Direct Retrieval of Object Information using Inverse Solutions of Dynamical Electron Diffraction Max...

26
Direct Retrieval of Object Information using Inverse Solutions of Dynamical Electron Diffraction Max Planck Institute of Microstructure Physics Halle/Saale, Germany [email protected] http://www.mpi-halle.de Kurt Scheerschmidt antitative Analysis: Trial-&-Error or Inverse Probl Confidence: a priori Data versus Regularization

Transcript of Direct Retrieval of Object Information using Inverse Solutions of Dynamical Electron Diffraction Max...

Page 1: Direct Retrieval of Object Information using Inverse Solutions of Dynamical Electron Diffraction Max Planck Institute of Microstructure Physics Halle/Saale,

Direct Retrieval of Object Information using Inverse Solutions of Dynamical Electron Diffraction

Max Planck Institute of Microstructure PhysicsHalle/Saale, [email protected]

http://www.mpi-halle.de

Kurt Scheerschmidt

Quantitative Analysis: Trial-&-Error or Inverse Problems

Confidence: a priori Data versus Regularization

Page 2: Direct Retrieval of Object Information using Inverse Solutions of Dynamical Electron Diffraction Max Planck Institute of Microstructure Physics Halle/Saale,

trial-and-errorimage analysis

direct objectreconstruction

1. objectmodeling

2. wave simulation

3. image process

4. likelihoodmeasure

repetition

parameter &potential

reconstruction

wavereconstruction

?

image

?

Page 3: Direct Retrieval of Object Information using Inverse Solutions of Dynamical Electron Diffraction Max Planck Institute of Microstructure Physics Halle/Saale,

Inversion ? no iteration

same ambiguities

additional instabilities

parameter& potential

atomicdisplacementsexit object

wave

imagedirect interpretation by data reduction:Fourier filteringQUANTITEM

Fuzzy & Neuro-NetSrain analysis

deviations fromreference structures:

displacement field (Head)algebraic discretization

reference beam (holography)defocus series (Kirkland, van Dyck …)

Gerchberg-Saxton (Jansson)tilt-series, voltage variation

multi-slice inversion(van Dyck, Griblyuk, Lentzen,

Allen, Spargo, Koch)Pade-inversion (Spence) non-Convex sets (Spence)

local linearization

Page 4: Direct Retrieval of Object Information using Inverse Solutions of Dynamical Electron Diffraction Max Planck Institute of Microstructure Physics Halle/Saale,
Page 5: Direct Retrieval of Object Information using Inverse Solutions of Dynamical Electron Diffraction Max Planck Institute of Microstructure Physics Halle/Saale,

= M(X) 0

= M(X0) 0 + M(X0)(X-X0) 0

Assumptions:

- object: weakly distorted crystal

- described by unknown parameter set X={t, K,Vg, u}

- approximations of t0, K0 a priori known

Page 6: Direct Retrieval of Object Information using Inverse Solutions of Dynamical Electron Diffraction Max Planck Institute of Microstructure Physics Halle/Saale,

M needs analytic solutions for inversion

Perturbation: eigensolution , C for K, V yields analytic solution of and its derivatives

for K+K, V+V with tr() + {1/(i-j)}

= C-1(1+)-1 {exp(2i(t+t)} (1+)C

The inversion needs generalized matrices due to different numbersof unknowns in X and measured reflexes in disturbed by noise

Generalized Inverse (Penrose-Moore):

X= X0+(MTM)-1MT.[exp- X]

Page 7: Direct Retrieval of Object Information using Inverse Solutions of Dynamical Electron Diffraction Max Planck Institute of Microstructure Physics Halle/Saale,
Page 8: Direct Retrieval of Object Information using Inverse Solutions of Dynamical Electron Diffraction Max Planck Institute of Microstructure Physics Halle/Saale,

A0 Ag1 Ag2 Ag3

P0 Pg1 Pg2 Pg3

...

...exp

X= X0+(MTM)-1MT.[exp- X]

i i i

j j jX X X...

t(i,j) Kx(i,j) Ky(i,j)

Page 9: Direct Retrieval of Object Information using Inverse Solutions of Dynamical Electron Diffraction Max Planck Institute of Microstructure Physics Halle/Saale,
Page 10: Direct Retrieval of Object Information using Inverse Solutions of Dynamical Electron Diffraction Max Planck Institute of Microstructure Physics Halle/Saale,

Regularized Generalized Inverse

X=(MTC1M + C2)-1 MT

as Maximum-Likelihood-Estimate of Gauss-distributed Errors

||ex-th||2 + ||X||2 = Min

with defect (ex-th)†C1(ex-th) (ex†C1ex)-1

and constraint XTC2Xwhich is physically interpretable as:

Weighting C1=W†

ghWgh

Smoothing C2=DTijDij

data itself: Dij=i-ip,j-jp

second derivative: Dij=-2i-ip,j-jp+i-ip±1,j-jp±1

Page 11: Direct Retrieval of Object Information using Inverse Solutions of Dynamical Electron Diffraction Max Planck Institute of Microstructure Physics Halle/Saale,

-lg()

lg()Regularization

Kx(i,j)/a*

Ky(i,j)/a*

t(i,j)/Å

Page 12: Direct Retrieval of Object Information using Inverse Solutions of Dynamical Electron Diffraction Max Planck Institute of Microstructure Physics Halle/Saale,

Retrieval with iterative fit of the confidence region

lg()

step

step

< t > / Å

relative beamincidence to zone axis [110]

[-1,1,0]

[002]

iii

iii

iiiiii

(i-iii increasing smoothing)

Page 13: Direct Retrieval of Object Information using Inverse Solutions of Dynamical Electron Diffraction Max Planck Institute of Microstructure Physics Halle/Saale,

Ge-CdTe, 300kVSample: D. SmithHolo: H. Lichte,

M.Lehmann

10nm

object waveamplitude

object wavephase

FT

A000

P000

A1-11

P1-11

A1-1-1

A-111

P-111

P1-1-1

A-11-1

P-11-1

A-220

P-220

Kx(i,j)/a*

Ky(i,j)/a*

t(i,j)/Å

set 1: Ge set 2: CdTe dVo/Vo = 0.02% dV’o/V’o = 0.8%

Page 14: Direct Retrieval of Object Information using Inverse Solutions of Dynamical Electron Diffraction Max Planck Institute of Microstructure Physics Halle/Saale,

Ky(i,j)/a*

Kx(i,j)/a*

K(i,j)/a*

t(i,j)/ Å

model/reco input 7 / 7 15 / 15 15 / 9 15 / 7beams used Influence of Modeling Errors

Page 15: Direct Retrieval of Object Information using Inverse Solutions of Dynamical Electron Diffraction Max Planck Institute of Microstructure Physics Halle/Saale,

CONCLUSIONS & OUTLOOK

OBJECT RECONSTRUCTION:

Trial-&-Error Matching of Amplitudes & Phases

as well as

Inversion via local Linearization

ILL-POSEDNESS:

Ambiguity & Instability Generalization & RegularizationModeling Error & Confidence a priori Data

Page 16: Direct Retrieval of Object Information using Inverse Solutions of Dynamical Electron Diffraction Max Planck Institute of Microstructure Physics Halle/Saale,

Thanks for your attention

Thanks for cooperation:

H.Lichte, M.Lehmann (Uni-Dresden)

Page 17: Direct Retrieval of Object Information using Inverse Solutions of Dynamical Electron Diffraction Max Planck Institute of Microstructure Physics Halle/Saale,
Page 18: Direct Retrieval of Object Information using Inverse Solutions of Dynamical Electron Diffraction Max Planck Institute of Microstructure Physics Halle/Saale,

regularization physically motivated

Assumption: complex amplitudes are regular

Cauchy relations: a/x = a./y

a/y = -a./x

Linear inversion: t(x+1,y)-2t(x,y)+t(x-1,y)=0

t(x,y+1)-2t(x,y)+t(x,y-1)=0

Page 19: Direct Retrieval of Object Information using Inverse Solutions of Dynamical Electron Diffraction Max Planck Institute of Microstructure Physics Halle/Saale,

0

1

-1

1

.6

.2

.5

-.5

Confidence range?

Kx(i,j)/a* Ky(i,j)/a* K(i,j)/a* t(i,j)/ Å

Page 20: Direct Retrieval of Object Information using Inverse Solutions of Dynamical Electron Diffraction Max Planck Institute of Microstructure Physics Halle/Saale,

Properly posed problems (J. Hadamard 1902)Existence

UniquenessStability

if at least one solution But: exists which is unique and continuous with data

implies determinism (Laplaciandeamon, classical physics) ofintegrable systems for knowninitial/boundary conditions

suitable theory/model& a priori knowledge

inverse 1.kind

solution via construction

but small confidence(uniqueness/stability)

Page 21: Direct Retrieval of Object Information using Inverse Solutions of Dynamical Electron Diffraction Max Planck Institute of Microstructure Physics Halle/Saale,

Direct & Inverse: black box gedankenexperiment

operator Af

input

g

output

waveimage

thicknesslocal orientation

structure & defectscompositionmicroscope theory, hypothesis, model of

scattering and imaging

direct: g=A<f experiment, measurement

invers 1.kind: f=A-1<g parameter determination

invers 2.kind: A=g$f -1 identification, interpretation

a priori knowledgeintuition & induction

additional data

if unique & stable inverse A-1 exists

ill-posed & insufficient data => least square

Page 22: Direct Retrieval of Object Information using Inverse Solutions of Dynamical Electron Diffraction Max Planck Institute of Microstructure Physics Halle/Saale,

restricted information channel (D. van Dyck)

a priori information: object & additional experiments

amorph1023coordinates

FT white noise

medium range orderPDF, ADF

FT densebut structured S(r)

crystalspace group with

basis / displacements

FT discreteconvolution withdefects and shape

Page 23: Direct Retrieval of Object Information using Inverse Solutions of Dynamical Electron Diffraction Max Planck Institute of Microstructure Physics Halle/Saale,
Page 24: Direct Retrieval of Object Information using Inverse Solutions of Dynamical Electron Diffraction Max Planck Institute of Microstructure Physics Halle/Saale,

Reference wave:Rexp(2ir)

Diffraction:

u(u-)

Aberrations:uuexp(-D-i

Interference: RF-1{uu}

Hologram:

h(R) = * = 1+(R) *(R) + 2|R| cos(2ir+R)

Reconstruction: F-1{h(R)} = (u) +d(u)

+[uexp(-D-i(u-)

+[ uexp(-D+i(u+)

Diffraction:

uF{(R,t)} = g(u)*(u-k-g)

Object wave:(R,t) g exp (2i(k+g)r)

Page 25: Direct Retrieval of Object Information using Inverse Solutions of Dynamical Electron Diffraction Max Planck Institute of Microstructure Physics Halle/Saale,
Page 26: Direct Retrieval of Object Information using Inverse Solutions of Dynamical Electron Diffraction Max Planck Institute of Microstructure Physics Halle/Saale,

Uniqueness (J. Spence):

Scattering Matrix: S = e2iAt

however: t ± n/Re[] multiplicity

SS-1

=1 for all t => S(A)=S(B) only if A=B

Uniqueness (D.M. Barnett):

/z ~ gu/z => series expansion of u => unique coefficient relations