Distinguishing Dark Matter in Direct Detection€¦ · SuperBayeS v 1.36 log(m χ /GeV) log(C 0 1 m...

28
Distinguishing Dark Matter in Direct Detection Andrew Cheek Supervisor: David Cerdeño In Collaboration with Miguel Peiró and Elias Gerstmayr

Transcript of Distinguishing Dark Matter in Direct Detection€¦ · SuperBayeS v 1.36 log(m χ /GeV) log(C 0 1 m...

Page 1: Distinguishing Dark Matter in Direct Detection€¦ · SuperBayeS v 1.36 log(m χ /GeV) log(C 0 1 m 2 v) Profile likelihood Flat priors 0 1 2 −5 −4 −3 −2 −1 SuperBayeS v

Distinguishing Dark Matter in Direct Detection

Andrew Cheek Supervisor: David Cerdeño

In Collaboration with Miguel Peiró and Elias Gerstmayr

Page 2: Distinguishing Dark Matter in Direct Detection€¦ · SuperBayeS v 1.36 log(m χ /GeV) log(C 0 1 m 2 v) Profile likelihood Flat priors 0 1 2 −5 −4 −3 −2 −1 SuperBayeS v

Dark Matter ❖ Despite what my Facebook

status might imply. I’m still prescribing to the DM paradigm.

Page 3: Distinguishing Dark Matter in Direct Detection€¦ · SuperBayeS v 1.36 log(m χ /GeV) log(C 0 1 m 2 v) Profile likelihood Flat priors 0 1 2 −5 −4 −3 −2 −1 SuperBayeS v

Dark Matter ❖ Despite what my Facebook

status might imply. I’m still prescribing to the DM paradigm.

Page 4: Distinguishing Dark Matter in Direct Detection€¦ · SuperBayeS v 1.36 log(m χ /GeV) log(C 0 1 m 2 v) Profile likelihood Flat priors 0 1 2 −5 −4 −3 −2 −1 SuperBayeS v

Direct Detection of Dark Matter

Page 5: Distinguishing Dark Matter in Direct Detection€¦ · SuperBayeS v 1.36 log(m χ /GeV) log(C 0 1 m 2 v) Profile likelihood Flat priors 0 1 2 −5 −4 −3 −2 −1 SuperBayeS v

Direct Detection of Dark Matter

Page 6: Distinguishing Dark Matter in Direct Detection€¦ · SuperBayeS v 1.36 log(m χ /GeV) log(C 0 1 m 2 v) Profile likelihood Flat priors 0 1 2 −5 −4 −3 −2 −1 SuperBayeS v

How many counts does an experiment expect?

Page 7: Distinguishing Dark Matter in Direct Detection€¦ · SuperBayeS v 1.36 log(m χ /GeV) log(C 0 1 m 2 v) Profile likelihood Flat priors 0 1 2 −5 −4 −3 −2 −1 SuperBayeS v

So Non-Relativistic

Spin Independent and Spin Dependent

This limiting case simplifies the Lagrangian and gives two generic cross-sections

Page 8: Distinguishing Dark Matter in Direct Detection€¦ · SuperBayeS v 1.36 log(m χ /GeV) log(C 0 1 m 2 v) Profile likelihood Flat priors 0 1 2 −5 −4 −3 −2 −1 SuperBayeS v

Spin Independent and Spin Dependent is Not Completely General

Uncharged DM vector mediated.

Anapole DM

Page 9: Distinguishing Dark Matter in Direct Detection€¦ · SuperBayeS v 1.36 log(m χ /GeV) log(C 0 1 m 2 v) Profile likelihood Flat priors 0 1 2 −5 −4 −3 −2 −1 SuperBayeS v

The Effective Field Theory Formalism

❖ The EFT formalism is similar to current work at the high scale frontier. Just in non-relativistic limit.

❖ In an attempt to remain model independent, Fitzpatrick et al. introduced basic building blocks that are Galilean invariant and Hermitian.

Page 10: Distinguishing Dark Matter in Direct Detection€¦ · SuperBayeS v 1.36 log(m χ /GeV) log(C 0 1 m 2 v) Profile likelihood Flat priors 0 1 2 −5 −4 −3 −2 −1 SuperBayeS v

The list of NR Operators❖ Since we’re only interested in elastic scattering, this

formalism only considers four-field operators.

❖ Remembering the NR limit is being taken, we combine operators up to quadratic in momentum.

Page 11: Distinguishing Dark Matter in Direct Detection€¦ · SuperBayeS v 1.36 log(m χ /GeV) log(C 0 1 m 2 v) Profile likelihood Flat priors 0 1 2 −5 −4 −3 −2 −1 SuperBayeS v

EFT: The “New” Differential Rate❖ The differential rate now takes a different form.

❖ The operator behaviour is embedded into the new EFT form factors.

❖ The Form Factors are are defined by

Page 12: Distinguishing Dark Matter in Direct Detection€¦ · SuperBayeS v 1.36 log(m χ /GeV) log(C 0 1 m 2 v) Profile likelihood Flat priors 0 1 2 −5 −4 −3 −2 −1 SuperBayeS v

The Spectrum for Different Operators.

Page 13: Distinguishing Dark Matter in Direct Detection€¦ · SuperBayeS v 1.36 log(m χ /GeV) log(C 0 1 m 2 v) Profile likelihood Flat priors 0 1 2 −5 −4 −3 −2 −1 SuperBayeS v

If we detect DM now, NREFT signals will be degenerate.

Having complementarity of different targets means we can distinguish between the real DM model and one that purely mimics it.

Page 14: Distinguishing Dark Matter in Direct Detection€¦ · SuperBayeS v 1.36 log(m χ /GeV) log(C 0 1 m 2 v) Profile likelihood Flat priors 0 1 2 −5 −4 −3 −2 −1 SuperBayeS v

How Does The Degeneracy look in an reconstruction?

Need to simulate the new generation of experiment.

Come up with some interesting candidate signals for this setup.

Page 15: Distinguishing Dark Matter in Direct Detection€¦ · SuperBayeS v 1.36 log(m χ /GeV) log(C 0 1 m 2 v) Profile likelihood Flat priors 0 1 2 −5 −4 −3 −2 −1 SuperBayeS v

SuperBayeS v 1.36

log(mχ/GeV)

log(

C10 m

v2 )

Profile likelihood

Flat priors

0 1 2

−5

−4

−3

−2

−1SuperBayeS v 1.36

log(C10 mv

2)

log(

C100

mv2 )

Profile likelihood

Flat priors

−5 −4 −3 −2 −1

0

1

2

3

4

O1

O10

BP1(O1+O10)

0 5 10 15 200

5

10

15

20

25

Er [keV]

Cou

nts

How does this Look in an Reconstruction?Just XENON G2

Page 16: Distinguishing Dark Matter in Direct Detection€¦ · SuperBayeS v 1.36 log(m χ /GeV) log(C 0 1 m 2 v) Profile likelihood Flat priors 0 1 2 −5 −4 −3 −2 −1 SuperBayeS v

SuperBayeS v 1.36

log(mχ/GeV)

log(

C10 m

v2 )

Profile likelihood

Flat priors

0 1 2

−5

−4

−3

−2

−1

SuperBayeS v 1.36

log(C10 mv

2)

log(

C100

mv2 )

Profile likelihood

Flat priors

−5 −4 −3 −2 −1

0

1

2

3

4SuperBayeS v 1.36

log(mχ/GeV)

log(

C10 m

v2 )

Profile likelihood

Flat priors

0 1 2

−5

−4

−3

−2

−1

Combining Xenon and Germanium SuperBayeS v 1.36

log(C10 mv

2)

log(

C100

mv2 )

Profile likelihood

Flat priors

−5 −4 −3 −2 −1

0

1

2

3

4

Page 17: Distinguishing Dark Matter in Direct Detection€¦ · SuperBayeS v 1.36 log(m χ /GeV) log(C 0 1 m 2 v) Profile likelihood Flat priors 0 1 2 −5 −4 −3 −2 −1 SuperBayeS v

SuperBayeS v 1.36

log(mχ/GeV)

log(

C80 m

v2 )

Profile likelihood

Flat priors

0 1 2

−1

0

1

2

3

4SuperBayeS v 1.36

log(C10 mv

2)

log(

C80 m

v2 )

Profile likelihood

Flat priors

−5 −4 −3 −2 −1

−1

0

1

2

3

4

Complementarity May Not be Enough

Page 18: Distinguishing Dark Matter in Direct Detection€¦ · SuperBayeS v 1.36 log(m χ /GeV) log(C 0 1 m 2 v) Profile likelihood Flat priors 0 1 2 −5 −4 −3 −2 −1 SuperBayeS v

Annual modulation: a Potential Degeneracy Breaker

Page 19: Distinguishing Dark Matter in Direct Detection€¦ · SuperBayeS v 1.36 log(m χ /GeV) log(C 0 1 m 2 v) Profile likelihood Flat priors 0 1 2 −5 −4 −3 −2 −1 SuperBayeS v

Annual modulation: a Potential Degeneracy Breaker

Page 20: Distinguishing Dark Matter in Direct Detection€¦ · SuperBayeS v 1.36 log(m χ /GeV) log(C 0 1 m 2 v) Profile likelihood Flat priors 0 1 2 −5 −4 −3 −2 −1 SuperBayeS v

Annual modulation: a Potential Degeneracy Breaker

Page 21: Distinguishing Dark Matter in Direct Detection€¦ · SuperBayeS v 1.36 log(m χ /GeV) log(C 0 1 m 2 v) Profile likelihood Flat priors 0 1 2 −5 −4 −3 −2 −1 SuperBayeS v

SuperBayeS v 1.36

log(C10 mv

2)

log(

C80 m

v2 )Profile likelihood

Flat priors

−5 −4 −3 −2 −1

−1

0

1

2

3

4SuperBayeS v 1.36

log(mχ/GeV)

log(

C80 m

v2 )

Profile likelihood

Flat priors

0 1 2

−1

0

1

2

3

4

Annual modulation: a Potential Degeneracy Breaker

Page 22: Distinguishing Dark Matter in Direct Detection€¦ · SuperBayeS v 1.36 log(m χ /GeV) log(C 0 1 m 2 v) Profile likelihood Flat priors 0 1 2 −5 −4 −3 −2 −1 SuperBayeS v

SuperBayeS v 1.36

log(C10 mv

2)

log(

C80 m

v2 )Profile likelihood

Flat priors

−5 −4 −3 −2 −1

−1

0

1

2

3

4SuperBayeS v 1.36

log(mχ/GeV)

log(

C80 m

v2 )

Profile likelihood

Flat priors

0 1 2

−1

0

1

2

3

4SuperBayeS v 1.36

log(mχ/GeV)

log(

C80 m

v2 )

Profile likelihood

Flat priors

0 1 2

−1

0

1

2

3

4

Annual modulation: a Potential Degeneracy Breaker

Page 23: Distinguishing Dark Matter in Direct Detection€¦ · SuperBayeS v 1.36 log(m χ /GeV) log(C 0 1 m 2 v) Profile likelihood Flat priors 0 1 2 −5 −4 −3 −2 −1 SuperBayeS v

SuperBayeS v 1.36

log(C10 mv

2)

log(

C80 m

v2 )Profile likelihood

Flat priors

−5 −4 −3 −2 −1

−1

0

1

2

3

4SuperBayeS v 1.36

log(C10 mv

2)

log(

C80 m

v2 )Profile likelihood

Flat priors

−5 −4 −3 −2 −1

−1

0

1

2

3

4SuperBayeS v 1.36

log(mχ/GeV)

log(

C80 m

v2 )

Profile likelihood

Flat priors

0 1 2

−1

0

1

2

3

4SuperBayeS v 1.36

log(mχ/GeV)

log(

C80 m

v2 )

Profile likelihood

Flat priors

0 1 2

−1

0

1

2

3

4

Annual modulation: a Potential Degeneracy Breaker

Page 24: Distinguishing Dark Matter in Direct Detection€¦ · SuperBayeS v 1.36 log(m χ /GeV) log(C 0 1 m 2 v) Profile likelihood Flat priors 0 1 2 −5 −4 −3 −2 −1 SuperBayeS v

Then we were Scooped!

Page 25: Distinguishing Dark Matter in Direct Detection€¦ · SuperBayeS v 1.36 log(m χ /GeV) log(C 0 1 m 2 v) Profile likelihood Flat priors 0 1 2 −5 −4 −3 −2 −1 SuperBayeS v

Thank You!

Page 26: Distinguishing Dark Matter in Direct Detection€¦ · SuperBayeS v 1.36 log(m χ /GeV) log(C 0 1 m 2 v) Profile likelihood Flat priors 0 1 2 −5 −4 −3 −2 −1 SuperBayeS v

The Exclusion Plots for each Coefficient

Page 27: Distinguishing Dark Matter in Direct Detection€¦ · SuperBayeS v 1.36 log(m χ /GeV) log(C 0 1 m 2 v) Profile likelihood Flat priors 0 1 2 −5 −4 −3 −2 −1 SuperBayeS v

Simplified Models for EFTs

❖ Simplified models approach is where only operators at leading order and one single type of mediator is considered.

Page 28: Distinguishing Dark Matter in Direct Detection€¦ · SuperBayeS v 1.36 log(m χ /GeV) log(C 0 1 m 2 v) Profile likelihood Flat priors 0 1 2 −5 −4 −3 −2 −1 SuperBayeS v

Recently it was shown that the standard SI interaction is contributed by 8 independent

coefficients.