Digital Integrated Circuitsbwrcs.eecs.berkeley.edu/Classes/icdesign/ee141_f05/Lectures/Lec-1... ·...

23
EE141 – Fall 2005 Tu & Th 11-12:30 203 McLaughlin Digital Integrated Circuits EE141 2 What is This Class About? Introduction to Digital Integrated Circuits Introduction: Issues in digital design CMOS devices and manufacturing technology The CMOS inverter Combinational logic structures Propagation delay, noise margins, power Sequential logic gates; timing Arithmetic building blocks Interconnect: R, L and C Memories and array structures Design methods

Transcript of Digital Integrated Circuitsbwrcs.eecs.berkeley.edu/Classes/icdesign/ee141_f05/Lectures/Lec-1... ·...

Page 1: Digital Integrated Circuitsbwrcs.eecs.berkeley.edu/Classes/icdesign/ee141_f05/Lectures/Lec-1... · Digital Integrated Circuits: A Design Perspective, ... The Transistor Revolution

1

EE141 – Fall 2005

Tu & Th 11-12:30203 McLaughlin

Digital Integrated Circuits

EE141 2

What is This Class About?

Introduction to Digital Integrated Circuits• Introduction: Issues in digital design• CMOS devices and manufacturing technology• The CMOS inverter• Combinational logic structures• Propagation delay, noise margins, power• Sequential logic gates; timing• Arithmetic building blocks• Interconnect: R, L and C• Memories and array structures• Design methods

Page 2: Digital Integrated Circuitsbwrcs.eecs.berkeley.edu/Classes/icdesign/ee141_f05/Lectures/Lec-1... · Digital Integrated Circuits: A Design Perspective, ... The Transistor Revolution

2

EE141 3

What will You Learn?

Understanding, designing, and optimizing digital circuits with respect to different quality metrics:

• Power dissipation

• Speed

• Reliability

EE141 4

Interludium: Administrativia

Instructor

Dejan [email protected] hours: 511 CoryWed 10:00-12:00pm

Ke LuDiscussion + [email protected] Hours: TBD

Lynn WangDiscussion + [email protected] Hours: TBD

TAs

ReaderTBD

Page 3: Digital Integrated Circuitsbwrcs.eecs.berkeley.edu/Classes/icdesign/ee141_f05/Lectures/Lec-1... · Digital Integrated Circuits: A Design Perspective, ... The Transistor Revolution

3

EE141 5

The Web-Site

Class and lecture notesAssignments and solutionsLab and project informationExamsMany other goodies …

The sole source of informationhttp://bwrc.eecs.berkeley.edu/Classes/ee141

Save a tree!

EE141 6

Class Admission

The class is over-enrolled!• 72 enrolled, 30 waitlisted, 60 rejected

Waitlist priority• Graduating seniors• Grad students (prelim)• Other grad students, Juniors

We can accommodate ~75 students

Make sure your name is on the class roll!

Page 4: Digital Integrated Circuitsbwrcs.eecs.berkeley.edu/Classes/icdesign/ee141_f05/Lectures/Lec-1... · Digital Integrated Circuits: A Design Perspective, ... The Transistor Revolution

4

EE141 7

Discussions and Labs

Discussion sessions• Mo 1-2pm, 203 McLaughlin• Mo 5-6pm, 293 Cory• Pick any of the two

(they are covering the same material)

Labs (353 Cory)• Mo 3-6pm• Tu 3:30-6:30pm class poll: move to Wed?• Th 3:30-6:30pm• Pick the one that fits you the best

(pending availability) and STICK TO IT!

EE141 8

TAmtng

ProblemSets Due

* Discussion sessions will cover identical material

Your EE141 Week at a Glance

Mon

Tue

Wed

Thu

Fri

Lec(Dejan)

203 McLaughlin

Lec(Dejan)

203 McLaughlin

OH(Dejan)511 Cory

Lab (Ke) 353 CoryDISC*(Lynn)

293 Cory

DISC*(Ke)203

McLaughlin

9 10 11 12 1 2 3 4 5 6 7

Lab(Lynn/Ke)

353 Cory

Lab(Lynn)353 Cory

OH(TA1)

TBD

OH(TA2)

TBD?

Page 5: Digital Integrated Circuitsbwrcs.eecs.berkeley.edu/Classes/icdesign/ee141_f05/Lectures/Lec-1... · Digital Integrated Circuits: A Design Perspective, ... The Transistor Revolution

5

EE141 9

Class Organization

9 homework assignments

2 design projects

Labs: 5 software, 1 hardware

Exams: 2 midterms, final• Midterm 1: Th October 6, 6:30-8:00pm • Midterm 2: Th November 10, 6:30-8:00pm• Final: Th December 15, 5-8pm

EE141 10

Grading Policy

Homeworks: 10%Labs: 10%Projects: 20%Midterms: 30%Final: 30%

Page 6: Digital Integrated Circuitsbwrcs.eecs.berkeley.edu/Classes/icdesign/ee141_f05/Lectures/Lec-1... · Digital Integrated Circuits: A Design Perspective, ... The Transistor Revolution

6

EE141 11

Class Material

Textbook: Digital Integrated Circuits: A Design Perspective, by J. Rabaey, A. Chandrakasan, B. Nikolic, 2nd Edition, (Prentice Hall 2002)

Lab manuals• Available on the web-page

Check web-page for the availability of toolshttp://bwrc.eecs.berkeley.edu/Classes/ee141

EE141 12

Software

Cadence software only!• Phased out the Micromagic software• Online documentation and tutorials

HSPICE and IRSIM for simulation

Page 7: Digital Integrated Circuitsbwrcs.eecs.berkeley.edu/Classes/icdesign/ee141_f05/Lectures/Lec-1... · Digital Integrated Circuits: A Design Perspective, ... The Transistor Revolution

7

EE141 13

Getting Started

Assignment 1: Getting SPICE to work • see web-page• also “The SPICE Book”, by A. Vladimirescu

No discussion sessions or labs this week• First discussion sessions in Week 2• First software lab in Week 3

EE141 – Fall 2005Lecture 1

Introduction

Page 8: Digital Integrated Circuitsbwrcs.eecs.berkeley.edu/Classes/icdesign/ee141_f05/Lectures/Lec-1... · Digital Integrated Circuits: A Design Perspective, ... The Transistor Revolution

8

EE141 15

Introduction

Why is designing digital ICs different today than it was before?

Will it change in the future?

EE141 16

The First Computer (1832)

The Babbage Difference Engine• 25,000 parts• cost: £17,470

Page 9: Digital Integrated Circuitsbwrcs.eecs.berkeley.edu/Classes/icdesign/ee141_f05/Lectures/Lec-1... · Digital Integrated Circuits: A Design Perspective, ... The Transistor Revolution

9

EE141 17

ENIAC – The First Electronic Computer (1946)

EE141 18

The Transistor Revolution

First transistorBell Labs (1948)

Page 10: Digital Integrated Circuitsbwrcs.eecs.berkeley.edu/Classes/icdesign/ee141_f05/Lectures/Lec-1... · Digital Integrated Circuits: A Design Perspective, ... The Transistor Revolution

10

EE141 19

The First Integrated Circuits

Bipolar logic(1960’s)

ECL 3-input GateMotorola (1966)

EE141 20

Intel 4004 Microprocessor (1971)

2,300 transistors (12mm2)108 KHz operation (10µm)

Page 11: Digital Integrated Circuitsbwrcs.eecs.berkeley.edu/Classes/icdesign/ee141_f05/Lectures/Lec-1... · Digital Integrated Circuits: A Design Perspective, ... The Transistor Revolution

11

EE141 21

Evolution in Transistor Count

EE141 22

Intel Pentium 4 Microprocessor

Intel (2000) 42 M transistors (217mm2)1.5 GHz operation (0.18µm)

Page 12: Digital Integrated Circuitsbwrcs.eecs.berkeley.edu/Classes/icdesign/ee141_f05/Lectures/Lec-1... · Digital Integrated Circuits: A Design Perspective, ... The Transistor Revolution

12

EE141 23

What Happened over 30 Years?

42 M transistors1.5 GHz operation

1971 2000

2,300 transistors108 KHz operation ~15,000 x

Comparison (automotive): Travel from San Francisco to New York in 13 sec!

EE141 24

Moore’s Law

In 1965, Gordon Moore noted that the number of transistors on a chip doubled every 18 to 24 months

He made a prediction that semiconductor industry will double its effectiveness every 18 months

Page 13: Digital Integrated Circuitsbwrcs.eecs.berkeley.edu/Classes/icdesign/ee141_f05/Lectures/Lec-1... · Digital Integrated Circuits: A Design Perspective, ... The Transistor Revolution

13

EE141 25

Moore’s Law

16151413121110

9876543210

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

LOG

2 OF

THE

NU

MB

ER O

FC

OM

PON

ENTS

PER

INTE

GR

ATE

D F

UN

CTI

ON

Source: Electronics, April 19, 1965.

EE141 26

Evolution in Complexity

Page 14: Digital Integrated Circuitsbwrcs.eecs.berkeley.edu/Classes/icdesign/ee141_f05/Lectures/Lec-1... · Digital Integrated Circuits: A Design Perspective, ... The Transistor Revolution

14

EE141 27

Microprocessor Examples

Moore’s Law• Number of transistors• Logic density• Die size• Frequency• Power

EE141 28

40048008

80808085 8086 (P1)

286 (P2)386 (P3)

486 (P4)Pentium® (P5)

Pentium Pro (P6)

0.001

0.01

0.1

1

10

100

1000

1970 1980 1990 2000 2010Year

Tran

sist

ors

(MT)

2X growth in 1.96 years!

Transistors on Lead Microprocessors double every 2 yearsTransistors on Lead Microprocessors double every 2 years

Moore’s Law in Microprocessors

Source:S. Borkar(Intel)

Pentium 4

Page 15: Digital Integrated Circuitsbwrcs.eecs.berkeley.edu/Classes/icdesign/ee141_f05/Lectures/Lec-1... · Digital Integrated Circuits: A Design Perspective, ... The Transistor Revolution

15

EE141 29

Pentium (R)Pentium Pro (R) 486

386i860

1

10

100

1000

1.5µ

1.0µ

0.8µ

0.6µ

0.35µ

0.25µ

0.18µ

0.13µ

Logi

c D

ensi

ty

2x trend

Logi

c Tr

ansi

stor

s/m

m2

Pentium II (R)

Moore’s Law – Logic Density

Shrinks and compactions meet density goals• New micro-architectures drop density

Source: Intel

EE141 30

Die Size Growth

40048008

80808085

8086286

386486 Pentium ®

Pentium Pro

1

10

100

1970 1980 1990 2000 2010Year

Die

siz

e (m

m)

~7% growth per year~2X growth in 10 years

Die size grows by 14% to satisfy Moore’s LawDie size grows by 14% to satisfy Moore’s Law

Source:S. Borkar(Intel)

Page 16: Digital Integrated Circuitsbwrcs.eecs.berkeley.edu/Classes/icdesign/ee141_f05/Lectures/Lec-1... · Digital Integrated Circuits: A Design Perspective, ... The Transistor Revolution

16

EE141 31

Frequency

Pentium ProPentium ®

48638628680868085

8080800840040.1

1

10

100

1000

10000

1970 1980 1990 2000 2010Year

Freq

uenc

y (M

hz)

Doubles every2 years

Source:S. Borkar(Intel)

Lead Microprocessor frequency doubles every 2 yearsLead Microprocessor frequency doubles every 2 years

Pentium 4

EE141 32

386486

Pentium(R)

Pentium Pro(R)

Pentium(R) IIMPC750

604+604

601, 603

21264S

2126421164A

2116421064A

21066

10

100

1,000

10,000

1987

1989

1991

1993

1995

1997

1999

2001

2003

2005

Mhz

1

10

100

Gat

e D

elay

s/ C

lock

IntelIBM Power PCDECGate delays/clock

Processor freq scales by 2X per

generation

Processor Frequency Trend

Source:V. De, S. BorkarISLPED’99

Frequency doubles each generation• Number of gates/clock reduce by 25%

Page 17: Digital Integrated Circuitsbwrcs.eecs.berkeley.edu/Classes/icdesign/ee141_f05/Lectures/Lec-1... · Digital Integrated Circuits: A Design Perspective, ... The Transistor Revolution

17

EE141 33

Power

Pentium ProPentium ®

486386

2868086

808580808008

4004

0.1

1

10

100

1971 1974 1978 1985 1992 2000Year

Pow

er (W

atts

)

Source:S. Borkar(Intel)

Lead Microprocessor power continues to increaseLead Microprocessor power continues to increase

EE141 34

Processor Power

386 386

486 486

Pentium(R) Pentium(R) MMX

Pentium Pro (R)

Pentium II (R)

1

10

100

1.5µ 1µ 0.8µ 0.6µ 0.35µ 0.25µ 0.18µ 0.13µ

Max

Pow

er (W

atts

) ?

Lead processor power increases every generation• Compactions provide higher performance at lower power

Source: Intel

Page 18: Digital Integrated Circuitsbwrcs.eecs.berkeley.edu/Classes/icdesign/ee141_f05/Lectures/Lec-1... · Digital Integrated Circuits: A Design Perspective, ... The Transistor Revolution

18

EE141 35

Power will be a Problem

5KW 18KW

1.5KW 500W

400480088080

80858086

286386

486Pentium ®

0.1

1

10

100

1000

10000

100000

1971 1974 1978 1985 1992 2000 2004 2008Year

Pow

er (W

atts

)

Power delivery and dissipation will be prohibitivePower delivery and dissipation will be prohibitive

Source:S. Borkar(Intel)

Pentium Pro

EE141 36

Power Density will Increase

400480088080

8085

8086

286 386486

Pentium ®Pentium Pro

1

10

100

1000

10000

1970 1980 1990 2000 2010Year

Pow

er D

ensi

ty (W

/cm

2 )

Hot Plate

NuclearReactor

RocketNozzle

Power density too high to keep junctions at low TempPower density too high to keep junctions at low Temp

Source:S. Borkar(Intel)

Page 19: Digital Integrated Circuitsbwrcs.eecs.berkeley.edu/Classes/icdesign/ee141_f05/Lectures/Lec-1... · Digital Integrated Circuits: A Design Perspective, ... The Transistor Revolution

19

EE141 37

Power Delivery Challenges

Pentium ProPentium®

486386286

8086

80858080

800840040.01

0.10

1.00

10.00

100.00

1,000.00

1970 1980 1990 2000 2010Year

Icc

(am

p)

Pentium ProPentium ®

486386

286

8086

80858080

80084004

1.E-041.E-031.E-021.E-011.E+001.E+011.E+021.E+031.E+041.E+051.E+061.E+07

1970 1980 1990 2000 2010Year

L(di

/dt)/

Vdd

High supply currents at low voltage:Challenges: IR drop and L(di/dt) noiseHigh supply currents at low voltage:

Challenges: IR drop and L(di/dt) noise

Source: S. Borkar (Intel)

EE141 38

Not Only Microprocessors

Digital Cellular Market(Phones Shipped)

Analog Baseband

Digital Baseband(DSP + MCU)

PowerManagement

Small Signal RF

PowerRF

CellPhone

(889)(836)(776)(703)64851343516248Units (M)200820072006200520042003200019981996Year

Sources: Gartner Dataquest, CTIA, Strategy Analytics

Page 20: Digital Integrated Circuitsbwrcs.eecs.berkeley.edu/Classes/icdesign/ee141_f05/Lectures/Lec-1... · Digital Integrated Circuits: A Design Perspective, ... The Transistor Revolution

20

EE141 39

Other Wireless Devices

CellTx

TV

PAN

LAN

WAN

700M

30M

180,464,003 subscribers in US

Computation ⇔ Communication

95% by 2006

Throughput ↑, Complexity ↑, Power ↑Throughput ↑, Complexity ↑, Power ↑

EE141 40

Productivity Trends

1

10

100

1,000

10,000

100,000

1,000,000

10,000,000

2003

1981

1983

1985

1987

1989

1991

1993

1995

1997

1999

2001

2005

2007

2009

10

100

1,000

10,000

100,000

1,000,000

10,000,000

100,000,000Logic Tr./ChipTr./Staff Month.

xxx

xxx

x21%/Yr. compound

Productivity growth rate

x

58%/Yr. compoundedComplexity growth rate

10,000

1,000

100

10

1

0.1

0.01

0.001

Logi

c Tr

ansi

stor

per

Chi

p(M

)

0.01

0.1

1

10

100

1,000

10,000

100,000

Prod

uctiv

ity(K

) Tra

ns./S

taff

-Mo.

Com

plex

ity

Complexity outpaces design productivityComplexity outpaces design productivity

Source: Sematech

Today

Page 21: Digital Integrated Circuitsbwrcs.eecs.berkeley.edu/Classes/icdesign/ee141_f05/Lectures/Lec-1... · Digital Integrated Circuits: A Design Perspective, ... The Transistor Revolution

21

EE141 41

∝ DSM ∝ 1/DSM

?

Challenges in Digital Design

“Macroscopic Issues”• Time-to-Market• Millions of Gates• High-Level Abstractions• Reuse & IP: Portability• Predictability• etc.

…and there’s a lot of them!

“Microscopic Problems”• Ultra-high speed design• Interconnect• Noise, Crosstalk• Reliability, Manufacturability• Power Dissipation• Clock Distribution

Everything looks a little different

EE141 42

n+n+S

GD

+

DEVICE

CIRCUIT

GATE

MODULE

SYSTEM

Design Abstraction Levels

Page 22: Digital Integrated Circuitsbwrcs.eecs.berkeley.edu/Classes/icdesign/ee141_f05/Lectures/Lec-1... · Digital Integrated Circuits: A Design Perspective, ... The Transistor Revolution

22

EE141 43

Why Scaling?

Technology shrinks by 0.7 per generationWith every generation can integrate 2x more functions per chip; chip cost does not increase significantlyCost of a function decreases by 2xHow to design chips with more and more functions?Design engineering population does not double every two years…Need to understand different levels of abstraction

EE141 44

2010 Outlook

Performance 2x / 16 months• 1 T instructions/s• 20-30 GHz clock

Complexity• No of transistors: 1 Billion• Die area: 40mm x 40mm

Power• 10kW!• Leakage: 1/3 of total Power

P. Gelsinger, µProcessors for the New Millennium, ISSCC 2001

Page 23: Digital Integrated Circuitsbwrcs.eecs.berkeley.edu/Classes/icdesign/ee141_f05/Lectures/Lec-1... · Digital Integrated Circuits: A Design Perspective, ... The Transistor Revolution

23

EE141 45

Next Class

Introduce basic metrics for design of integrated circuits – how to measure delay, power etc.

Brief intro to IC manufacturing and design