Development of active inks for organic photovoltaics: state-of-the...

31
Jörg Ackermann Centre Interdisciplinaire de Nanoscience de Marseille (CINAM) CNRS - UPR 3118, MARSEILLE - France 1 Development of active inks for organic photovoltaics: state-of-the-art and perspectives Genes’Ink, avenue Gaston Imbert, 13106 ROUSSET Cedex, France

Transcript of Development of active inks for organic photovoltaics: state-of-the...

  • Jörg Ackermann

    Centre Interdisciplinaire de Nanoscience de Marseille (CINAM)CNRS - UPR 3118, MARSEILLE - France

    1

    Development of active inks for organic

    photovoltaics:

    state-of-the-art and perspectives

    Genes’Ink, avenue Gaston Imbert, 13106 ROUSSET Cedex, France

  • Outline

    • Overview on important parameters for large scale robust printed OPV production

    • Inorganic nanoparticle inks for

    – ITO replacement

    – Electron transport layer

    – Active layer: fullerene replacement

    • Conclusion

    2

  • Printed plastic solar cells: low cost production and new features

    Flexible substrates

    Roll-to-roll or sheet to sheet

    3

  • Printed Plastic Photovoltaics

    New features:

    Flexibility

    Light weight

    Transparency and colorin combination with

    low cost production

    4

    Strong progress in OPV, now over 10% efficiences

  • Challenges for printed large areas low cost efficient OPV

    What’s still to do?

    • Solar energy conversion efficiency? 10% is already high

    but on small areas under N2 atmosphere, not printed

    • Low cost, robust and stable materials compatible with low temperature

    processing in air

    •Printing = robust, reliable deposition technology

    need of materials for thick layers processing ( 200 nm or better more)

    • ITO replacement important for flexibility and price reduction

    5

  • Substrate (PET)

    Electrode (transparent)

    Electron transport layer (ETL)

    Active layer

    Hole transport layer (HTL)

    Electrode (A)

    Device structure of an inverted solar cell

    6

    -

    _

    _-

    _+

  • Substrate (PET)

    Electrode (transparent)

    Electron transport layer (ETL)

    Active layer

    Hole transport layer (HTL)

    Electrode (A)

    Inorganic nanoparticles for printed polymer solar cells

    7

  • Challenges for ITO replacement

    8

    Substrate (PET)

    Electrode (transparent)

    Electron transport layer (ETL)

    Active layer

    Hole transport layer (HTL)

    Electrode (A)

  • Economic assessment of ITO-free electrodes for organic

    solar cells

    Emmott C. J. M, et al Solar Energy Materials & Solar Cells 97 (2012) 14–21

    9

  • Ag Nanowires for ITO replacement

    Challenges: roughness of layers, conductivity, printing limited by size

    10

  • .Ag Nanowires for ITO replacement at CINaM

    Variation of

    length and diameter

    11

    Diameter down to 30 nm

    Length 3-5 μm

    Drop casting

    Spin-coating

  • Optical properties of Ag NW films

    12

    Conductivity measurements under work

  • Example inverted structure

    13

    Substrate (PET)

    Electrode (transparent)

    Electron transport layer ETL

    Active layer

    Hole transport layer (HTL)

    Electrode (A)

    Electron Transport Layer (ETL)

  • Electron Transport Layer (ETL)

  • AZO film need processing at 260° C for 10 min

    T. Stubhan et al. / Organic Electronics 12 (2011) 1539–1543

    Solution processed Al doped ZnO (AZO) films

    for robust thick ETL layer processing

    Doped ZnO nanoparticles needed for low temperature processing

    15

  • Al doped ZnO nanoparticles for low temperature processing

    AZO nanoparticle up to 1.4% Al doping,

    Size 10-20 nm

    16

  • 17

    Hybrid bulk heterojunctions

    Substrate (PET)

    Electrode (transparent)

    Electron transporting layer ETL

    Active layer

    Hole transporting layer (HTL)

    Electrode (A)

  • +

    Adv. Funct. Mater. 2005, 15, 1617–1622.

    18

    +

    Standard solution processed OPV

    P3HT PCBM

    500 nm

    TEM

    18

  • +

    Adv. Funct. Mater. 2005, 15, 1617–1622.

    Still challenges for industrial use:

    Thermal and electronic stability in air,

    19

    +

    Standard solution processed OPV

    P3HT PCBM

    500 nm

    TEM

    19

    Thermal instability

  • • Nanoparticles as

    fullerenes

    substitutes;

    • Expected

    advantages:

    – improved air

    stability;

    – Improved

    morphology stability;

    – Improved e- mobility 20

    Hybrid BHJ based OPV

    +Inorganic acceptors:- Nanocrystals;- Nanorods;- Tetrapods;- …

    * Zhou et al. 2008

    Standard BHJ based OPVHybrid BHJ based OPV

    20

  • Hybrid CdSe-P3HT solar cells

    Alivisatos et col. Science 295 (2002)

    CdSe Nanorods lead to additional light absorption,

    Alivisatos et col. Nanoletters 7 (2007),409

    CdSe tetrapods result in better charge transportbest efficiency of 2.8 % with P3HT.

    21

    WR at 3.2 % with low band polymer PCP-DBTBT and

    CdSe*

    *Smita Dayal , et al Nano Lett. 2010, 10, 239-242

  • High band gap semiconductors, thus no light absorption

    in the visible, but non toxic, cheap abundant materials

    = 0.8% - 2.2 % using P3HT

    R. Janssen et al. Adv. Mater 16 (2004), 1009

    Hybrid solar cells using metal oxide nanoparticle as

    acceptor: ZnO and TiO2 nanoparticles

    22

  • ITO/PEDOT:PSS/P3HT:PCBM

    P3HT:ZnO better thermal stability compared to P3HT:PCBM

    23

    ITO/PEDOT:PSS/P3HT:ZnO

    Morphological stability under temperature stress

  • Organic solar cells using inorganic acceptors :

    where are we now ?

    J. of Colloid and Interface Science 369 (2012) 1–15

    How to increase efficiency of HPV:

    use of new low bandgap polymers, interface and morphology control

    Efficiency of hybrid approaches

    still lower than all organic PV,

    But have potential for better

    morphological and electronic stability

    Interface control is important

    27

  • Synthesis of 3D metal oxide nanoparticles

    Improved charge transport,

    reduced number of nanoparticle

    interfaces

    28

  • 400 500 6000,0

    0,5

    1,0

    1,5

    2,0

    Ab

    sorb

    an

    ce (

    a.u

    .)

    Wavelength (nm)

    ex 310nm

    0

    2

    4

    6

    PL

    inte

    nsity (a

    .u.)

    500 nm

    380 nm

    Synthesis of 3D metal oxyde nanoparticles

    SFUMATO - 28/09/2012 (Marseille)

    ZnO tetrapods

    29

    Core 15 nmBranches 20 nm

    Residual Ligands (C18 : isolant)

  • Conclusions

    • ITO replacement has many alternatives, Ag

    nanowires may be most suitable

    • Cheap, stable and efficient conductive and

    hole and electron extracting inks based on

    inorganic (hybrid) nanoparticles are ready for

    production of OPV.

    • Use of inorganic acceptors to replace

    fullerenes in the bulk heterojunction still 30

  • Thank you for your attention