km; ∆x= 5 min. # Total no. of runs = 9847 (for each of the Saint-Venant, VPMC & VPMM methods)

    Parameters Values Gamma, γ 1.05, 1.15, 1.25, 1.50 Channel bed slope, So 0.002, 0.001, 0.0008, 0.0005, 0.0004, 0.0002, 0.0001 Manning’s roughness, n 0.01, 0.02, 0.03, 0.04, 0.05 Initial discharge, bQ (m

    3/s) 100.0 Peak stage, py (m) 5.0, 8.0, 10.0, 12.0, 15.0

    Time-to-peak stage, pt (h) 5.0, 10.0, 15.0, 20.0

    Channel bottom width, b (m) 100.0 Channel side slope, z 0.0, 1.0, 3.0, 5.0

    ( ) ( )

    −+=

    11

    exp)(,0)1/(1

    γ

    γp

    pbpb

    ttttytyyty

    Upstream boundary condition:

    http://en.wikipedia.org/wiki/Image:IITR_Logo.jpg

  • 12

    ___________________________________________________________________ Dr. M. Perumal, Professor & Head, Dept. of Hydrology, I.I.T. Roorkee, India

    Evaluation of CM, VPMC, MCT & VPMM Methods

    Nash-Sutcliffe Efficiency

    CM always performs with

    η≥50% for all the cases except five

    runs η≥95% for all the runs except 115 (1.17%) cases

    50

    60

    70

    80

    90

    100

    0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

    (1/S o)(∂y /∂x )max

    η (%

    )

    (a) CM method

    http://en.wikipedia.org/wiki/Image:IITR_Logo.jpg

  • 13

    ___________________________________________________________________ Dr. M. Perumal, Professor & Head, Dept. of Hydrology, I.I.T. Roorkee, India

    Evaluation of CM, VPMC, MCT & VPMM Methods

    Nash-Sutcliffe Efficiency

    CM always performs with

    η≥90% for all the cases except five

    runs η≥95% for all the runs except 115 (1.17%) cases

    50

    60

    70

    80

    90

    100

    0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

    (1/S o)(∂y /∂x )max

    η (%

    )

    (b) VPMC method

    http://en.wikipedia.org/wiki/Image:IITR_Logo.jpg

  • 14

    ___________________________________________________________________ Dr. M. Perumal, Professor & Head, Dept. of Hydrology, I.I.T. Roorkee, India

    Evaluation of CM, VPMC, MCT & VPMM Methods

    Nash-Sutcliffe Efficiency

    MCT always performs with

    η≥80% for all the cases except five

    runs

    50

    60

    70

    80

    90

    100

    0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

    (1/S o)(∂y /∂x )max

    η (%

    )

    (c) MCT method

    http://en.wikipedia.org/wiki/Image:IITR_Logo.jpg

  • 15

    ___________________________________________________________________ Dr. M. Perumal, Professor & Head, Dept. of Hydrology, I.I.T. Roorkee, India

    Evaluation of CM, VPMC, MCT & VPMM Methods

    Nash-Sutcliffe Efficiency

    VPMM always performs with

    η≥90% for all the cases except nine

    runs

    50

    60

    70

    80

    90

    100

    0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

    (1/S o)(∂y /∂x )max

    η (%

    )

    (d) VPMM method

    http://en.wikipedia.org/wiki/Image:IITR_Logo.jpg

  • 16

    ___________________________________________________________________ Dr. M. Perumal, Professor & Head, Dept. of Hydrology, I.I.T. Roorkee, India

    Evaluation of CM, VPMC, MCT & VPMM Methods

    -40

    -30

    -20

    -10

    0

    10

    0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

    (1/S o)(∂y /∂x )max

    EV

    OL

    (%)

    (a) CM method

    -40

    -30

    -20

    -10

    0

    10

    0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

    (1/S o)(∂y /∂x )max

    EV

    OL

    (%)

    (b) VPMC method

    -40

    -30

    -20

    -10

    0

    10

    0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

    (1/S o)(∂y /∂x )max

    EV

    OL

    (%

    )

    (c) MCT method

    -40

    -30

    -20

    -10

    0

    10

    0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

    (1/S o)(∂y /∂x )max

    EV

    OL

    (%)

    (d) VPMM method

    Error in Volume

    http://en.wikipedia.org/wiki/Image:IITR_Logo.jpg

  • 17

    ___________________________________________________________________ Dr. M. Perumal, Professor & Head, Dept. of Hydrology, I.I.T. Roorkee, India

    Evaluation of CM, VPMC, MCT & VPMM Methods

    Error in Peak Discharge

    -50

    -40

    -30

    -20

    -10

    0

    10

    0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

    (1/S o)(∂y /∂x )max

    qper

    (%

    )

    (a) CM method

    -50

    -40

    -30

    -20

    -10

    0

    10

    0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

    (1/S o)(∂y /∂x )max

    qper

    (%

    )

    (b) VPMC method

    -50

    -40

    -30

    -20

    -10

    0

    10

    0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

    (1/S o)(∂y /∂x )max

    qper

    (%)

    (c) MCT method

    -50

    -40

    -30

    -20

    -10

    0

    10

    0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

    (1/S o)(∂y /∂x )max

    qper

    (%

    )

    (d) VPMM method

    http://en.wikipedia.org/wiki/Image:IITR_Logo.jpg

  • 18

    ___________________________________________________________________ Dr. M. Perumal, Professor & Head, Dept. of Hydrology, I.I.T. Roorkee, India

    Evaluation of CM, VPMC, MCT & VPMM Methods Error in Time-to-peak Discharge

    -30

    -20

    -10

    0

    10

    20

    0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

    (1/S o)(∂y /∂x )max

    tpqer

    (%

    )

    (a) CM method

    -30

    -20

    -10

    0

    10

    20

    0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

    (1/S o)(∂y /∂x )maxtpqe

    r (%

    )

    (b) VPMC method

    -30

    -20

    -10

    0

    10

    20

    0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

    (1/S o)(∂y /∂x )max

    tpqer

    (%)

    (c) MCT method

    -30

    -20

    -10

    0

    10

    20

    0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

    (1/S o)(∂y /∂x )max

    tpqe

    r (%

    )

    (d) VPMM method

    http://en.wikipedia.org/wiki/Image:IITR_Logo.jpg

  • 19

    ___________________________________________________________________ Dr. M. Perumal, Professor & Head, Dept. of Hydrology, I.I.T. Roorkee, India

    Conclusions VPMM method consistently performs better than the MC & VPMC method.

    VPMM, MCT & MC methods are fully volume conservative, whereas the VPMC method has the tendency to always loose mass.

    Due to the nonlinearity dynamics of river flood convection, the MC method should not be used in SWAT model.

    Since the VPMM method has a sound physical basis, it may be preferred over the other existing methods for its incorporation in the SWAT model for dealing with various field problems.

    http://en.wikipedia.org/wiki/Image:IITR_Logo.jpg

  • 20

    ___________________________________________________________________ Dr. M. Perumal, Professor & Head, Dept. of Hydrology, I.I.T. Roorkee, India

    http://en.wikipedia.org/wiki/Image:IITR_Logo.jpg

  • 21

    ___________________________________________________________________ Dr. M. Perumal, Professor & Head, Dept. of Hydrology, I.I.T. Roorkee, India

    _________________________________________________________________ Dr. M. Perumal, Professor & Head, Dept. of Hydrology, I.I.T. Roorkee, India

    0Q Ax t

    ∂ ∂+ =

    ∂ ∂

    01

    fy v v vS Sx g x g t∂ ∂ ∂

    = − − −∂ ∂ ∂

    So= bed slope; Sf = friction slope; ∂y/∂x = water surface slope; (v/g)(∂v/∂x) = convective acceleration; (1/g)(∂v/∂t) = local acceleration. Magnitudes of various terms in eqn. (2) are usually small in comparison with So [Henderson, 1966; NERC, 1975].

    Continuity equation:

    Momentum eqn.

    (1)

    (2)

    Mathematical Formulation of VPMM Method

    Back to Slide 6

    Saint-Venant Equations:

    http://en.wikipedia.org/wiki/Image:IITR_Logo.jpg

  • 22

    ___________________________________________________________________ Dr. M. Perumal, Professor & Head, Dept. of Hydrology, I.I.T. Roorkee, India

    • Unsteady flow relationship:

    • Using equations (1), (2) (4), (5), & (6) friction slope:

    •Celerity of the flood wave (Henderson,1966; NERC,1975):

    • Where Froude number: 1 22v dA dyF

    gA

    =

    221 41 1

    9f o o

    y PdR dyS S FS x dA dy

    ∂ = − − ∂

    …Mathematical Formulation of VPMM Method Important steps of derivation:

    Back to Slide 6

    • Considering ∂y/∂x≠0 & ∂2y/∂x2→0:

    vdydAdyPdR

    dAdQc

    +==

    //

    321

    ( )xyBc

    xAv

    xQ

    ∂∂

    =∂

    ∂=

    ∂∂

    ( ) 0/)(, SSyQxyyQ f=∂∂ (3)

    (4)

    (5)

    •Velocity by the Manning’s friction law: 2/3 1/21

    fv R Sn= (6)

    (7)

    (8) To Eq.

    (14)

    http://en.wikipedia.org/wiki/Image:IITR_Logo.jpg

  • 23

    ___________________________________________________________________ Dr. M. Perumal, Professor & Head, Dept. of Hydrology, I.I.T. Roorkee, India

    • Using Eq. (7) in (3), unsteady discharge:

    • Similarly, unsteady velocity:

    • Hydraulic continuity Eq. (1):

    • Using Eqs. (9) & (10) in (11):

    • Normal discharge in Eq. (9) can be rewritten as:

    ….Mathematical Formulation of VPMM Method

    Back to Slide 6

    ( )21

    22

    0 94111,

    ∂∂

    −=

    ∂∂

    =dydR

    BPF

    xy

    SyQ

    xyyQQ o (9)

    (10) ( )21

    22

    0 94111,

    ∂∂

    −=

    ∂∂

    =dydR

    BPF

    xy

    Syv

    xyyvv o

    0=

    ∂∂

    +

    ∂∂

    xQ

    vQ

    t (11)

    (12) 00

    0 =∂∂

    +

    ∂∂

    xQ

    vQ

    t

    ( )21

    22

    0 94111

    ∂∂

    −==

    dydR

    BPF

    xy

    SQyQQ oo (13)

    http://en.wikipedia.org/wiki/Image:IITR_Logo.jpg

  • 24

    ___________________________________________________________________ Dr. M. Perumal, Professor & Head, Dept. of Hydrology, I.I.T. Roorkee, India

    Where:

    • Which is in the form of:

    •Using binomial series expansion in Eq. (13) with (1/S0)(∂y/∂x)

  • 25

    ___________________________________________________________________ Dr. M. Perumal, Professor & Head, Dept. of Hydrology, I.I.T. Roorkee, India

    •Using Eq. (18) in continuity Eq. (12):

    • Expressing Eq. (19) at the centre point ‘M’ of the finite difference grid:

    ….Mathematical Formulation of VPMM Method

    Back to Slide 6

    (19)

    (20)

    00

    0

    0

    =∂∂

    +

    ∂∂

    +

    ∂∂

    xQ

    vxQ

    ca

    Q

    t

    Finite-difference grid representation of the VPMM

    method computational scheme

    1 2

    j

    j+1

    Δx

    Δt M

    0211 1

    ,0

    0

    0

    1,0

    1

    0

    01

    =

    ∂∂

    +∂∂

    +

    ∂∂

    +

    −∂∂

    +

    +

    +

    ++

    j

    M

    j

    Mj

    M

    j

    M

    jM

    jM

    j

    M

    jM

    xQ

    xQ

    v

    xQ

    ca

    Q

    v

    xQ

    ca

    Q

    t

    http://en.wikipedia.org/wiki/Image:IITR_Logo.jpg

  • 26

    ___________________________________________________________________ Dr. M. Perumal, Professor & Head, Dept. of Hydrology, I.I.T. Roorkee, India

    • Eq. (20) can be reorganized as:

    • Which can be written as:

    ….Mathematical Formulation of VPMM Method

    Back to Slide 6

    (21)

    (22)

    +−

    +∆=

    ∆++

    ∆−

    ∆−

    ∆++

    ∆−

    +++

    +

    +

    ++

    +

    +

    +

    +

    22

    1211

    21

    1211

    21

    11

    11

    10

    0

    0

    0

    ,0

    11

    1

    0

    011

    0

    01

    ,0

    ji

    ji

    ji

    ji

    ji

    j

    M

    ji

    j

    Mj

    M

    ji

    j

    M

    ji

    j

    Mj

    M

    QQQQt

    Qxc

    aQxc

    av

    x

    Qxc

    aQxc

    av

    x

    [ ] [ ]t

    QQQQ

    QQKQQKj

    ij

    ij

    ij

    i

    ji

    jji

    jjji

    jji

    jj

    +−

    +=

    −+−−+

    +++

    +

    +++

    ++++

    22

    )1()1(

    11

    11

    11

    11111 θθθθ

    http://en.wikipedia.org/wiki/Image:IITR_Logo.jpg

  • 27

    ___________________________________________________________________ Dr. M. Perumal, Professor & Head, Dept. of Hydrology, I.I.T. Roorkee, India

    • Where:

    • Eq. (22) can also be written in the form of the classical Muskingum routing equation as:

    ….Mathematical Formulation of VPMM Method

    Back to Slide 6

    (23)

    (24)

    1,0

    1+

    + ∆= jM

    j

    vxK

    122

    ,00

    ,01

    0

    01

    941

    21

    21

    ++

    +

    ∆=

    ∆−=

    j

    MM

    MM

    Mj

    M

    j

    dydR

    BPF

    xcBSQ

    xcaθ

    21

    3

    2

    =

    M

    MMM gA

    BQF

    ji

    ji

    ji

    ji QCQCQCQ 132

    11

    11 +

    +++ ++=

    • Where:

    ( )1 1

    11 1

    2. .2. . 1

    j j

    j j

    t KC

    t Kθθ

    + +

    + +

    ∆ −=∆ + − ( )2 1 1

    2. .2. . 1

    j j

    j j

    t KC

    t Kθ

    θ+ +

    ∆ +=∆ + −

    ( )( )3 1 1

    2. . 1

    2. . 1j j

    j j

    t KC

    t K

    θ

    θ+ +

    −∆ + −=∆ + −

    http://en.wikipedia.org/wiki/Image:IITR_Logo.jpg

  • 28

    ___________________________________________________________________ Dr. M. Perumal, Professor & Head, Dept. of Hydrology, I.I.T. Roorkee, India

    •The reach storage at any computational time level can be given by:

    • Corresponding downstream stage hydrograph can be computed using Eq. (4) as:

    • Where:

    ….Mathematical Formulation of VPMM Method

    Back to Slide 6

    [ ])( 11111111 ++++++++ −+= jijijjijj QQQKS θ

    11

    1 ++

    + ji

    j QKPrism storage = Wedge storage = )( 11

    111 ++

    +++ − jij

    ijj QQK θ

    1

    11111

    1)(

    +

    +++++

    +

    −+= j

    MM

    jM

    jij

    Mj

    i cBQQ

    yy

    This proves that the classical Muskingum method advocated by McCarthy (1938) has the physical basis

    http://en.wikipedia.org/wiki/Image:IITR_Logo.jpghttp://en.wikipedia.org/wiki/Image:IITR_Logo.jpg

    A Simplified Channel Routing Scheme Suitable for Adoption in SWAT Model�Slide Number 2Slide Number 3Slide Number 4Definition Sketch of VPMM Method Slide Number 6Slide Number 7Slide Number 8Slide Number 9Performance Evaluation CriteriaNumerical ApplicationEvaluation of CM, VPMC, MCT & VPMM MethodsEvaluation of CM, VPMC, MCT & VPMM MethodsEvaluation of CM, VPMC, MCT & VPMM MethodsEvaluation of CM, VPMC, MCT & VPMM MethodsEvaluation of CM, VPMC, MCT & VPMM MethodsEvaluation of CM, VPMC, MCT & VPMM MethodsEvaluation of CM, VPMC, MCT & VPMM MethodsConclusionsSlide Number 20Slide Number 21Slide Number 22Slide Number 23Slide Number 24Slide Number 25Slide Number 26Slide Number 27Slide Number 28