Detailed Nonlinear Seismic Analysis of a 150m Guyed Telecommunication Tower

135
Structural Engineering Detailed Nonlinear Seismic Analysis of a 150-m Guyed Telecommunication Tower Department of Civil Engineering and Applied Mechanics '"" TA633 McGiII University - S76 no-97-1 Montreal

Transcript of Detailed Nonlinear Seismic Analysis of a 150m Guyed Telecommunication Tower

Page 1: Detailed Nonlinear Seismic Analysis of a 150m Guyed Telecommunication Tower

Structural Engineering

Detailed Nonlinear Seismic Analysis of a 150-m Guyed Telecommunication Tower

Department of Civil Engineering and Applied Mechanics

'"" TA633 McGiII University - S76 no-97-1 Montreal

Page 2: Detailed Nonlinear Seismic Analysis of a 150m Guyed Telecommunication Tower

Detailed Nonlinear Seismic Analysis of a 150-m Guyed Telecommunication Tower

Gholamreza Ghodrati Amiri and

Ghyslaine McClure

Structural Engineering Report NO. 97-1

January 1997

Page 3: Detailed Nonlinear Seismic Analysis of a 150m Guyed Telecommunication Tower

Structural Engineering

Detailed Nonlinear Seismic Analysis of a 150-m Guyed Telecommunication Tower

Gholamreza Ghodrati Amiri

and Ghyslaine McClure

Structural Engineering Report NO. 97-1

January 1997

O G. G. Amiri and G. McClure, 1997

Department of Civil Engineering And Applied Mechanics

McGill University Montreal, Canada

Page 4: Detailed Nonlinear Seismic Analysis of a 150m Guyed Telecommunication Tower

TABLE OF CONTENTS

1. INTRODUCTION

2. EARTHQUAKE ACCELEROGRAMS

3. MODELLING CONSIDERATIONS

4. FREQUENCY ANALYSIS

5. TIME-HISTORY RESPONSE

6. MAXIMUM RESPONSE

7. GRAPHS OF MAXIMUM RESPONSE

8. ACKNOWLEDGEMENTS

9. REFERENCES

APPENDICES

APPENDIX A: Time-history response under El Centro accelerogram

APPENDIX B: Listing of post-processor program code

APPENDIX C: Maximum tower response results

Page 5: Detailed Nonlinear Seismic Analysis of a 150m Guyed Telecommunication Tower

1. INTRODUCTION

This report includes the detailed nonlinear seismic analysis of a 150-m guyed

telecommunication tower. The tower is located in Little Buffalo, Alberta. Canada. and its

detailed data was provided by LeBLANC & Royle Telcorn Inc.. Oakville, Ontario. and

AGT Limited. Edmonton, Alberta. It has 7 guying stay levels, 7 sro~lnd anchor :roup\.

and 3 stabilizers or outriggers along the mast. The detailed geometry o i the tower is

shown in Fig. I . This towel- is one of the eight towers studied b!~ Amiri (1997) i n his

Ph.D. research.

2. EARTHQUAKE ACCELEROGRAMS

In this study, three classical earthquake accelerograms have been selected l o r use

in the numerical simulations, representing different types of earthquakc loading. Thc fil-st

one is the SOOE I940 El Centro earthquake containing a wide range of frequencies and

several episodes of strong ground motion; the second one is the N65E 1966 Parkfield

earthquake representing a single pulse loading with dominant lower frequencies: and thc

third one is the S69E 1952 Taft earthquake with high frequency content and strong

shaking with long duration. These earthquakes were selected to [reflect realistic frequency

contents as exhibited by real ground motions. The three earthquake accelerogramh ;ire

shown in Fig. 2. I t should be noted that the earthquake direction was selected to colncidc

with the principal direction of the mast cross section to create maximum seismic clfects

in bending, as indicated in Fig. 1

These earthquake records were scaled to fit as much as possible the elastic tiesisn

spectra of the 1995 National Building Code of Canada (NBCC) for the Victoria rcfion

(Peak Horizontal Ground Acceleration = 0.34g and Peak Horizontal Ground Velocity =

0.29 mls). which has one of the highest seismicity levels in Canada. The scaling allows

the comparison of the tower response for different accelerograms with the same intensity.

Schiff's scaling procedure (Schiff. 1988) is used. with scaling factors of 1.19 lor El

Centro, 0.69 for Parkfield, and 2.68 for Taft accelerograms. Referring to the Kational

Page 6: Detailed Nonlinear Seismic Analysis of a 150m Guyed Telecommunication Tower
Page 7: Detailed Nonlinear Seismic Analysis of a 150m Guyed Telecommunication Tower
Page 8: Detailed Nonlinear Seismic Analysis of a 150m Guyed Telecommunication Tower

m - a -

.A Y - a d w d

Y ! Y -

C. 10. 1 5 . 2 1

Time !sec l

Fig. 2. Earthquake accelerograms

Building Code of Canada 1995 (Commentary J), and considering that the ratio of vertical-

to-horizontal accelerations depends on site conditions and varies widely, an average range

of 213 to 314 is proposed for this ratio. In this study, in the absence of real data for

vertical accelerograms, a ratio of 314 is assumed.

3. MODELLING CONSIDERATIONS

The nonlinear finite element software ADINA (Automatic Dynamic Incremental

3

Page 9: Detailed Nonlinear Seismic Analysis of a 150m Guyed Telecommunication Tower

Nonlinear Analysis) is used in this research (ADINA, 1992).

The mast is a spatial structure with response in all three dimensions. The elements

making up the mast are rolled steel sections. A detailed three-dimensional truss model is

used where all elements are pin-ended. The tower is assumed on rigid foundation with

level terrain conditions. It should be noted that the cross section of the mast is an

equilateral triangle with three identical legs; therefore, there are two principal axes and

the second moments of area in the two principal directions are equal to each other. A

lumped mass formulation is used at the element level, and material properties are assumed

linear elastic. As the displacements and rotations of the mast may be large, a large

kinematics formulation (with small strains) is adopted for the mast in order to account for

potential geometric nonlinearities.

Proper simulation of potential mast and cable interactions is achieved by using the

appropriate type and number of elements in the cable model, and the correct modelling

of inertia properties of both the mast and the guy wires. The wave propagation effects

along the guy wires should also be properly captured by the finite element model. The

guy cables are modelled as a linkage of truss elements (tension-only) with initial prestress.

In this research, guy cables are modelled with ten three-node truss elements. A large

kinematics formulation (with small strains) is used for the cable stiffness to account for

geometric nonlinearities. As mentioned above, the cable stress-strain law is defined only

in tension to allow for slackening effects to be modelled during the earthquake vibrations.

The lumped mass formulation is employed in the analysis, and material properties are

assumed linear elastic. It should be noted that, because the guy cables are initially

pretensioned to approximately 10% of their ultimate strength, the initial stiffness matrix

is always nonsingular. A plot of the geometry of the finite element model of the tower

is shown in Fig. 3. In this study, structural damping is modelled by using an equivalent

viscous damper with a value of 2% of critical viscous damping in parallel with each

element. It is noted that earthquake loads are assumed to occur under still air conditions

(IASS, 1981), and therefore aerodynamic damping has not been modelled.

The nonlinear dynamic analysis is done by direct step-by-step integration in the

time domain. The numerical integration procedure selected is the Newmark-@ method

Page 10: Detailed Nonlinear Seismic Analysis of a 150m Guyed Telecommunication Tower

ADINA-PLOT VERSION 6 . 1 . 6 , 2 0 OCTOBER 1 9 9 6 1 5 0 - m T o w e r

~ ~ ~ --

Fig. 3. Finite element model of the tower

5

Page 11: Detailed Nonlinear Seismic Analysis of a 150m Guyed Telecommunication Tower

with parameters Y=0.5 and P=0.25, i.e. the constant average acceleration method also

known as the trapezoidal rule. This method was selected because of its accuracy, since

it does not introduce any spurious amplitude decay in the response. The BFGS (Broyden-

Fletcher-Goldfarb-Shanno) stiffness update is used in the equilibrium iteration procedure,

and stiffness matrix updates are performed at every time step. An energy-based

convergence criterion is used to bound the iteration process. The subspace-iteration

numerical procedure is used in the frequency analysis.

4. FREQUENCY ANALYSIS

A frequency analysis of the tower in the deformed configuration under self weight

and cable prestressing forces has been carried out, and results of the four lowest flexural

natural periods and their coresponding mode shapes are shown in Fig. 4. In this study,

since the earthquake accelerograrns are centric and assumed along a principal direction

of the tower, pure torsional modes were not excited, and therefore, these modes are not

considered.

5. TIME-HISTORY RESPONSE

Results of the ADINA program are in the form of time-history records for each

selected response indicator. The following indicators are of interest:

1) Mast Displacement

2) Cable Displacement at Midpoint and Top-Quarter Point

3) Reaction

4) Mast Force for Legs, Diagonals, and Horizontals

5 ) Cable Tension

The results for the displacements and reactions are given in the three global directions

Page 12: Detailed Nonlinear Seismic Analysis of a 150m Guyed Telecommunication Tower

I ADINA-PLOT VERSION 6.1.6, 20 OCTOBER 1996 150-m Tower

MODE 1

MODE 3 MODE

Fig. 4. Four lowest flexural mode shapes of the tower (T = 0.69, 0.58, 0.50, & 0.40 s)

7

Page 13: Detailed Nonlinear Seismic Analysis of a 150m Guyed Telecommunication Tower

(i.e. X, Y, and Z). Mast displacements and mast-element forces are measured at guy stay

levels and at midspan between two stay levels. Cable tensions are measured at the two

end points and the middle point of each guy cable.

Timehistories are obtained due to horizontal earthquake accelerograms only, and

also due to combined horizontal and vertical accelerations. Results were generated for all

three earthquake excitations (El Centro, Parkfield, and Taft), but in this report only the

time-history response due to the El Centro accelerogram is presented (Appendix A). The

followings define the response indicators used in the time-history graphs:

X-DISPLACEMENT, M-MIDB-SI: Displacement of the mast in the X-direction at

midspan between the base and stay level #I.

Z-DISPLACEMENT, M-SETI: Displacement of the mast in the 2-direction at guy stay

level #1.

Y-DISPLACEMENT, M-MIDS1-2: Displacement of the mast in the Y-direction at

midspan between stay levels #I and #2.

X-DISPLACEMENT, SETlIEQ-MIDD: Displacement in the X-direction of the midpoint

of the cable aligned with the earthquake direction at stay level #I.

X-DISPLACEMENT, SETIOLEQ-MIDD: Displacement in the X-direction of the

midpoint of the cable on the left side of the earthquake plane (cable I1 in the plan view

of Fig. 1) at stay level #I.

X-DISPLACEMENT, SETIOREQ-MIDD: Displacement in the X-direction of the

midpoint of the cable on the right side of the earthquake plane (cable 111 in the plan view

of Fig. 1) at stay level # I .

X-DISPLACEMENT, SETIIEQ-TOPQ: Displacement in the X-direction of the top-

8

Page 14: Detailed Nonlinear Seismic Analysis of a 150m Guyed Telecommunication Tower

quarter point of the cable aligned with the earthquake direction at stay level #1

X-REACTION, C-SUPPORT-OLEQ2: Ground anchor reaction in the X-direction at the

cable support of the outer anchor group on the left side of the earthquake plane (cable IS

in the plan view of Fig. I ) .

X-REACTION, C-SUPPORT-OLEQI: Ground anchor reaction in the X-direction at the

cable support of the inner anchor group on the left side of the earthquake plane (cable IS

in the plan view of Fig. I ) .

X-REACTION, M-SUPPORT: Reaction of the mast support in the X-direction.

FORCE-R, MLIEQBASE: Axial force in the leg member aligned with the earthquake

direction at the base.

FORCE-R, MDIEQ-BASE: Axial force in the diagonal member perpendicular to the

earthquake direction at the base.

FORCE-R, MHIEQ-BASE: Axial force in the horizontal member perpendicular to the

earthquake direction at the base.

FORCE-R, SETlIEQ-TOP: Axial tension at the upper end of the cable aligned with the

earthquake direction at stay level # l .

FORCE-R, SETIIEQ-MID: Axial tension at the middle point of the cable aligned with

the earthquake direction at stay level # I .

FORCE-R, SETlIEQ-GRD: Axial tension at the ground-end point of the cable aligned

with the earthquake direction at stay level #l .

Page 15: Detailed Nonlinear Seismic Analysis of a 150m Guyed Telecommunication Tower

6. MAXIMUM RESPONSE

As mentioned earlier, the results of the ADINA program are in the form of time-

history records for each selected response indicator. In order to find the maximum values

of the response, a post-processor program (2300 FORTRAN instructions, see Appendix

B) was developed to process the following detailed results:

I) Earthquake Force

2) Dynamic Component of Cable Tension

3) Mast Shear

4) Dynarmc Component of Mast Axial Force

5) Mast Bending Moment

6) Dynamic Component of Cable Oscillation

7) Mast Horizontal Displacement

8) Dynamic Component of Mast Axial Displacement

9) Mast Rotation

This program also calculates the initial values of the above response indicators due to self

weight and initial cable tension.

The followings define these response indicators more precisely:

Earthquake Force: The earthquake force is the resultant horizontal cable reaction force

generated by an earthquake on the mast at the cable attachment points. It accounts for

inertia effects in both the cables and the mast.

Dynamic Component of Cable Tension: The dynamic component of cable tension is the

total cable tension minus the initial tension due to self weight and initial prestressing.

This is the net cable tension generated by the earthquake.

Mast Shear: The mast shear is the horizontal resultant force at a given cross section of

10

Page 16: Detailed Nonlinear Seismic Analysis of a 150m Guyed Telecommunication Tower

the mast in the earthquake direction. This force is calculated by the vector summation of

forces in the mast elements at a cross section (i.e. diagonal elements are included).

Dynamic Component of Mast Axial Force: This force is the vertical resultant force at

a cross section of the mast due to the seismic excitation. It is the total force minus the

initial axial force due to gravity and initial cable prestressing. The mast axial force is also

calculated by the vector summation of forces of the mast elements (i.e. diagonal and leg

elements).

Mast Bending Moment: The mast bending moment is obtained by the vector summation

of forces at a given cross section. Both diagonal and leg elements are used in this

calculation.

Dynamic Component of Cable Oscillation: This variable represents the amplitude of the

oscillation of a cable point due to the earthquake motion, and does not include the initial

cable sag due to self weight and initial prestressing.

Mast Horizontal Displacement: This parameter is the lateral displacement of the mast

in the direction of the earthquake excitation.

Dynamic Component of Mast Axial Displacement: This variable is the total axial

displacement of the mast at a given cross section minus the initial axial displacement due

to self weight and initial cable prestressing.

Mast Rotation: This is the rotation (tilting) of the mast due to the earthquake excitation.

The detailed output files of the post-processor program for the three accelerograms

are given in Appendix C. These results are presented graphically in Section 7.

Page 17: Detailed Nonlinear Seismic Analysis of a 150m Guyed Telecommunication Tower

7. GRAPHS OF MAXIMUM RESPONSE

Envelope curves of maximum tower response are plotted in Figs. 5 , 6(a,b,c, and

d), 7(a,b,c, and d), 8, 9(a,b,c, and d), and lO(a,b,c, and d). The first nine graphs (Figs. 5

to 7) are obtained from the analyses with the horizontal earthquake accelerograms only.

and the last nine (Figs. 8 to 10) from the analyses with combined horizontal and vertical

earthquake accelerograms. Results due to the three earthquake excitations (El Centro,

Parkfield, and Taft) are shown together on each graph.

The vertical axis of all graphs represents the tower elevation, and the location of

each stay level is clearly identified. These stay levels are marked with two different

symbols (diamond and asterisk) representing two different groups of guy clusters. with

reference to their ground attachment points. The "inner" group includes guy clusters

which are connected to the inner anchorage points on the ground, and the "outer" group

comprises guy clusters which are connected to the outer anchor. The portion of the mast

between the two groups of cables is called the transition zone.

Fig. 5 illustrates the variation of earthquake forces with tower elevation. Figs. 6(a,

b, c, and d) show the variation of the dynamic component of cable tension, mast shear,

dynamic component of mast axial force, and mast bending moment along the tower

elevation. Next, there are four graphs of four displacement variables (Figs. 7(a, b, c, and

d)) corresponding to the four force variables of the graphs of Fig. 6, namely the dynamic

component of cable oscillation, mast horizontal displacement, dynamic component of mast

displacement, and mast rotation.

Since the earthquake force, dynamic component of cable tension and dynamic

component of cable oscillation are discrete parameters along the tower elevation, their

data points are connected only by a dashed line in order to show the trend of variation

Also, the solid lines used in the other graphs are not meant to show that the variation of

the response indicator between two data points is linear, but simply to illustrate its

continuous nature

The parameters of dynamic component of cable tension and dynamic component

of cable oscillation are the maximum response obtained among all the cables of each set.

Page 18: Detailed Nonlinear Seismic Analysis of a 150m Guyed Telecommunication Tower

For this purpose, four points along each cable were monitored: the two end points, the

middle point. and the top-quarter point. The other response indicators are measured at guy

stay levels and at midspan between two stay levels.

Results in Figs. 5 to 10 indicate that there is not a significant difference between

the results under the horizontal earthquake and those under the combined horizontal and

vertical earthquake components, except for the dynamic component of mast axial force.

There is a considerable axial effect due to the combined horizontal and vertical

earthquake motions, as discussed below.

As illustrated in Figs. 5 and 8, the earthquake forces at the stay levels of the outer

group are larger than those of the inner group. The Parkfield accelerogram has the most

effect on the earthquake forces? and the El Centro and Taft accelerograms would be in

the second and third order in this regard. The intermediate level 5 (from the base) at the

transition zone is the most excited. There is a discontinuity in behaviour around the

transition area, between stay levels 4 and 5.

It can be seen in Figs. 6(a) and 9(a) that the intermediate cable Set 6 (from the

base), close to the transition part, is more excited than the other ones. The Parkfield, El

Centro and Taft accelerograms are again in the first, second and third order, respectively,

in terms of amplitudes of seismic effects. In general, the response increases with the

tower elevation, and there is a discontinuity in the behaviour around the transition zone.

between stay levels of Sets 4 to 6.

Envelopes of the mast shear and bending moments along the tower elevation are

shown in Figs. 6(b and d) and 9(b and d), respectively. These two indicators increase with

the tower elevation and their maximum value occurs close to the transition area. There

is again a discontinuity in behaviour around the transition region, especially in the

envelope curve of the bending moment. In general, the maximum shears occur directly

at the stay levels and the minimum values occur at midspan between the two stay levels,

and vice versa for the mast bending moments (the only exception is stay level # I ) . The

responses are consistent for the three accelerograms.

Figures 6(c) and 9(c) represent the dynamic component of mast axial force dong

the tower. As expected. there is no significant axial effect from the load case of horizontal

Page 19: Detailed Nonlinear Seismic Analysis of a 150m Guyed Telecommunication Tower

earthquake motion. However, in the case of combined horizontal and vertical

accelerograms, the El Centro and Taft earthquakes cause considerably larger axial effects

than the Parkfield earthquake.

The dynamic component of cable oscillations is shown in Figs. 7(a) and 10(a). It

is noted that the behaviour is nonuniform around the transition zone. The oscillations of

the cables of the outer group are larger than those of the inner group (except for the Taft

accelerogram for which they are about the same). Also, the El Centro and Parkfield

accelerograms are considerably more exciting than the Taft accelerogram for the cables

of the outer group. The maximum response occurs for cable sets around the transition

area.

Envelope curves of the mast horizontal displacement and the mast rotation are

shown in Figs. 7(b and d) and 10(b and d), respectively. There is also a discontinuity in

behaviour around the transition region for both responses, and the maximum horizontal

displacement occurs close to the transition area. As expected, the top part of the tower

experiences the maximum tilting. The El Centro and Parkfield accelerograms are more

exciting than Taft for these response indicators.

It can be seen from Figs. 7(c) and 10(c) that the dynamic component of mast axial

displacement is negligible in the case of horizontal ground motion, and very small (only

about 1 cm) under combined horizontal and vertical accelerations.

8. ACKNOWLEDGEMENTS

The assistance of Mr. Donald G. Marshall, P. Eng., of LeBlanc & Royle Telcom

Inc., Oakville, Ontario; and of Mr. K.R. Jawanda, P. Eng., of AGT Limited, Edmonton,

Alberta for providing detailed data on the tower, is greatly appreciated. Financial support

from the Natural Sciences and Engineering Research Council of Canada is acknowledged.

The first author also acknowledges a scholarship from the Ministry of Culture and Higher

Education of the Islamic Republic of Iran. The numerical research has been conducted in

the Unix computer laboratory of the Department of Civil Engineering and Applied

Mechanics, McGill University. The authors want to thank Dr. William D. Cook for his

Page 20: Detailed Nonlinear Seismic Analysis of a 150m Guyed Telecommunication Tower

0 10 20 3 0 40 50 60 70

Earthquake Force (kN)

Inner Anchor Outer Anchor El Centro Parkfield Taft

0 Q . . * - - ..e.. ..lj..

Guy clusters attached to: Base Accelerograms:

Fig. 5. Response of the tower to three base accelerograms

3 c

Page 21: Detailed Nonlinear Seismic Analysis of a 150m Guyed Telecommunication Tower

I 1 I I 0 10 20 30 40 50 60

(a) Dynamic Component of Cable Tension (kN) (b) Mast Shear (a)

150

(c) Dynamic Comp. of Mast Axial Force (kN) (d) Mast Bending Moment (kN-m)

Inner Anchor Outer Anchor

Guy clusters attached to:

/ El C:!XO P;&ld 1 Base Accelerograms:

Fig. 6. Response of the tower to three base accelerograms

1 ,z

Page 22: Detailed Nonlinear Seismic Analysis of a 150m Guyed Telecommunication Tower

I I I I 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

(a) Dynamic Component of Cable Oscillation (m

Negligible

(c) Dynamic Component of Mast Axial Displ. (m

Guy clusters attached to:

(b) Mast Horizontal Displacement (m)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

(d) Mast Rotation (Degree)

Base Accelerograms:

Fig. 7. Response of the tower to three base accelerograms

.7

Page 23: Detailed Nonlinear Seismic Analysis of a 150m Guyed Telecommunication Tower

" 0 10 20 3 0 40 50 60 70

Earthquake Force (kN)

Inner Anchor Outer Anchor El Centro Parkfield Taft

0 9 - - * - - -.e.. ..x.. Guy clusters attached to: Base Accelerograms:

Fig. 8. Response of the tower to three base accelerograms (Horizontal + Vertical)

Page 24: Detailed Nonlinear Seismic Analysis of a 150m Guyed Telecommunication Tower

u - 0 10 20 30 40 50 60

(a) Dynamic Component of Cable Tension (kN)

(c) Dynamic Comp. of Mast Axial Force (kN)

Inner Anchor Outer Anchor

Guy clusters attached to:

@) Mast Shear (kN)

I50 I

J

0 50 100 150 200 250

(d) Mast Bending Moment (kN-m)

Base Accelerograms:

Fig. 9. Response of the tower to three base accelerograms (Horizontal + Vertical)

r n

Page 25: Detailed Nonlinear Seismic Analysis of a 150m Guyed Telecommunication Tower

0 I 1 , I I I

0 0.05 0.1 015 0.2 0.25 0.3 0.35 0.4

(a) Dynamic Component of Cable Oscillation (m (b) Mast Horizontal Displacement (m)

I 0 0.01 0.02 0.03 0.04 005

(c) Dynamic Component of Mast Axial Displ. (m

0 I I I , I I

0 0.05 01 0.15 0.2 0.25 0.3 0.35

(d) Mast Rotation (Degree)

Inner Anchor Outer Anchor

Guy clusters attached to

1 El O P ~ d i e l d 1 Base Accelerograms:

Fig. 10. Response of the tower to three base accelerograms (Horizontal + Vertical)

?n

Page 26: Detailed Nonlinear Seismic Analysis of a 150m Guyed Telecommunication Tower

assistance in overcoming many of the technical problems of the Unix system.

9. REFERENCES

ADINA R&D, Inc. (1992), "ADINA (Automatic Dynamic Incremental Nonlinear

Analvsis) Theorv and Modelling Guide", Report ARD 92-8, Watertown, MA.

ADINA R&D, Inc. (1992), "ADINA-IN for ADINA Users Manual", Report ARD 92-4,

Watertown, MA.

ADINA R&D, Inc. (1992), "ADINA-PLOT Users Manual", Report ARD 92-7,

Watertown. MA.

ADINA R&D, Inc. (1992), "ADINA Verification Manual - Nonlinear Problems", Report

ARD 92-10, Watertown, MA.

Arniri, G. G. (1997), Seismic Sensitivity of Tall Guyed Telecommunication Towers, Ph.D.

Thesis, Department of Civil Engineering and Applied Mechanics, McGill University,

Montreal, 243 p.

IASS (International Association for Shell and Spatial Structures), Working Group No. 4

(1981), "Recommendations for Guyed Masts", IASS, Madrid, 107 p.

National Research Council of Canada (1995), "National Building Code of Canada 1995",

1 lth Edn., Ottawa.

Schiff, S. D. (1988), "Seismic Design Studies of Low-Rise Steel Frames", Ph.D. Thesis,

Department of Civil Engineering, University of Illinois at Urbana-Champaign, 22 1 p.

Page 27: Detailed Nonlinear Seismic Analysis of a 150m Guyed Telecommunication Tower

APPENDICES

Page 28: Detailed Nonlinear Seismic Analysis of a 150m Guyed Telecommunication Tower

APPENDIX A: Time-history response under El Centro accelerogram

Page 29: Detailed Nonlinear Seismic Analysis of a 150m Guyed Telecommunication Tower
Page 30: Detailed Nonlinear Seismic Analysis of a 150m Guyed Telecommunication Tower
Page 31: Detailed Nonlinear Seismic Analysis of a 150m Guyed Telecommunication Tower
Page 32: Detailed Nonlinear Seismic Analysis of a 150m Guyed Telecommunication Tower
Page 33: Detailed Nonlinear Seismic Analysis of a 150m Guyed Telecommunication Tower
Page 34: Detailed Nonlinear Seismic Analysis of a 150m Guyed Telecommunication Tower
Page 35: Detailed Nonlinear Seismic Analysis of a 150m Guyed Telecommunication Tower
Page 36: Detailed Nonlinear Seismic Analysis of a 150m Guyed Telecommunication Tower
Page 37: Detailed Nonlinear Seismic Analysis of a 150m Guyed Telecommunication Tower
Page 38: Detailed Nonlinear Seismic Analysis of a 150m Guyed Telecommunication Tower
Page 39: Detailed Nonlinear Seismic Analysis of a 150m Guyed Telecommunication Tower
Page 40: Detailed Nonlinear Seismic Analysis of a 150m Guyed Telecommunication Tower
Page 41: Detailed Nonlinear Seismic Analysis of a 150m Guyed Telecommunication Tower
Page 42: Detailed Nonlinear Seismic Analysis of a 150m Guyed Telecommunication Tower
Page 43: Detailed Nonlinear Seismic Analysis of a 150m Guyed Telecommunication Tower
Page 44: Detailed Nonlinear Seismic Analysis of a 150m Guyed Telecommunication Tower
Page 45: Detailed Nonlinear Seismic Analysis of a 150m Guyed Telecommunication Tower
Page 46: Detailed Nonlinear Seismic Analysis of a 150m Guyed Telecommunication Tower
Page 47: Detailed Nonlinear Seismic Analysis of a 150m Guyed Telecommunication Tower
Page 48: Detailed Nonlinear Seismic Analysis of a 150m Guyed Telecommunication Tower

= ,I(-. o z i i z i c i s - ? z c e r : - o i o ~

c.oT* Od0&-0910Z.L35 'J.NLN3X3SWdS13-Z a s o r a ? m r r & 'rmin3v?asro-z

Page 49: Detailed Nonlinear Seismic Analysis of a 150m Guyed Telecommunication Tower
Page 50: Detailed Nonlinear Seismic Analysis of a 150m Guyed Telecommunication Tower
Page 51: Detailed Nonlinear Seismic Analysis of a 150m Guyed Telecommunication Tower
Page 52: Detailed Nonlinear Seismic Analysis of a 150m Guyed Telecommunication Tower
Page 53: Detailed Nonlinear Seismic Analysis of a 150m Guyed Telecommunication Tower

I 0 0 1 r i - a 0 i . 0

Cld0117)PTOLLaS I-SdTdSIa-

Page 54: Detailed Nonlinear Seismic Analysis of a 150m Guyed Telecommunication Tower
Page 55: Detailed Nonlinear Seismic Analysis of a 150m Guyed Telecommunication Tower

1 ,~ -~ I- , 0 1 - ' s i - -dr- S T -

&>= Z G S l 6 U O d d I 3 S 5 ' N O I Z J m X - Z

Page 56: Detailed Nonlinear Seismic Analysis of a 150m Guyed Telecommunication Tower
Page 57: Detailed Nonlinear Seismic Analysis of a 150m Guyed Telecommunication Tower
Page 58: Detailed Nonlinear Seismic Analysis of a 150m Guyed Telecommunication Tower
Page 59: Detailed Nonlinear Seismic Analysis of a 150m Guyed Telecommunication Tower
Page 60: Detailed Nonlinear Seismic Analysis of a 150m Guyed Telecommunication Tower

'81- 'OL- r r - 'rr- 'sr- ' s r - - i i - -& & . .& .; *OTr

s - D S O I ~ ~ O ' U ~ '2-=>xw s ~ r s a e ~ m 'a-axw

Page 61: Detailed Nonlinear Seismic Analysis of a 150m Guyed Telecommunication Tower
Page 62: Detailed Nonlinear Seismic Analysis of a 150m Guyed Telecommunication Tower
Page 63: Detailed Nonlinear Seismic Analysis of a 150m Guyed Telecommunication Tower
Page 64: Detailed Nonlinear Seismic Analysis of a 150m Guyed Telecommunication Tower

1 I-,

' 0 1 - ,or.

bLxSC637OM '8-ZSXOJ

Page 65: Detailed Nonlinear Seismic Analysis of a 150m Guyed Telecommunication Tower
Page 66: Detailed Nonlinear Seismic Analysis of a 150m Guyed Telecommunication Tower
Page 67: Detailed Nonlinear Seismic Analysis of a 150m Guyed Telecommunication Tower

4 1 .IT . r r .br (OT*

IL?S-&'YOHX '8-XXOd

Page 68: Detailed Nonlinear Seismic Analysis of a 150m Guyed Telecommunication Tower
Page 69: Detailed Nonlinear Seismic Analysis of a 150m Guyed Telecommunication Tower
Page 70: Detailed Nonlinear Seismic Analysis of a 150m Guyed Telecommunication Tower
Page 71: Detailed Nonlinear Seismic Analysis of a 150m Guyed Telecommunication Tower

- 'T-

Page 72: Detailed Nonlinear Seismic Analysis of a 150m Guyed Telecommunication Tower
Page 73: Detailed Nonlinear Seismic Analysis of a 150m Guyed Telecommunication Tower
Page 74: Detailed Nonlinear Seismic Analysis of a 150m Guyed Telecommunication Tower

FORCE-R. SET31ECLGP.O w4

0 . 2,. 6

FORCE-R, SPT30LELGlU '10'

1. 2 . 3 . 4 . a 5;

FORCE-R. SPTlOREQ-GRD

2 . *lod

3 . 4 . 5

FORCE-R. SET30LEeMTD *lo4

FORCE-R. SEC3OLELTOP .r n'

FORCE-R, SETSOREP-TOP *lo3

20. 2 5 . 30. 1 5 . 40 . 4 7 . - --

Page 75: Detailed Nonlinear Seismic Analysis of a 150m Guyed Telecommunication Tower
Page 76: Detailed Nonlinear Seismic Analysis of a 150m Guyed Telecommunication Tower
Page 77: Detailed Nonlinear Seismic Analysis of a 150m Guyed Telecommunication Tower
Page 78: Detailed Nonlinear Seismic Analysis of a 150m Guyed Telecommunication Tower
Page 79: Detailed Nonlinear Seismic Analysis of a 150m Guyed Telecommunication Tower

APPENDIX B: Listing of post-processor program code

Page 80: Detailed Nonlinear Seismic Analysis of a 150m Guyed Telecommunication Tower

IMPLICIT REAL*8(A-H,O-2) DIMENSION R8FA(14),TEQMAXFA(14),REQMAXFA(14),CNGL(14),NSL(S) DIMENSION NT(5) ,ALPHAA(14) ,RAG(5) .R8M(l4) ,TEQMAXM(14) ,REQMAXM(14) CHARACTER TIME*4,RESPONSE*2O,INDICATOR*20,0U*7,OUT*8,EQO*9,TWO*2O CHARACTER H*3,PLIST*2O,EQ*l,EQP*2,EQPH*5,EQEQP*S,EQEQPH*8 CHARACTER*9 SHEAR,AXIAL,MOMENT,TENSION,EARTHQUAKE CHARACTER*lO MASTH,MASTA,MASTR,CABLE CHARACTER*l CON,EQUIVALENT,XB,XBP,XBPR,TS PRINT*, 'Tower Height (m) = ? ' READ(*,10) H

10 FORMAT(A3) PRINT*, 'Earthquake Accelerogram (s, e, p, t) = ? ' READ(*,70) EQ PRINT*, 'Number of Guy Levels = 7 ' READ(*,*) NGL PRINT*, 'Number of Anchor Groups = ? ' READ(*,*) NAG DO 20 I=l,NGL PRINT15, 'Cell Number at Guy Level No. ',I,' = ? '

15 FORMAT(A29,12,A4) READ(*, * ) CNGL(I1

20 CONTINUE DO 30 I=l,NAG-1 PRINT25, 'The Bottom Level No. at Transition Part No. ',I,' = ? '

25 FORMAT(A44,Il,A4) READ(*,*) NT(I)

30 CONTINUE PRINT*, 'Number of Stabilizers = ? ' READ(*,*) NS IF (NS.EQ.0) GO TO 42 DO 40 I=l,NS PRINT35, 'Number Level at Stabilizer No. ',I,' = ? '

35 FORMAT(A31,Il,A4) READ(*,*) NSL(1)

40 CONTINUE 42 DO 50 I=l,NAG

PRINT45, 'Radius (m) at Anchor Group No. ',I,' = ? ' 45 FORMAT(A31,Il,A4)

READ(*,*) RAG(1) 50 CONTINUE

PRINT*, 'Does The Tower Continue After The Top Level = ? (y/n)' READ(*,70) CON

70 FORMAT(A1) PRINT*, 'Is Equivalent Model Used = ? (y/n)' READ ( * ,7 0 ) EQUIVALENT PRINT*, 'Panel Height (m) = ? ' READ(*,*) PH IF (EQUIVALENT.EQ.'y') GO TO 90 PRINT*, 'Panel Width (m) = ? ' READ(*,*) PW PRINT*, 'Are The Diagonals X-Braced = ? (y/n)' READ(*, 70) XB IF (XB.EQ.'y') GO TO 85 GO TO 80

75 PRINT*, 'Sorry, this part of program has not been completed yet.' GO TO 6000

80 PRINT*, 'Are There Any X-Braced Parts Along The Tower= ? (y/n)' READ(*,70) XBP IF (XBP.EQ.'n') GO TO 85 PRINT*, 'Do The X-Braced Parts Affect The Results= ? (y/n)' READ(*,70) XBPR IF (XBPR.EQ.'y') GO TO 75

85 PRINT*, 'Is Cross-sectional Plan Triangle or square = ? (t/s)' READ(*,70) TS

Page 81: Detailed Nonlinear Seismic Analysis of a 150m Guyed Telecommunication Tower

IF ((XB.EQ.'y').AND.(TS.EQ.'s')) GO TO 75 90 PRINT*, '*.plist File = ? '

READ(*, 100) PLIST 100 FORMAT(A20)

OPEN (1, FILE=PLIST) IF (EQUIVALENT.EQ.'n') GO TO 700 c , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

C k Equivalent Model * C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

EQEQP=EQ//'Lea.'

MOYENT='rn'/ EQEQPH ?ENSIOK='t' 30EO?E

MASTA= 'ma ' EQEQPH MASX= 'rnr ' I /EQEQPH

OPEN~II; FILE=~CSIOEEQ. tern' i OPEN(12,FILE='SETIEQ.tem') OPEN(~~,FILE='SETOEQ.~~~') OPEN(14,FILE=EARTHQUAKE)

O?EN (18. FILE-CABLE) OPEK(19,FILE='XSETIEQ.tern') O?EK (20. :ILE='XSETOEQ. tern' ) O?EK(21.~IL3='ZSETIEQPtern') OPEN(22.2ILS='ZSETOEO.tem')

- NGLT=NGL*2 IF (CON.EQ.'y') NGLT=NGLT+l DO 105 I=l,NGLT CALL SKIPl CALL SKIPl CALL SKIP6 CALL MAX(RE,TEQMAX,REQMAX) REQMAX=ABS(REQMAX-RE) WRITE(15.910) R8.TEQMAX.REQMAX CALL SKIP9 CALL MAX (RE, TEQMAX, REQMAX) REOMAX=ABS(REOMAX-RE) WRI~~(16.910) -R~,TEQ~,REQMAX CALL SKIP9 CALL MAX(RE,TEQMAX,REQMAX) REQMAX=(ABS(REQMAX-R8))*57.29578 WRITE(17,910) RE,TEQMAX,REQMAX CALL SKIPl

105 CONTINUE

Page 82: Detailed Nonlinear Seismic Analysis of a 150m Guyed Telecommunication Tower

DO 110 J=20,24,2 CALL SKIPl CALL SKIPl CALL SKIP6 CALL WRITESKIP(J) CALL SKIPl CONTINUE CONTINUE CONTINUE DO 135 IJ=1,2 DO 130 I=l,NGL W 125 J=19,23,2 CALL SKIPl CALL SKIPl CALL SKIP6 CALL WRITESKIP(J) CALL SKIPl CONTINUE CONTINUE CONTINUE DO 140 I=19,24 CLOSE (I 1 . . CONTINUE OPEN(19,FILE='XSETIEQ.tern',STATUS='old') OPEN 20, ?ILE='XSETOEQ. cern..STATUS= 'old'l 0PEY(2:,?ILE='ZSETIEQ.cernm ,STATUS='old') OPEN~2i.~IL~~'ZSETOEO.LernrnmSTATUS~'old')

DO 145 J=JT, ~ ~ + 4 , 2 READ(J,990) LINE CONTINUE CONTINUE

IF (J.EQ. JT) RE=RE+ (R-R8X) **2 IF (J.EQ.(JT+2)) RE=RE+(R-R8Z)**2 IF (J.EQ.(JT+I)) RE=RE+(R-R8Y)**2 CONTINUE

IF-(REQ.LE.REQMAX) GO TO 160 TEQMAX=T REQMAX=REQ CONTINUE DO 175 I=1,10 DO 170 J=JT,JT+4,2 READ(J.990) LINE . . CONTINUE CONTINUE

Page 83: Detailed Nonlinear Seismic Analysis of a 150m Guyed Telecommunication Tower

IF (J.EQ.JT) RE=RE+(R-R8X)**2 IF (J.EQ.(JT+2)) RE=RE+(R-R8Z)**2 IF (J.EQ. (JT+4) ) RE=RE+ (R-R8Y) **2

180 CONTINUE REO=RE IF-(REQ.LE.REQMAX) GO TO 185 TEQMAX=T REQMAX=REQ

185 IF (T.EQ.20) GO TO 195 190 CONTINUE

GO TO 165 195 IF (REQMAX.LE.REEQMAX) GO TO 200

REEQMAX=REQMAX TEEQMAX=TEQMAX

200 IF (R8.LE.RE8) GO TO 205 RE8=R8

205 CONTINUE IF (1T.GT.NGL) GO TO 210 REQMAXM ( IT) =REEQMAX TEQMAXM (IT) =TEEQMAX R8M(IT) =RE8 GO TO 225

210 IF (REEQMAX.GE.REQMAXM(IT-NGL)) GO TO 215 REEQMAX=REQMAXM(IT-NGL) TEEQMAX=TEQMAXM(IT-NGL)

215 IF (RE8.GE.R8M(IT-NGL)) GO TO 220 RE8=R8M (IT-NGL)

220 REEQMAX=REEQMAX**O.5 RE8=RE8**0.5 WRITE(18.280) RE8,TEEQMAX.REEQMP.X

225 CONTINUE CALL SKIP6 CALL SKIPl CALL SKIPl CALL WRITESKIP(9) CALL SKIP9 CALL MAXWRITE(R8,TEQMAX,REQMAX,7) REQMAX=ABS(REQMAX-R8)/1000 R8=R8/1000 WRITE(2,910) R8.TEQMAX.REQMP.X CALL SKIP9 CALL WRITESKIP(8) CALL SKIP9 CALL MAX (RE, TEQMAX, REQMAX) TW=2*R8 CALL SKIP9 CALL MAX(R8,TEQMAX,REQMAX) TW=TW+R8 F3REQMAX=ABS(REQMAX-R8)/1000 t

F3R8=R8/1000 F3TEQMAX=TEQMAX CALL SKIP9 CALL MAX(RE,TEQMAX,REQMAX) TW=TW+R8 DO 240 I=1,3 CALL SKIP9 CALL MAX(R8,TEQMAX.REQMAX)

240 CONTINUE CALL SKIP9 CALL WRITESKIP(11) CALL SKIP9 CALL WRITESKIP(10)

Page 84: Detailed Nonlinear Seismic Analysis of a 150m Guyed Telecommunication Tower

CALL SKIP9 CALL MAX(RE.TEQMAX,REQMAX) TW=TW+2*R8 CALL SKIP9 CALL MAX(R8,TEQMAX,REQMAX) TW=TW+R8 DO 260 I=1,5 CALL SKIP9 CALL MAX(R8,TEQMAX.REQMAX) CONTINUE TW=TW/lOOO WRITE(3,940) 'Total Weight (KN) = ',TW WRITE(3.280) F3R8,F3TEQMAXCF3REQMAX FORMAT(F20.2,F16.3,F20.2) DO 290 I=l,NGL*2 CALL SKIP9 CALL MAX(R8,TEQMAX,REQMAX) REQMAX=ABS(REQMAX-R8)/1000 R8=R8/1000 WRITE(2.280) R8,TEQMAX.REQMAX CALL SKIP9 CALL MAX(RE,TEQMAX,REQMAX) REQMAX=ABS(REQMAX-R8)/1000 R8=R8/1000 WRITE(3,280) R8,TEQMAX.REQMAX CALL SKIP9 CALL MAX(R8,TEQMAX.REQMAX) REQMAX=ABS(REQMAX-R8)/1000 R8=R8/1000 WRITE(4,280) R8,TEQMAX,REQMAX CONTINUE IF (H.NE.'213') GO TO 310 DO 300 I=1,3 CALL SKIP9 CALL MAX(R8,TEQMAX.REQMAX) CONTINUE CALL SKIP9 DO 350 I=l,NGL DO 340 J=1.3 CALL MAXWRITE (R8, TEQMAX, REQMAX, 13 ) IF (J.EO.1) GO TO 320

CALL SKIP9 CONTINUE CONTINUE

CALL MAXWRITE(RE,TEQMAX,REQMAX,l2) IF (J.EQ.1) GO TO 360 IF (ABS(REQMAX).LT.ABS(REQMAXF)) GO TO 370 RRPzRR &

CALL SKIP9 CONTINUE IF (AES(REQMAXFA(I)).LT.ABS(REQMAXF)) GO TO 390 R8F=R8FA(I) TEQMAXF=TEQMAXFA(I) REQMAXF=REQMAXFA(I) REQMAXF=ABS(REQMAXF-R8F) /I000

Page 85: Detailed Nonlinear Seismic Analysis of a 150m Guyed Telecommunication Tower

R8F=R8F/1000 WRITE(5,280) RBF,TEQMAXF,REQMAXF

400 CONTINUE DO 410 I=7.13 CLOSE (I)

410 CONTINUE OPEN(7,FILE='MS.tem',STATUS='old') OPEN(8,FILE='CS~IEQ1.tem',STATUS='old') OPEN(~,FILE='CS-OEQ~.~~~',STATUS='O~~') OPEN(lO.FILE='CS-IEQ2,tem',STATUS='old') OPEN(~~,FILE='CS-OEQ~.~~~',STATUS='O~~') OPEN(12,FILE='SETIEQ.tem',STATUS='old') OPEN(13,FILE='SETOEQ.tem',STATUS='old') IF (NAG.EQ.l) NT(l)=NGL DO 420 I=l,NT(l) ALPHAA(I)=ATAN(CNGL(I)*PH/RAG(~))

420 CONTINUE IF (NAG.EQ.l) GO TO 450 IF (NAG.EQ.2) NT(2)=NGL DO 430 I=NT(l)+l,NT(2) ALPHAA(I)=ATAN(CNGL(I)*PH/RAG(~))

430 CONTINUE IF (NAG.EQ.2) GO TO 450 DO 440 I=NT(2)+1,NGL ALPHAA(I)=ATAN(CNGL(I)*PH/RAG(3))

440 CONTINUE 450 DO 480 I=1.2

DO 470 J=7,11 READ(J,460) LINE

460 FORMAT(A96) 470 CONTINUE 480 CONTINUE

RE=RE+R IF (J.EQ.9) RE=RE+R IF (J.EQ.ll) RE=RE+R

490 CONTINUE REEQ=RE IF (ABS(REEQ).LE.ABS(REEQMAX)) GO TO 500 TEEQMAX=T REEQMAX=REEQ

500 CONTINUE 510 DO 530 I=1.10

DO 520 J=7,11 READ(J.460) LINE

520 CONTINUE 530 CONTINUE

READ(J,*) T,R RE=RE+R IF (J. EQ. 9) RE=RE+R IF (J.EQ.11) RE=RE+R

540 CONTINUE REEQ=RE

Page 86: Detailed Nonlinear Seismic Analysis of a 150m Guyed Telecommunication Tower

DO 580 J=12,13 READ(J,4601 LINE

580 CONTINUE 590 CONTINUE

RE8=0 REEQMAX= 0 DO 610 I=1,49 RE=O DO 600 J=12,13 READ(J,*) T,R IF ((I.EQ.l).AND.(J.EQ.l21) RE8=RE8-R*COS(ALPHAA(ITl) IF ((I.EQ.l).AND.(J.NE.12)) RE~=REB+R*COS(ALPHAA(ITII IF (J.EQ.12) RE=RE-R*cOS(ALPHAA(IT)) IF (J.NE.IZ) RE=RE+R*cOS(ALPHAA(IT)) CONTINUE REEQ=RE IF (ABS(REEQ~.LE.ABS(REEQMAX)) GO TO 610 TEEQMAX=T REEQMAX=REEQ CONTINUE DO 640 I=l,10 DO 630 J=12.13 READ(J,460) LINE CONTINUE CONTINUE DO 670 I=1,51 RE=O DO 650 J=12,13 READ(J,*l T,R IF (J.EQ.121 RE=RE-R*COS(ALPHAA(ITl) IF (J.NE.12) RE=RE+R*COS(ALPHAA(IT) 1 - -

CONTINUE REEQ=RE IF (ABS(REEQ1 .LE.ABS(REEQMAXll GO TO 660 TEEOMAX=T REEQMAX=REEQ IF (T.EQ.20) GO TO 675 CONTINUE

- R E ~ = R E ~ * ~ CONTINUE WRITE(14,2801 REg,TEEQMAX,REEQMAX CONTINUE GO TO 4000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Triangle Detailed Model * . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 87: Detailed Nonlinear Seismic Analysis of a 150m Guyed Telecommunication Tower

CABLE=, cd r / /EQPH OPEN (2. FILE=SHEAR)

OPEN(26,FILE=MASTR) OPEN(27,FILE=CABLE) OPEN(28,FILE='MH.tem') OPEN(29.FILE='XSETIEQetemm) OPEN(30,FILE='XSETOLEQ.tem') OPEN(31,FILE='XSETOREQ.tem') OPEN(32,FILE='ZSETIEQ,tem') OPEN(33,FILE='ZSETOLEQ.tem') OPEN(34,FILE='ZSETOREQ.tem') OPEN(35,FILE='YSETIEQ.tem') OPEN(36,FILE='YSETOLEQ.tem') OPEN(37,FILE='YSETOREQ.tem') NGLT=NGL*2 IF (CON.EQ.'y') NGLT=NGLT+l DO 705 I=l,NGLT CALL SKIPl CALL SKIPl CALL SKIP6 CALL MAXWRITE(R8,TEQMAX,REQMAX,28) REQMAX=ABS(REQMAX-R8) R8=R8 WRITE(24,910) R8,TEQMAX,REQMAX CALL SKIP9 CALL MAX(R8,TEQMAX.REQMAX) REQMAX=ABS (REQMAX-R8 R8=R8 WRITE(25.910) R8,TEQMAX.REQMAX CALL SKIP9

Page 88: Detailed Nonlinear Seismic Analysis of a 150m Guyed Telecommunication Tower

CALL Mnx(R8,TEQMAX,REQW) CALL SKIPl

705 CONTINUE CLOSE(28) OPEN(28,EILE='MH.tem',STATUS='old') DO 740 I=l,NGLT

. CALL SKIPl CALL SKIPl CALL SKIP6 READ(1,990) LINE WRITE(6.990) LINE READ(1.990) LINE WRITE(6,990) LINE READ(l,*) T,R WRITE(6,*) T,R READ(28,990) LINE READ(28,990) LINE READ(28,*) TR,RR R=(ATAN((R-RR)/PH))*57.29578 R8=R

REQMAX=REQ 710 CONTINUE 715 DO 720 J=1.10

READ(1,990) LINE WRITE ( 6,990 ) LINE READ(28.990) LINE

720 CONTINUE DO 730 J=1,51 READ(l,*) T,R WRITE(6,*) T,R READ(28,*) TR,RR R=(ATAN( (R-RR) /pH)) *57.29578 REQ=R IF (ABS(REQ) .LE.ABS(REQMAX)) GO TO 725

. - . - CALL SKIPI

740 CONTINUE DO 775 IJ=1,2 DO 750 I=l,NGL DO 745 J=29,31 CALL SKIPl CALL SKIPl CALL SKIP6 CALL WRITESKIP(J) CALL SKIPl

745 CONTINUE 750 CONTINUE

DO 760 I=l,NGL

Page 89: Detailed Nonlinear Seismic Analysis of a 150m Guyed Telecommunication Tower

DO 755 J=32,34 CALL SKIPl CALL SKIPl CALL SKIP6 CALL WRITESKIP(J) CALL SKIPl

755. CONTINUE 760 CONTINUE

DO 770 I=l,NGL DO 765 J=35,37 CALL SKIPl CALL SKIPl CALL SKIP6 CALL WRITESKIP(3) CALL SKIPl

765 CONTINUE 770 CONTINUE 775 CONTINUE

DO 780 1=29,37 CLOSE (I )

780 CONTINUE OPEN(29,FILE='XSETIEQ.tem',STATUS='old') OPEN(3O,FILE='XSETOLEQ.tem',STATUS='old') OPEN(31,FILE='XSETOREQ.tem',STATUS='old') OPEN(32,FILE='ZSETIEQ.tem',STATUS='old') OPEN(33,FILE='ZSETOLEQ.tem',STATUS='old') OPEN(34,FILE='ZSETOREQ.tem',STATUS='old') OPEN(35,FILE='YSETIEQ.tem',STATUS='old') OPEN(36,FILE='YSETOLEQ.tem',STATUS='old') OPEN(37,FILE='YSETOREQ.tem',STATUS='old') DO 865 IT=l,NGL*2 RE8=0 REEQMAX=O DO 845 JT=29,31 DO 790 I=1,2 DO 785 J=JT,JT+6,3 READ(J,990) LINE

785 CONTINUE 790 CONTINUE

R8=0 REQMAX= 0 DO 800 I=1,49 RE=O DO 795 J=JT,JT+6,3 READ(J,*) T,R IF ((I.EQ.lI.AND.(J.EQ.JT)) RBX=R IF ((I.EQ.l).AND.(J.EQ.(JT+3))1 R8Z=R IF ((I.EQ.l).AND.(J.EQ.(JT+6))) R8Y=R IF (I.EQ.l) R8=R8+R**2 IF (J.EQ.JT) RE=RE+(R-R8X)**2 IF (J.EQ.(JT+31) RE=RE+(R-R8Z)**2 IF (J.EQ.(JT+61) RE=RE+(R-RBY1**2

795 CONTINUE REQ=RE IF (REQ.LE.REQMAX) GO TO 800 TEQMAX=T REQMAX=REQ

800 CONTINUE 805 DO 815 I=1,10

DO 810 J=JT,JT+6,3 READ(J.990) LINE

810 CONTINUE 815 CONTINUE

DO 830 I=1,51

Page 90: Detailed Nonlinear Seismic Analysis of a 150m Guyed Telecommunication Tower

IF (J. EQ. JT) RE=RE+ (R-REX) **2 IF (J.EQ.(JT+3)) RE=RE+(R-R8Z)**2 IF (J.EQ. (JT+6)) RE=RE+(R-R8Y)**2

820 . CONTINUE REO=RE IF-(REQ.LE.REQMAX) GO TO 825 TEQMAX=T REQMAX=REQ IF (T.EQ.20) GO TO 835 CONTINUE GO TO 805 IF (REQMAX.LE.REEQMAX) GO TO 840 REEQMAX=REQMAX TEEQMAX=TEQMAX IF (RE.LE.RE8) GO TO 845 RE8=R8 CONTINUE IF (1T.GT.NGL) GO TO 850 REQMAXM (IT) =REEQMAX TEQMAXM (IT) =TEEQMAX R8M ( IT) =RE8 GO TO 865 IF (REEQMAX.GE.REQMAXM(IT-NGL)) GO TO 855 REEQMAX=REQMAXM(IT-NGL) TEEQMAX=TEQMAXM(IT-NGL) IF (REE.GE.REM(IT-NGL)) GO TO 860 RE8=R8M(IT-NGL) REEQMAX=REEQMAX**O.5 RE8=RE8**0.5 WRITE(27,280) REE.TEEQMAX,REEQMAX CONTINUE IM=O IMW=O TW=O NS=NAG*3+1 CALL SKIP6 READ(l,*) TIME,RESPONSE WRITE(6,*) TIME,RESPONSE IF (RESPONSE.EQ.'FORCE-R') GO TO 930 IF (RESPONSE.EQ.'X-REACTION') GO TO 880 GO TO 890 CALL SKIPl CALL WRITESKIP(18) CALL SKIP9 CALL WRITESKIP(15) CALL SKIP9 CALL MRXWRITE(R8,TEQMAX,REQMAX,13) REQMAX=ABS(REQMAX-R8) /I000 R8=R8/1000 WRITE(2.910) R8,TEQMAX.REQMAX CALL SKIP9 CALL WRITESKIP(14) CALL SKIP9 CALL WRITESKIP(17) CALL SKIP9 CALL WRITESKIP(19) CALL SKIP9 CALL WRITESKIP(16) CALL SKIP6 CALL SKIPl READ(l.*) TIME,RESPONSE

Page 91: Detailed Nonlinear Seismic Analysis of a 150m Guyed Telecommunication Tower

IF (1MW.EQ.NS) IMW=O IF (RESPONSE.EQ.'Z-REACTION') IMW=IMW+l READ (1. * ) INDICATOR

IF (INDICATOR. EQ. 'M-SUPPORT' ) GO TO 900 GO TO 920 CALL MAX(R8,TEQMAX.REQM.U) F3REQMAX=ABS(REQMAX-R8) /I000 F3R8=R8/1000 F3TEQMAX=TEQMAX IM=1 R8T=0 TEQMAX=8 REQMAX=O FORMAT(F20.2.F16.3,F20.2) CALL SKIPl GO TO 870 CALL MAX(R8,TEQMAX.REQMAX) CALL SKIPl GO TO 870 CALL SKIPl CALL MAX(R8.TEQMAX.REQMAX) CALL SKIP9 CALL MAX(R8,TEQMAX.REQMAX) CALL SKIP9 CALL MAX(R8,TEQMAX.REQMAX) Tw=TW/1000 WRITE(3,940) 'Total Weight (KN) = ',TW FORMAT(AZO,F20.2) WRITE(3.910) F3R8.F3TEQMAX3F3REQMAX DO 950 I=l,NGL*2 CALL WRITE(7) CALL WRITE(8) CALL WRITE(9) CONTINUE DO 960 I=1,3 CALL SKIP9 CALL MAX(RE.TEQMAX,REQMAX) CONTINUE DO 970 I=1,NGL*2 CALL WRITE(I.0) CALL WRITE(11) CALL WRITE(12) CONTINUE DO 980 I=7,12 CLOSE ( I ) CONTINUE OPEN(7,F~E='MLIEQ.tem',STATUS='old') OPEN(8,FILE='MLOLEQ.tem',STATUS='old') OPEN(9,FILE='MLOREQ.tem',STATUS='old') OPEN(10.FILE='MIIIEQ.tem',STATUS='old') OPEN(11,FILE='MDOLEQ.tem',STATUS='old') OPEN(12,FILE='MDOREQ.tem',STATUS='old') ALPHA=ATAN(PH/PW) ARM23rPW*0.57735 ARM13-PW47 .28868 DO 1170 IT=l,NGL*2 DO 1010 I=l,ll DO 1000 J=7,12 READ(J,990) LINE FORMAT (A96 )

Page 92: Detailed Nonlinear Seismic Analysis of a 150m Guyed Telecommunication Tower

1000 CONTINUE 1010 CONTINUE

I$ ( J. NE . 7 ) RM=RM+R*ARM13 1020 CONTINUE

READ(J,*) T,R IF ((I.EQ.l).AND.(J.EQ.ll)) RS8=RS8+R*COS(ALPHA)*0.8660 IF ([I.EQ.I).AND.(J.EQ.12)) RS8=RS8-R*COS(ALPHA)*0.8660 IF I E O RA8=RA8+R*SIN(ALPHA)

TMEQMAX=T RMEQMAX=RMEQ CONTINUE

READ(J.990) LINE CONTINUE CONTINUE DO 1150 1=1,51 RS=O RA= 0 RM=o

f6 (J. EQ. 7 ) RM=RM-R*ARM23 IF (J.NE.7) RM=RM+R*ARM13 CONTINUE DO 1110 J=10,12

Page 93: Detailed Nonlinear Seismic Analysis of a 150m Guyed Telecommunication Tower

IF (J.EQ.11) RS=RS+R*COS(ALPHA)*0.8660 IF (J.EQ.12) RS=RS-R*COS(ALPHA)*0.8660 RA=RA+R*SIN(ALPHA) fF (J.EQ.11) RM=RM-R*SIN(ALPHA) *ARM23 IF (J.NE.11) RM=RM+R*SIN(ALPHA)*ARM13

1110 CONTINUE RSEQ=RS RAEQ=RA RMEQ=RM IF (ABS(RSEQ).LE.ABS(RSEQMAX)) GO TO 1120 TSEQMAX=T RSEQMAX=RSEQ

1120 IF (ABS(RAEQ).LE.ABS(RAEQMAX)) GO TO 1130 TAEQMAX=T RAEQMAX=RAEQ

1130 IF (ABS(RMEQ).LE.ABS(RMEQMAX)) GO TO 1140 TMEQMAX=T RMEQMAX=RMEQ

1140 IF (T.EQ.20) GO TO 1160 1150 CONTINUE

GO TO 1070 1160 RSEQMAX=ABS(RSEQMAX-RS8) /I000

RSB=RS8/1000 WRITE(2,280) RS8,TSEQMAX,RSEQMAX RAEQMAX=ABS(RAEQMAX-RAE) /I000 RAE=-RA8/1000 WRITE(3.280) RA8,TAEQMAX.RAEQMAX RMEQMAX=ABS(RMEQMAX-RM8)/1000 RM8=RM8/1000 WRITE(4,280) RM8,TMEQMAX,RMEQMAX

1170 CONTINUE 1180 CALL SKIP1

CALL SKIP6 READ(l,*) TIME,RESPONSE WRITE(6,*) TIME,RESPONSE READ (1, * ) INDICATOR WRITE(6,*) INDICATOR IF (INDICATOR.EQ.'SET1IE~T0PP) GO TO 1190 CALL MAX(R8,TEQMAX.REQMAX) GO TO 1180

1190 DO 1250 I=l,NGL DO 1220 J=1,3 JF=J+19 CALL MAXWRITE(R8,TEQMAX.REQMAX.JF) IF (J.EQ.1) GO TO 1200 IF (ABS(REQMAX).LT.ABS(REQMAXF)) GO TO 1210

1200 R8F=R8 TEQMAXF=TEQMAX REQMAXE=REQMAX

1210 CALL SKIP9 1220 CONTINUE

DO 1240 J=1,6 CALL MAX(R8,TEQMAX,REQMAX) IF (ABS(REQMAX).LT.ABS(REQMAXF)) GO TO 1230 R8F=R8 TEOMAXF=TEOMAX

CALL SKIP9 - -

1240 CONTINUE REOMAXF=ABS(REOMAXF-REF) /I000

1250 CONTINUE

Page 94: Detailed Nonlinear Seismic Analysis of a 150m Guyed Telecommunication Tower

DO 1260 I=13,22 CLOSE (I ) CONTINUE OPEN(13,FILE='MS.tem',STATUS='old') OPEN114.FILE='CS IEOl.tem'.STATUS='old') OPEN(~~,FILE='CS~OLEQ~. tem', STATUS='old' ) OPEN(16,FILE='CS-OREQl.tem'.STATUS='old') OPEN(17,FILE='CS-IEQ2.tem',STATUS='old') OPEN(18,FILE='CS-OLEQZ.tem',STATUS='old')

DO 1270 I=~,NT(I) ALPHAA(I)=ATAN(CNGL(I)*PH/RAG(l)) CONTINUE IF (NAG.EQ.l) GO TO 1300 IF (NAG.EO.2) NTi2)=NGL DO 1280 ?=NT(~)+~;NT(~) ALPHAA(I)=ATAN(CNGL(I) *PH/RAG(2)) CONTINUE IF (NAG.EQ.2) GO TO 1300 DO 1290 I=NT(~)+~,NGL ALPHAA(I)=ATAN(CNGL(I)*PH/RAG(~)) CONTINUE DO 1330 I=1,2 DO 1320 J=13,19 READ(J,1310) LINE FORMAT (A961 CONTINUE CONTINUE RE8=0

CONTINUE REEQ=RE IF (ABS(REEQ).LE.ABS(REEQMAX)) GO TO 4600 TEEQMAX=T REEQMAX=REEQ CONTINUE DO 1370 I=1,10 DO 1360 J=13,19 READ(J, 1310) LINE CONTINUE CONTINUE DO 1400 I=1,51 RE=O DO 1380 J=13,19 READ(J,*) T,R RE=RE+R CONTINU% REEQ=RE IF (ABS(REEQ).LE.ABS(REEQM?+X)) GO TO 1390 TEEQMAX=T REEQM?+X=REEQ IF (T.EQ.20) GO TO 1410 CONTINUE GO TO 1350

Page 95: Detailed Nonlinear Seismic Analysis of a 150m Guyed Telecommunication Tower

DO 1430 J=20,22 . READ(J.1420) LINE

1420 FOP.MATIA96)

READ(J,*) T,R IF ((I.EQ.l).AND.(J.EQ.20)) REB=RE8-R*COS(ALPHAA(IT)) IF ((I.EQ.l).AND.(J.NE.20)) RE8=RE8+R*COS(ALPHAA(IT))*0.5 IF (J.EQ.20) RE=RE-R*COS(ALPHAA(IT)) IF (J.NE.20) RE=RE+R*COS(ALPHAA(IT))*0.5 CONTINUE REEQ=RE IF (ABS(REEQ).LE.ABS(REEQMAX)) GO TO 1460 TEEQMAX=T REEQMAX=REEQ CONTINUE DO 1490 I=1,10 DO 1480 J=20,22 READ(J, 1420) LINE CONTINUE CONTINUE DO 1520 I=1,51 RE=O DO 1500 J=20,22 READ(J,*) T,R IF (J.EQ.20) RE=RE-R*COS(ALPHAA(IT)) IF (J.NE.20) RE=RE+R*COS(ALPHAA(IT))*0.5 CONTINUE REEQ=RE IF (ABS(REEQ).LE.ABS(REEQMAX)) GO TO 1510 TEEQMAX=T REEQMAX=REEQ IF (T.EQ.20) GO TO 1530 CONTINUE GO TO 1470 REEQMAX=ABS(REEQMAX-RE8)/1000 RE8=RE8/1000 IF (NS.EQ.0) GO TO 1550 DO 1540 I=l,NS IF (IT.NE.NSL(1)) GO TO 1540

1540 CONTINUE 1550 WRITE(23,280) RE8,TEEQMAX.REEQMAX 1560 CONTINUE

C * Diagonals X-Braced * C * Square Cross-Sectional Plan * C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1600 EQP=EQ//'.'

EOPH=EOP//H

Page 96: Detailed Nonlinear Seismic Analysis of a 150m Guyed Telecommunication Tower

OPEN(3,FILE=AXIAL) OPEN (4, FILE=MOMEET)

OPEN(12, FILE='MD~oEQ. tem' ) OPEN(13,FILE='MS.tem')

OPEN (17; FILE='csEE<~. tem' OPEN(18,FILE='CS-IEQ3.tern' OPEN (19, FILE='cs>EQ~. tem' OPEN(20,FILE='SETIEQ.tem') OPEN(21.FILE='SETOEO.tem'l

OPEN (24, FILE=MASTA) OPEN(25,FILE=MASTR)

OPEN~~I; FILE=,ZSETIE<. tern' ) OPEN(~~,FILE='ZSETOEQ.~~~') OPEN(~~.FILE='YSETIEQ.~~~') OPEN(34,FILE='YSETOEQ.tem') IF (TS.EQ.'t') GO TO 1605 OPEN(35,FILE='CS-1BEQl.tem') OPEN(36,FILE='CS-IBEQ2.tem') opEN(37,FILE='CS-IBEQ3.tem') OPEN(38,FILE='MLIBEQ.tem') OPEN(39,FILE='SETIBEQ.tem')

1605 NGLT=NGL*2 IF (CON.EQ.'y') NGLT=NGLT+l DO 1610 I=l,NGLT CALL SKIPl CALL SKIPl CALL SKIP6 CALL MAXWRITE(RB,TEQMAX,REQMAX.27) REQMAX=ABS(REQMAX-R8) R8=R8 WRITE(23.910) R8,TEQMAX,REQMAX CALL SKIP9 CALL MAX(R8,TEQMAX,REQMAX) REQMAX=ABS (REQMAX-R8 ) R8=R8 WRITE(24,910) R8,TEQMAX,REQMAX CALL SKIP9 CALL WRITESKIP(28) CALL SKIPl

Page 97: Detailed Nonlinear Seismic Analysis of a 150m Guyed Telecommunication Tower

1610 CONTINUE CLOSE (27 ) CLOSE (28) OPEN(27,FILE='MH.tem',STATUS='old') OPEN(28,FILE='MHR.tem',STATUS='old') DO 1680 I=l,NGLT READ(27,990) LINE READ(27,990) LINE READ(27,*) T,R READ(28.990) LINE READ(28.990) LINE READ(28,*) TR,RR

RE~MAX=REQ 1620 CONTINUE 1630 DO 1640 J=1,10

READ(27.990) LINE READ(28.990) LINE

1640 CONTINUE DO 1660 J=1.51

1650 IF-(T.EQ.~o) GO TO 1670 1660 CONTINUE

GO TO 1630 1670 REQMAX=ABS(REQMAX-R8)

WRITE(25.910) R8,TEQMAX.REQMAX 1680 CONTINUE

DO 1710 IJ=1.2

CALL SKIPl CALL SKIPl CALL SKIP6 CALL WRITESKIP ( J) CALL SKIPl

1690 CONTINUE 1700 CONTINUE 1710 CONTINUE

DO 1740 XJ=1,2 DO 1730 I=l,NGL DO 1720 5=29,33,2 CALL SKIPl CALL SKIPl CALL SKIP6 CALL WRITESKIP(J)' CALL SKIPl

1720 CONTINUE 1730 CONTINUE 1740 CONTINUE

Page 98: Detailed Nonlinear Seismic Analysis of a 150m Guyed Telecommunication Tower

DO 1750 1=29,34 CLOSE I I)

OPEN(30, FILE=,XSETOEQ. tern' ,STATUS='old' OPEN(31,FILE='ZSETIEQ.tem',STATUS='old' OPEN(32,FILE='ZSETOEQ.tem',STATUS='old' OPEN(33,FILE='YSETIEQ.tem',STATUS='old' OPEN(34,FILE='YSETOEQ.tem',STATUS='old' DO 1920 IT=l,NGL*2 RE8=0

READ(J,990) LINE 1760 CONTINUE 1770 CONTINUE

DO 1780 J=JT,JT+4,2 READ(J,*) T,R IF ((I.EQ.l).AND.(J.EQ.JT)) R8X=R IF ((I.EQ.l).AND.(J.EQ.(JT+2))) R8Z=R IF ((I.EQ.1) .AND. (J.EQ. (JT+4))) R8Y=R IF (I.EQ.l) R8=R8+R**2 IF (J.EQ.JT) RE=RE+(R-R8X)**2 IF (J.EQ.(JT+2)) RE=RE+(R-R8Z)**2 IF (J.EQ.(JT+I)) RE=RE+(R-R8Y)**2

1780 CONTINUE REQ=RE IF (REQ.LE.REQMAX) GO TO 1790 TEQMAX=T REQMAX=REQ

1790 CONTINUE 1800 DO 1820 I=1,10

DO 1810 J=JT,JT+4.2 READ(J,990) LINE

1810 CONTINUE 1820 CONTINUE

DO 1850 I=1,51 RE=O DO 1830 J=JT,JT+4,2 READ(J,*) T,R IF (J.EQ.JT) RE=RE+(R-R8X)**2 IF (J.EQ.(JT+2)) RE=RE+(R-R8Z)**2 IF (J.EQ.(JT+4)) RE=RE+(R-R8Y)**2

1830 CONTINUE

REQMAX=REQ 1840 IF (T.EQ.20) GO TO 1860 1850 CONTINUE

GO TO 1800 1860 IF (REOMAX.LE.REEQMAX) GO TO 1870

1870 IF (R~.LE.RE~) GO TO 1880 RE8=R8

1880 CONTINUE

Page 99: Detailed Nonlinear Seismic Analysis of a 150m Guyed Telecommunication Tower

REQMAXM ( IT) =REEQMAX TEQMAXM ( IT) =TEEQMAX R8M(IT)=RE8 GO TO 1920

WRITE(26.280) RE8.TEEQMAX.REEQMAX 1920 CONTINUE

IF (TS.EQ.'s') GO TO 3000 CALL SKIP6 CALL SKIPl CALL SKIPl CALL WRITESKIP(15) . . CALL SKIP9 CALL MAXWRITE(R8.TEQMAX.REQMAX.13) REQMAX=ABS(REQMAX-R8) /I000 R8=R8/1000 WRITE(2.910) R~,TEQMAX,REQMAX CALL SKIP9 CALL WRITESKIP(14) CALL SKIP9 CALL MAX(R8,TEQMAX,REQMAX) TW=2 *R8 CALL SKIP9 CALL MAX(R8,TEQMAX,REQMAX) TW=TW+R8 F3REOMAX=ABS(REOMAX-R8)/1000

CALL- SKIP^ CALL MAX(R8,TEQMAX,REQMAX) TW=TW+R8 DO 1930 I=1,3 CALL SKIP9 CALL MAX(R8,TEQMAX,REQMAX)

1930 CONTINUE CALL SKIP9 CALL WRITESKIP(17) CALL SKIP9 CALL WRITESKIP(16) CALL SKIP9 CALL MAX(R8,TEQMAX,REQMAX) TW=TW+2*R8 CALL SKIP9 CALL MAX(R8,TEQMAX.REQMAX) TW=TW+R8 DO 1940 I=1,2 CALL SKIP9 CALL MAX(R8,TEQMAX,REQMAX)

1940 CONTINUE CALL SKIP9 CALL WRITESKIP(19) CALL SKIP9 CALL WRITESKIP(18) CALL SKIP9 CALL MAX (RE, TEQMAX, REQMAX) TW=TW+2*R8 CALL SKIP9 CALL MAX(R8,TEQMAX,REQMAX)

Page 100: Detailed Nonlinear Seismic Analysis of a 150m Guyed Telecommunication Tower

TW=TW+RB DO 1950 I=1,5 CALL SKIP9 CALL MA?( RB , TEQMAX, REQMAX)

1950 CONTINUE

3(3,2 360 I WRIT 7 -_

CALL WRITE CALL WRITE

1960 CONTINUE

'Total Weight (KN) = ',TW F3R8,F3TEQMAX,F3REQMAX GL*2

DO 1970 I=1,3 CALL SKIP9 CALL MAX(R8,TEQMAX.REQMAX)

1970 CONTINUE DO 1980 I=l,NGL*2 CALL WRITE (7) CALL WRITE (9 ) CALL WRITE(11)

1980 CONTINUE DO 1990 I=7,12 CLOSE (I)

1990 CONTINUE OPEN(7,FILE='MLIEQ.tem',STATUS='old') OPEN(8,FILE='MLOEQ.tem',STATUS='old') OPEN(9,FILE='MDIEQ.tem',STATUS='old') OPEN(lO,FILE='MDOEQ.tem',STATUS='old') ,.---. , q . - 7 7 - ,--c,..-- L . ----.-- . . . . ,

Page 101: Detailed Nonlinear Seismic Analysis of a 150m Guyed Telecommunication Tower

IF ((I.EQ.l).AND.(J.EQ.lZ)) RS8=RS8-R*COS(ALPHA)*0.8660*2 IF I E Q 1 RAE=RAE+R*SIN(ALPHA) IF ((I.EQ.l).AND.(J.EQ.lO)) RAE=RAE+R*SIN(ALPHA) IF ((I.EQ.l).AND.(J.EQ.12)) RA8=RAE+R*SIN(ALPHA) IF ((I.EQ.l).AND.(J.EQ.lO)) RM8=RM8-R*SIN(ALPHA)*ARM23*2 IF ((I.EQ.l).AND.(J.NE.ll)) RMB=RM8+R*SIN(ALPHA)*ARMl3 IF ((I.EQ.l).AND.(J.EQ.12)) RME=RM8+R*SIN(ALPHA)*ARN13 IF (J.EQ.lO) RS=RS+R*COS(ALPHA)*0.8660*2 IF (J.EQ.12) RS=RS-R*COS(ALPHA)*0.8660*2 RA=RA+R*SIN(ALPHA) IF (J.EQ.lO) RA=RA+R*SIN(ALPHA) IF (J.EQ.12) RA=RA+R*SIN(ALPHA) IF (J.EQ.10) RM=RM-R*SIN(ALPHA)*ARM23*2 IF (J.NE.11) RM=RM+R*SIN(ALPHA)*ARMl3 IF (J.EQ.12) RM=RM+R*SIN(ALPHA)*ARM13

2030 CONTINUE RSEQ=RS RAEQ=RA RMEQ=RM IF (ABS(RSEQ).LE.ABS(RSEQMAX)) GO TO 2040 TSEQMAX=T RSEQMAX=RSEQ

2040 IF (ABS(RAEQ).LE.ABS(RAEQMAX)) GO TO 2050 TAEQMAX=T RAEQMAX=RAEQ

2050 IF (ABS(RMEQ) .LE.ABs('RMEQMAX) I GO TO 2060 TMEQMAX=T RMEQMAX=RMEQ

2060 CONTINUE 2070 DO 2090 I=1,10

DO 2080 J=7,12 READ(J,990) LINE

2080 CONTINUE 2090 CONTINUE

DO 2150 I=1,51 RS=O RA=o RM=o DO 2100 J=7,8 READ(J,*) T,R RA=RA+R IF (J.EQ.8) RA=RA+R IF (J.EQ.7) RM=RM-R*?iRM23 IF (J.NE.7) RM=RM+R*ARM13*2

2100 CONTINUE DO 2110 J=9,12 READ(J,*) T,R IF (J.EQ.lO) RS=RS+R*COS(ALPHA)*0.8660*2 IF (J.EQ.12) RS=RS-R*COS(ALPHA)*0.8660f2 RA=RA+R*SIN(ALPHA) IF (J.EQ.lO) RA=RA+R*SIN(ALPHA) IF (J.EQ.12) RA=RA+R*SIN(ALPHA) IF (J.EQ.lO) RM=RM-R*SIN(ALPHA)*ARM23*2 IF (J.NE.11) RM=RM+R*SIN(ALPHA)*ARM13 IF (J.EQ.12) RM=RM+R*SIN(ALPHA)*ARM13

2110 CONTINUE RSEQ=RS RAEQ=RA RMEQ=RM IF (ABS(RSEQ).LE.ABS(RSEQMAX)) GO TO 2120 TSEQMAX=T RSEQMAX=RSEQ

2120 IF (ABS(RAEQ).LE.ABS(RAEQMAX)) GO TO 2130 TAEQMAX=T

Page 102: Detailed Nonlinear Seismic Analysis of a 150m Guyed Telecommunication Tower

RAEQMAX=RAEQ 2130 IF (ABS(RMEQ).LE.ABS(RMEQMAX)) GO TO 2140

TMEQMAX=T RMEQMAX=RMEQ

2140 IF (T.EQ.20) GO TO 2160 2150 CONTINUE

GO TO 2070 2160 RSEQMAX=ABS(RSEQMAX-RS8)/1000

RS8=RS8/1000 WRITE(2,280) RS8,TSEQMAX.RSEQMAX RAEQMAX=ABS(RAEQMAX-RA8)/1000 RAE=-RA8/1000 WRITE(3,280) RA8,TAEQMAX.RAEQMAX RMEQMAX=ABS(RMEQMAX-RM8)/1000 RM8=RM8/1000 WRITE(4,280) RM8,TMEQMAX.RMEQIU.X

2170 CONTINUE 2180 CALL SKIP1

CALL SKIP6 READ(l,*) TIME,RESPONSE WRITE(6,*) TIME,RESPONSE READ(l,*) INDICATOR WRITE(6,*) INDICATOR IF (INDICATOR.EQ.'SETlOEQ-GRD') GO TO 2190 CALL MAX ( R8, TEQMAX , REQMAX ) GO TO 2180

2190 DO 2230 I=l,NGL DO 2220 J=1,3 CALL MAXWRITE(RB.TEQMAX.REQMAX.21) IF (J.EQ.1) GO TO 2200 IF (ABS(REQMAX).LT.ABS(REQMAXFA(I))) GO TO 2210

2200 R8FA(I)=R8 TEQMAXFA ( I ) =TEQMAX REQMAXFA ( I ) =REQMAX

2210 CALL SKIP9 2220 CONTINUE 2230 CONTINUE

DO 2280 I=l,NGL DO 2260 J=1,3 CALL MAXWRITE(R8,TEQMAX,REQMAX,20) IF (J.EQ.1) GO TO 2240 IF (ABS(REQMAX).LT.ABS(REQMAXF)) GO TO 2250

2240 R8F=R8 TEQMAXF=TEQMAX REQMAXF=REQMAX

2250 IF ((I.EQ.NGL).AND.(J.EQ.3)) GO TO 2260 CALL SKIP9

2260 CONTINUE IF (ABS(REQMAXFA(1) ).LT.ABS(REQMAXF)) GO TO 2270 RBF=R8FA I I) TEQMAXF=TEQMAXFA(I) REQMAXF=REQMAXFA(I)

2270 REQMAXF=ABS(REQMAXF-R8F) /I000 R8F=R8F/1000 WRITE(5,280) RBF,TEQMAXF,REQMAXF

2280 CONTINUE DO 2290 1=13,21 CLOSE ( I )

2290 CONTINUE OPEN(13,FILE='MS.tem',STATUS='old') OPEN(14,FILE='CS~IEQl.tem',STATUS='old'~ OPEN(lS.FILE='CS-OEQl.tern',STATUS='old') OPEN(l6,FILE='CS-IEQ2.tem',STATUS='old') OPEN(17,FILE='CS-OEQ2.tem',STATUS='old')

Page 103: Detailed Nonlinear Seismic Analysis of a 150m Guyed Telecommunication Tower

OPEN(~~.FILE='CS-IEQ~.~~~',STATUS='O~~') OPEN(19,FILE='CS~OEQ3.tem',STATUS='old') 0PEN(20,FILE='SETIEQPtemm,STATUS='old') 0PEN(21,FILE='SETOEQ.tem'opENoSTATUS='old') IF (NAG.EQ.1) NT(l)=NGL DO 2300 I=l,NT(l) ALPHAA(I)=ATAN(CNGL(I)*PH/RAG(l))

2300 CONTINUE IF (NAG.EQ.l) GO TO 2330 IF (NAG.EQ.2) NT(2)=NGL DO 2310 I=NT(l)+l,NT(2) ALPHAA(I)=ATAN(CNGL(I)*PH/RAG(~))

2310 CONTINUE IF (NAG.EQ.2) GO TO 2330 DO 2320 I=NT(2)+1,NGL ALPHAA(I)=ATAN(CNGL(I)*PH/RAG(~))

2320 CONTINUE 2330 DO 2360 I=1,2

DO 2350 J=13,19 READ(J,2340) LINE

2340 FORMAT(A96) 2350 CONTINUE 2360 CONTINUE

RE8=O REEQMAX= 0 DO 2380 I=1,49 RE=O DO 2370 J=13.19

IF (J.EQ.15) RE=RE+R IF (J.EQ.17) RE=RE+R IF (J.EQ.19) RE=RE+R

2370 CONTINUE REEQ=RE IF (ABS(REEQ).LE.ABS(REEQMAX)) GO TO 2380 TEEQMAX=T REEQMAX=REEQ

2380 CONTINUE

READ(J,2340) LINE 2400 CONTINUE 2410 CONTINUE

DO 2440 I=1,51

READ(J,*) T,R RE=RE+R IF (J.EQ.15) RE=RE+R IF (J.EQ.17) RE=RE+R IF (J. EQ. 19) RE=RE+R

2420 CONTINUE REEQ=RE IF (ABS(REEQ).LE.ABS(REEQMAX)) GO TO 2430 TEEOMAX=T REE~MAX=REEQ

2430 IF (T.EQ.20) GO TO 2450 2440 CONTINUE

GO TO 2390

Page 104: Detailed Nonlinear Seismic Analysis of a 150m Guyed Telecommunication Tower

DO 2460 ~=20,21 READ(J.2340) LINE

2460 CONTINUE 2470 CONTINUE

IF ((I.EQ.l).AND.(J.EQ.20)) REB=REB-R*COS(ALPHAA(IT)) IF ((I.EQ.l).AND.(J.NE.20)) RE8=REB+R*COS(ALPHAA(IT)) IF (J.EQ.20) RE=RE-R*COS(ALPHAA(IT)) IF (J .NE. 20) RE=RE+RkCOS (ALPHAA (IT) )

2480 CONTINUE REEQ=RE IF (ABS(REEQ).LE.ABS(REEQMAX)) GO TO 2490 TEEQMAX=T REEQMAX=REEQ

2490 CONTINUE 2500 DO 2520 I=1.10

DO 2510 ~=20,21 READ(J,2340) LINE

2510 CONTINUE 2520 CONTINUE

DO 2530 J=20.21 READ(J,*) T,R IF (J.EQ.20) RE=RE-R*COS(ALPHAA(IT)) IF (J.NE.20) RE=RE+R*COS(ALPHAA(IT))

2530 CONTINUE REEQ=RE IF (ABS(REEQ).LE.ABS(REEQMAX)) GO TO 2540 TEEQMAX=T REEQMAX=REEQ

2540 IF (T.EQ.20) GO TO 2560 2550 CONTINUE

GO TO 2500 2560 REEQMAX=ABS(REEQMAX-RE8)/1000

RE8=RE8/1000 IF (NS.EQ.0) GO TO 2580 DO 2570 I=l,NS IF (IT.NE.NSL(1)) GO TO 2570 REEQMAX=REEQMAX*2 RE8=RE8*2

2570 CONTINUE 2580 WRITE(22,280) RE8,TEEQMAX,REEQMAX 2590 CONTINUE

GO TO 4000 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C * Square Cross-Sectional Plan * C * (Addendum) * C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3000 CALL SKIP6

CALL SKIPl CALL SKIPl CALL WRITESKIP(15) CALL SKIP9

Page 105: Detailed Nonlinear Seismic Analysis of a 150m Guyed Telecommunication Tower

CALL MAXWRITE(R~,TEQMAX,REQMAX,~~) REOMAX=ABSfREOMAX-R8) /lo00 . - R~=RE/IOOO WRITE(2.910) R8,TEQMAX.REQMAX CALL SKIP9 CALL WRITESKIP(14) CALL SKIP9 CALL MAX(R8.TEQMAX.REQMAX) TW=2*R8 CALL SKIP9 CALL MAX(RB.TEQMAX,REQMAX) TW=TW+R8 F~REQMAX=ABS(REQMAX-R~)/~OO~ F3R8=R8/1000 F3TEQMAX=TEQMAX CALL SKIP9 CALL MAX(R~,TEQMAX,REQMAX) TW=TW+R8 DO 3010 I=1.3 CALL SKIP9 CALL MAX(R8,TEQMAX,REQMAX)

3010 CONTINUE CALL SKIP9 CALL WRITESKIP(17) CALL SKIP9 CALL WRITESKIP(16) CALL SKIP9 CALL MAX (R8, TEQMAX, REQMAX) TW=TW+2*R8 CALL SKIP9 CALL MAX(R8,TEQMAX.REQMAX) TW=TW+RB DO 3020 I=1,2 CALL SKIP9 CALL MAX(R8,TEQMAX,REQMAX)

3020 CONTINUE CALL SKIP9 CALL WRITESKIP(19) CALL SKIP9 CALL WRITESKIP(18) CALL SKIP9 CALL MAX(RB,TEQMAX,REQMAX) TW=TW+2*R8 CALL SKIP9 CALL MAX (Re, TEQMAX, REQMAX) TW=TW+R8 DO 3030 I=1,2 CALL SKIP9 CALL MAX(R8,TEQMAX.REQMAX)

3030 CONTINUE DO 3040 I=35,37 CALL SKIP9 CALL WRITESKIP(1) CALL SKIP9 CALL MAX(R8.TEQMAX.REQMAX) TW=TW+RB CALL SKIP9 CALL MAX(R8,TEQMAX.REQMAX)

3040 CONTINUE DO 3050 I=1,3 CALL SKIP9 CALL MAX(R8,TEQMAX.REQMAX)

3050 CONTINUE Tw=Tw/1000

Page 106: Detailed Nonlinear Seismic Analysis of a 150m Guyed Telecommunication Tower

WRITE(3.940) 'Total Weight (KN) = ',TW WRITE(3.280) FjRB,F3TEQMAX,F3REQMAX DO 3060 I=l,NGL*2 CALL WRITE(8) CALL WRITE(10! CALL SKIP9 CALL MAX(R8,TEQMAX.REQMAX)

3060 CONTINUE CALL SKIP9 CALL MAX(R8,TEQMAX,REQMAX) DO 3070 I=l,NGL*2 CALL WRITE(12)

3070 CONTINUE DO 3080 I=1,3 CALL SKIP9 CALL MAX(R8,TEQMAX.REQMAX)

3080 CONTINUE DO 3090 I=l,NGL*2 CALL WRITE (7 ! CALL WRITE(9) CALL SKIP9 CALL MAX (RE, TEQMAX, REQMAX!

3090 CONTINUE CALL SKIP9 CALL MAX(R~,TEQMAX,REQMAX) DO 3100 I=l,NGL*2 CALL WRITE(11)

3100 CONTINUE CALL SKIP9 CALL MAX(R8,TEQMAX.REQMAX) DO 3110 I=l,NGL*2 CALL WRITE ( 3 8 !

3110 CONTINUE DO 3120 I=7,12 CLOSE (I)

3120 CONTINUE

READ(J.990) LINE 3130 CONTINUE 3140 CONTINUE

DO 3150 I=l,ll READ(38,990! LINE

3150 CONTINUE

Page 107: Detailed Nonlinear Seismic Analysis of a 150m Guyed Telecommunication Tower

IF I E Q RA8=RA8+R IF ((I.EQ.l).AND.(J.EQ.E)) RA8=RAE+R IF ((I.EQ.l).AND.(J.EQ.7)) RM8=RM8-R*ARM RA=RA+R IF (J.EO.81 RA=RA+R

CONTINUE

- - ~

IF (J.EQ.9) RM=RM-R*SIN(ALPHA)*ARM IF (J.NE.12) RM=RM+R*SIN(ALPHA)*ARM CONTINUE RSEO=RS

RMEQMAX=RMEQ 3200 CONTINUE 3210 DO 3230 I=1.10

DO 3220 J=7,12 READ(J.990) LINE

3220 CONTINUE 3230 CONTINUE

DO 3240 I=1,10 READ(38,990) LINE

3240 CONTINUE DO 3300 I=1,51

RA=RA+R IF (J.EQ. 8) RA=RA+R IF (J. EQ. 7 ) RM=RM-R*ARM

3250 CONTINUE

Page 108: Detailed Nonlinear Seismic Analysis of a 150m Guyed Telecommunication Tower

IF (J.EQ.9) RM=RM-R*SIN(ALPHA)*ARM IF (J.NE.12) RM=RM+R*SIN(ALPHA)*ARM

3260 CONTINUE RSEQ=RS RAEQ=RA RMEQ=RM IF (ABS(RSEQ).LE.ABS(RSEQMAX)) GO TO 3270 TSEQMAX=T RSEQMAX=RSEQ

3270 IF (ABS(RAEQ).LE.ABS(RAEQMAX)) GO TO 3280 TAEQMAX=T RAEQMAX=RAEQ

3280 IF (ABS(RMEQ).LE.ABS(RMEQMAX)) GO TO 3290 TMEQMAX=T RMEQMAx.=RMEQ

3290 IF (T.EQ.20) GO TO 3310 3300 CONTINUE

GO TO 3210 3310 RSEQMAX=ABS(RSEQw-RS8)/1000

RS8=RS8/1000 WRITE(2.280) RS8,TSEQMAX,RSEQMAX RAEQMAX=ABS(RAEQMAX-RA8)/1000 RAE=-RA8/1000 WRITE(3.280) RA8,TAEQMAX.RAEQMAX RMEQMAX=ABS(RMEQMAX-RM8)/1000 RM8=RM8/1000 WRITE(4.280) RM8,TMEQMAX.RMEQMAX

3320 CONTINUE 3330 CALL SKIP1

CALL SKIP6 READ(l.*) TIME,RESPONSE WRITE(6,*) TIME,RESPONSE READ (1, * ) INDICATOR WRITE(6,*1 INDICATOR IF (INDICATOR.EQ.'SET1OEQaGRDD) GO TO 3340 CALL MAX ( R8, TEQMAX , REQMAX ) GO TO 3330

3340 DO 3380 I=l,NGL DO 3370 J=1,3 CALL MAXWRITE(R8,TEQMAX,REQMAX,21) IF (J.EQ.l) GO TO 3350 IF (ABS(REQMAX).LT.ABS(REQMAXFA(I))) GO TO 3360

3350 RBFA(I)=RB TEQMAXFA ( I ) =TEQMAX REQMAXFA(I)=REQMAX

3360 CALL SKIP9 3370 CONTINUE 3380 CONTINUE

DO 3430 I=l,NGL DO 3410 J=1,3 CALL MAXWRITE(R8,TEQMAX,REQMAX,20) IF (J.EQ.1) GO TO 3390 IF (ABS(REQMAX).LT.ABS(REQMAXF)) GO TO 3400

3390 R8F=R8 TEQMAXF=TEQMAX

Page 109: Detailed Nonlinear Seismic Analysis of a 150m Guyed Telecommunication Tower

CALL SKIP^ 3410 CONTINUE

IF (ABS(REQMAXFA(I)).LT.ABS(REQMAXF)) GO TO 3420 R8F=R8FA(I) TEQMAXF=TEQMAXFA(I) REQMAXF=REQMAXFA(I)

3420 REOMAXF=ABS(REOMAXF-R8F)/1000 ~ 8 F = ~ 8 ~ / 1 0 0 0

-

WRITE(5,280) RBF,TEQMAXF,REQMAXF 3430 CONTINUE

DO 3450 I=l,NGL DO 3440 J=1,3 CALL SKIP9 CALL WFtITESKIP(39)

3440 CONTINUE 3450 CONTINUE

DO 3460 I=13,21 CLOSE (I )

3460 CONTINUE DO 3470 I=35,37 CLOSE I I)

3470 CONTINUE CLOSE(39) OPEN(13,FILE='MS.tem',STATUS='old') OPEN(~~,FILE='CS-IEQ~.~~~',STATUS='O~~') OPENIlS.FILE='CS OEOl.tem',STATUS='old') OPEN(^€; FILE='csIIEG~. tem' , STATUS='old' ) OPENI17.FILE='CS OE02.tem',STATUS='old') OPEN i 18; FILE= 'csIIEG~. tem' , STATUS= 'old' ) 0PEN(19.FILE='CS~OEQ3.tem'opENoSTATUS='old') OPEN(20,FILE='SETIEQ.tem',STATUS='old') OPEN(21,FILE='SETOEQ.tem',STATUS='old') OPEN(35,FILE='CS-IBEQl.tem',STATUS='old') OPEN(36,FILE='CS~IBEQ2.tem',STATUS='old') OPEN(37,FILE='CS IBE03.tem',STATUS='old')

60 3480 I = ~ , N T ( ~ ) ALPHAA(I)=ATAN(CNGL(I)*PH/RAG(~))

3480 CONTINUE IF (NAG.EO.1) GO TO 3510 IF ~ N A G . E ~ . ~ ) NT(2)=NGL DO 3490 I=NT(l)+l,NT(2) ALPHAA(I)=ATAN(CNGL(I)*PH/RAG(2))

3490 CONTINUE IF (NAG.EQ.2) GO TO 3510 DO 3500 I=NT(2)+1,NGL ALPHAA(I)=ATAN(CNGL(I)*PH/RAG(~))

3500 CONTINUE 3510 DO 3550 I=1,2

DO 3530 J=13.19 READ(J,3520) LINE

3520 FORMAT(A96) 3530 CONTINUE

DO 3540 J=35,37 READ(J,3520) LINE

3540 CONTINUE 3550 CONTINUE

RE8=0 REEQMAX=O DO 3580 I=1,49 RE=O

Page 110: Detailed Nonlinear Seismic Analysis of a 150m Guyed Telecommunication Tower

DO 3560 J=13,19 READ(J,*) T,R IF (I.EQ.1) REB=REB+R IF ((I.EQ.l).AND.iJ.EQ.lS)) RE8=REB+R IF ((I.EQ.l).AND.(J.EQ.17)) RE8=RE8+R IF ((I.EQ.l).AND.iJ.EQ.lg)) REB=REB+R RE=RE+R IF iJ.EQ.15) RE=RE+R IF (J.EQ.17) RE=RE+R IF (J.EQ.19) RE=RE+R

3560 CONTINUE DO 3570 J=35,37 READ(J,*) T,R IF (I.EQ.l) RE8=RE8+R RE=RE+R

3570 CONTINUE REEQ=RE IF (ABS(REEQ).LE.ABS(REEQMAX)) GO TO 3580 TEEQMAX=T REEQMAX=REEQ

3580 CONTINUE 3590 DO 3620 I=1,10

DO 3600 J=13,19 READ(J.3520) LINE

3600 CONTINUE DO 3610 J=35,37 READ(J.3520) LINE

3610 CONTINUE 3620 CONTINUE

DO 3660 I=1,51 RE=O DO 3630 J=13,19 READ(J,*) T,R RE=RE+R IF (J.EQ.15) RE=RE+R IF (J.EQ.17) RE=RE+R IF (J.EQ.19) RE=RE+R

3630 CONTINUE DO 3640 J=35,37 READ(J,*) T,R RE=RE+R

3640 CONTINUE REEQ=RE IF (ABS(REEQ).LE.ABS(REEQMAX)) GO TO 3650 TEEQMAX=T REEQMAX=REEQ

3650 IF (T.EQ.20) GO TO 3670 3660 CONTINUE

GO TO 3590 3670 REEQMAX=ABS(REEQMAX-RE8)/1000

RE8=RE8/1000 WRITE(22.280) REU,TEEQMAX,REEQMAX DO 3810 IT=l,NGL DO 3690 I=1,2 DO 3680 J=20,39,19 READ(J.3520) LINE

3680 CONTINUE 3690 CONTINUE

RE8=0 REEQMAX=O DO 3710 I=1,49 RE=O DO 3700 J=20,39.19 READ(J,*) T,R

Page 111: Detailed Nonlinear Seismic Analysis of a 150m Guyed Telecommunication Tower

IF ((I.EQ.l).AND.(J.EQ.20)) RE8=RE8-R*COS(ALPHAA(IT)) IF ((I.EQ.l).AND.(J.NE.201) RE8=RE8+R*COS(ALPW(IT)) IF (J.EQ.~o) RE=RE-R*COS(ALPHAA(IT)) IF (J.NE.20) RE=RE+R*COS(ALPW(IT)) CONTINUE REEQ=RE IF (ABS(REEQ).LE.ABS(REEQMAXl) GO TO 3710 TEEQMAX=T REEQMAX=REEQ CONTINUE DO 3740 I=1,10 DO 3730 J=20,39,19 READ(J.3520) LINE CONTINUE CONTINUE DO 3770 I=1,5i RE=O DO 3750 J=20,39,19 READIJ, *1 T,R IF (J.EQ.~o) RE=RE-R*COS(ALPHAA(IT)) IF (J.NE.20) RE=RE+R*COS(ALPHAA(IT)~ CONTINUE REEQ=RE IF (ABS(REEQ).LE.ABS(REEQMAXll GO TO 3760 TEEOMAX=T

CONTINUE WRITE(22.280) RE8.TEEQMAX.REEQMAX CONTINUE IF (EQUIVALENT.EQ.'E') GO TO 4010 I0=25 IEO=14

Page 112: Detailed Nonlinear Seismic Analysis of a 150m Guyed Telecommunication Tower

OPEN(IO,FILE=OUT) DO 4040 1=2,5 CLOSE ( I )

4040 CONTINUE DO 4050 I=IEQ, IC CLOSE (I )

4050 CONTINUE OPEN(2,FILE=SHEAR,STATUS='old') OPEN(3,FILE=AXIAL,STATUS='old') OPEN(4,FILE=MOMENT,STATUS='old') OPEN(5,FILE=TENSION,STATUS='old') OPEN(IEQ,FILE=EARTHQUAKE,STATUS='old') OPEN(IMH,FILE=MASTH,STATUS='old') OPEN(IMA,FILE=MASTA,STATUS='old') OPEN(IMR,FILE=MASTR,STATUS='old') OPEN(IC,FILE=CABLE,STATUS='old') WRITE(I0,4055) 'File Name = ',OUT

4055 FORMAT(lOX.Al2,AE) WRITE(I0,4070) ' ' WRITE(I0.4060) 'Tower Height (m) = ',H

4060 FORMAT(lOX,A19,A3) WRITE(I0.4070) ' '

4070 FORMAT(A1) IF (EQ.EQ.'s') EQO='Sin(0.75)' IF (EQ.EQ.'e') EQO='El Centro' IF (EQ.EQ.'p') EQO='Parkfield' IF (EQ.EQ.'t') EQO='Taft' WRITE(IO.4080) 'Earthquake Accelerogram = ',EQO

4080 FORMAT(lOX,A26,A9) WRITE(I0,4070) ' ' IF (EQUIVALENT.EQ.'n') GO TO 4100 WRITE(IO.4090) 'Equivalent Model'

4090 FORMAT(lOX.Al6) WRITE(I0,4070) ' ' GO TO 4140

4100 IF (XB.EQ.'n') GO TO 4120 WRITE(I0,4110) 'X-Braced Diagonals'

4110 FORMAT(lOX,A18) WRITE(I0.4070) ' '

4120 IF (TS.EQ.'t') GO TO 4140 WRITE(I0.4130) 'Square Cross-Sectional Plan'

4130 F0RMAT(10XrA27) WRITE(I0,4070) ' '

4140 READ(3.4150) TW0,TW 4150 FORMAT(A20,F20.2)

WRITE(IO.4160) TW0,TW 4160 FORMAT(10X,A2O,F10.2)

WRITE(I0,4070) ' ' WRITE(I0.4170) ' (1) Value due to Self Weight & Initial Prestress'

4170 FORMAT(lOX,A48) WRITE(I0,4180) '(2) Time (sec) at Maximum Response'

4180 FORMAT(lOX.A34) WRITE(I0.4190) '(3) Maximum Response due to Earthquake'

4190 FORMAT(lOX.A38) WRITE(I0,4200)

4200 FORMAT(lOX,A48) WRITE(I0,4070) ' ' WRITE(I0.4210) 'Earthquake Force ( k N ) '

Page 113: Detailed Nonlinear Seismic Analysis of a 150m Guyed Telecommunication Tower

GO TO 4220 4240 WRITE(I0,40701 ' '

WRITE(I0.42501 'Cable Tension (kN)' 4250 FORMAT(lOX.Al8)

WRITE(IO.4070) ' ' 4260 READ(5,4230rEND=4270) R8,TEQMAX.REQMAX

TEQMAX=TEQMAX-8 WRITE(I0.4230) R8,TEQMAX.REQMAX GO TO 4260

4270 WRITE(I0.4070) ' ' WRITE(IO.42801 'Mast Shear ( I c N ) '

4280 FORNAT(lOX,A151 WRITE(I0.4070) ' '

4290 READ(2,423O,END=4300) RB,TEQMAX,REQMAX TEQMAX=TEQMAX-8 WRITE(IO,4230) RB,TEQMAX,REQMAX GO TO 4290

4300 WRITE(IO,4070) ' ' WRITE(IO.4310) 'Mast Axial Force (kN)' FORMAT(10XrA211 WRITE(IO,4070) ' ' READ(3,4230,END=43301 R8,TEQMAX.REQMAX TEQMAX=TEQMAX-8 WRITE(I0.4230) R8,TEQMAX.REQMAX GO TO 4320 WRITE(I0.4070) ' ' w~1~~(10,4340) 'Mast Moment (IcN-m)' FORMATIlOX.Al8)

GO TO 4350 4360 WRITE(I0.4070) ' '

WRITE(I0.4370) 'Cable Oscillation im) 4370 FORMAT(lOX,A21)

-~ -~ ~~~

4390 WRITE(I0.4070I ' ' WRITE(I0,4400) 'Mast Horizontal Displacement (m)'

4400 FORMAT(lOX.A32) WRITEiIO.4070) ' '

4410 R E A D ( I M H , ~ ~ ~ O , E N D = ~ ~ ~ O ) R8,TEQMAX.REQMAX TEQMAX=TEQMAX-8 WRITE(IO,4230) R8,TEQYIAX.REQMAX GO TO 4410

4420 WRITE(I0,4070) ' ' w~1~~(10,4430) 'Mast Axial Displacement (m)

4430 FORMAT(lOX,A27) WRITE(I0.4070) ' '

4440 READ(IMA,4230,END=4450) RB,TEQMAX,REQMAX TEQMAX=TEQMAX-8 WRITE(IO.4230) R8,TEQMAX.REQMAX GO TO 4440

4450 WRITEiIO.4070) ' ' WRITE (10; 4460) 'Mast Rotation (degree) '

4460 FORMAT(lOX,A221 WRITE(I0,4070) ' '

4470 READ(1~R,4230,END=6000) R8,TEQMAX.REQMAX TEQMAX=TEQMAX-8 WRITE(IO,4230) R8,TEQMIU(,REQMAX

Page 114: Detailed Nonlinear Seismic Analysis of a 150m Guyed Telecommunication Tower

GO TO 4470 6000 STOP

END SUBROUTINE MAXWRITE(R8S.TEQMAXSrREQMAXS,JS) IMPLICIT REAL*8(A-H,O-Z) CHARACTER LINE*96 READ(1,6100) LINE WRITE(6,6100) LINE WRITE(JS,6100) LINE READ(1,6100) LINE WRITE(6.6100) LINE WRITE(JS.6100) LINE

6100 FORMAT(A96)

REQMAXS=REQ 62 00 CONTINUE 6300 DO 6400 I=1,10

READ(l.6100) LINE WRITE(6,6100) LINE WRITE(JS,6100) LINE

6400 CONTINUE DO 6600 I=1,51 READ(l,*) T,R WRITE(6,*) T,R WRITE(JS,*) T,R REQ=R IF (ABS(REQ).LE.ABS(REQMAXS)) GO TO 6500 - TEQMAXS=T REQMAXS=REQ

6500 IF (T.EQ.20) GO TO 6700 6600 CONTINUE

GO TO 6300 6700 RETURN

END

CHARACTER LINE*96 DO 6900 I=1,2 READ(1.6800) LINE WRITE(6.6800) LINE WRITE(JS,6800) LINE

6800 FORMAT(A96) 6900 CONTINUE

DO 7000 I=1,49 READ(l,*) T,R WRITE(6,*) T,R WRITE(JS,*) T,R

7000 CONTINUE 7100 DO 7200 I=1,10

READ(1.6800) LINE WRITE(6.6800) LINE WRITE(JS.6800) LINE

7200 CONTINUE

Page 115: Detailed Nonlinear Seismic Analysis of a 150m Guyed Telecommunication Tower

WRITE(^,*) T,R WRITE(JS,*) T,R IF (T.EQ.20) GO TO 7400

7300 CONTINUE GO TO 7100

7400 RETURN END SUBROUTINE WRITEIJS) IMPLICIT REAL*8(A-H.0-Z) CHARACTER LINE*96 DO 7900 I=l.ll ~ ~ ~ ~ ( 1 , 7 8 0 0 ) LINE WRITE(6.7800) LINE WRITE(JS.7800) LINE

7800 FORMAT(A96) 7900 CONTINUE

DO 8000 I=1.49 READ(l,*) T,R WRITE(6,*) T,R WRITE(JS,*) T,R

8000 CONTINUE 8100 DO 8200 I=1,10

READ(1.7800) LINE WRITE(6.7800) LINE WRITE(JS,78OO) LINE

8200 CONTINUE DO 8300 I=1,53 READ(1, * ) T,R WRITE(6,*) T,R WRITE(JS,*) T,R IF (T.EQ.20) GO TO 8400

8300 CONTINUE GO TO 8100

8400 RETURN END SUBROUTINE SKIP1 CHARACTER LINE*96 READ(1.8800) LINE WRITE(6.8800) LINE

8800 FORMAT(A96) RETURN END SUBROUTINE SKIP6 CHARACTER LINE*96 DO 9000 I=1,6 READ(1.8900) LINE WRITE(6.8900) LINE

8900 FoRMAT(A~~) 9000 CONTINUE

RETURN END SUBROUTINE SKIP9 CHARACTER LINE*96 DO 9200 I=1,9 READ(1.9100) LINE WRITE(6.9100) LINE

9100 FORMAT(A96) 9200 CONTINUE

RETURN END SUBROUTINE MAX(R8S,TEQMAXS,REQMAXS) IMPLICIT REAL*8(A-H,O-2)

Page 116: Detailed Nonlinear Seismic Analysis of a 150m Guyed Telecommunication Tower

CHARACTER LINE*96 READ(1.9300) LINE WRITE16,9300) LINE READ(1.9300) LINE WRITE16.9300) LINE

IF-(ABS(REQ) .LE.ABS(REQMAXSI) GO TO 9400 TEQMAXS=T REQMAXS=REQ

9400 CONTINUE 9500 DO 9600 I=1,10

READ(l.9300) LINE WRITE(6.9300) LINE

9600 CONTINUE DO 9800 I=1,51 READ(l,*) T,R WRITE16,*) T,R REQ=R IF (ABSIREQ).LE.ABS(REQMAXS)) GO TO 9700 TEQMAXS=T

- -

GO TO 9500 9900 RETURN

END

Page 117: Detailed Nonlinear Seismic Analysis of a 150m Guyed Telecommunication Tower

APPENDIX C: Maximum tower response results

Page 118: Detailed Nonlinear Seismic Analysis of a 150m Guyed Telecommunication Tower

File Name = out.150e

Tower Height (mi = 150

Earthquake Accelerogram = El Centro

Total Weight (KN) = 334.00

(First Column) Value due to Self Weight & Initial Prestress (Second Column) Time (sec) at Maximum Response (Third Column) Maximum Response due to Earthquake Lines represent the variables at stay levels (midspans between stay levels, base and top part of tower, if applicable) ................................................

Earthquake Force ( k N )

Cable Tension (kN)

Mast Shear ( IcN)

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

-0.01

Mast Axial Force (kN)

Page 119: Detailed Nonlinear Seismic Analysis of a 150m Guyed Telecommunication Tower

Mast Moment (kN-m)

Cable Oscillation im)

Mast Horizontal Displacement

Mast Axial Displacement (m)

Page 120: Detailed Nonlinear Seismic Analysis of a 150m Guyed Telecommunication Tower

Mast Rotation (degree)

Page 121: Detailed Nonlinear Seismic Analysis of a 150m Guyed Telecommunication Tower

File Name = out.150~

Earthquake Accelerogram = Parkfield

Total Weight (KN) = 334.00

(First Column) Value due to Self Weight & Initial Prestress (Second Column) Time (sec) at Maximum Response (Third Column) Maximum Response due to Earthquake Lines represent the variables at stay levels (midspans between stay levels, base and top part of tower, if applicable)

Earthquake Force ( k N )

Cable Tension (kN)

Mast Shear ( k N )

Mast Axial Force ( k N )

Page 122: Detailed Nonlinear Seismic Analysis of a 150m Guyed Telecommunication Tower

792.26 4.700 678.98 4.690 549.77 4.715 551.35 4.715 537.88 4.750 409.68 4.750 397.57 4.640

Mast Moment (icN-m)

0.00 4.280 0 . 0 1 4.325 -0.01 4.165 0.00 4.360 0.00 4.275 0.00 4.475 0.00 4.535 0.01 4.760 0.00 4.680 0.02 4.330 0.00 4.760 -0.01 4.805 -0.06 4.795 -0.10 4.830

Cable Oscillation (ml

0.40 5.015 0.4i 5.030 0.55 5.100 0.64 5.175 1.51 4.725 1.84 4.770 1.82 4.800

Mast Horizontal Displacement (m)

0.00 4.240 0.00 4.260 0.00 4.275 0.00 4.290 0.00 4.310 0.00 4.330 0.00 4.350 0.00 4.380 0.00 4.700 0.00 4 .725 0.00 4.740 0.00 4.750 0.00 4.745 0.00 4.700 0.00 4.635

Mast Axial Displacement (m)

0.00 4.260 -0.01 4.285 -0.01 4.305 -0.01 4.330 -0.02 4.350 -0.02 4.415 -0.03 4.460 -0.03 4.500 -0.03 5.030

Page 123: Detailed Nonlinear Seismic Analysis of a 150m Guyed Telecommunication Tower

Mast Rotation (degree1

Page 124: Detailed Nonlinear Seismic Analysis of a 150m Guyed Telecommunication Tower

File Name = out.150t

Tower Height (m) = 150

Earthquake Accelerogram = Taft

Total Weight (KN) = 334.00

(First Column) Value due to Self Weight & Initial Prestress (Second Column) Time (sec) at Maximum Response (Third Column) Maximum Response due to Earthquake Lines represent the variables at stay levels (midspans between stay levels, base and top part of tower, if applicable)

Earthquake Force (kN)

Cable Tension (kN)

Mast Shear (kN)

Axial Force (kN) Mast

Page 125: Detailed Nonlinear Seismic Analysis of a 150m Guyed Telecommunication Tower

Mast Moment ( M - m )

Cable Oscillation (m)

Mast Horizontal Displacement (m)

Mast Axial Displacement (m)

Page 126: Detailed Nonlinear Seismic Analysis of a 150m Guyed Telecommunication Tower

Mast Rotation (degree)

Page 127: Detailed Nonlinear Seismic Analysis of a 150m Guyed Telecommunication Tower

File Name = out.15OeHV

Tower Height (m) = 150

Earthquake Accelerogram = El Centro (Horizontal + Vertical)

Total Weight (KN) = 333.99

(First Column) Value due to Self Weight & Initial Prestress (Second Column) Time (sec) at Maximum Response (Third Column) Maximum Response due to Earthquake Lines represent the variables at stay levels (midspans between stay levels, base and top part of tower, if applicable) ................................................

Earthquake Force (kN)

Cable Tension

Mast Shear ( k N )

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.01 0.00 0.00 0.00 0.00

Mast Axial Force I

Page 128: Detailed Nonlinear Seismic Analysis of a 150m Guyed Telecommunication Tower

Mast Moment (IcN-m)

0.00 2.335 -0.01 2.375 -0.01 2.450 0.00 2.425 0.00 2.530 0.00 2.555 0.00 2.795 0.01 5.345 0.00 2.525 0.02 4.630 0.00 2.790 -0.01 5.085 -0.06 3.095 -0.10 3.115

Cable Oscillation (m)

0.40 2.955 0.41 3.015 0.55 6.005 0.64 5.530 1.51 5.705 1.84 5.820 1.82 5.770

Mast Horizontal Displacement (m)

0.00 2.290 0.00 5.055 0.00 5.060 0.00 5.065 0.00 5.070 0.00 2.385 0.00 2.410 0.00 2.195 0.00 2.215 0.00 2.225 0.00 2.235 0.00 2.235 0.00 2.230 0.00 2.210 0.00 2.410

Mast Axial Displacement (m)

Page 129: Detailed Nonlinear Seismic Analysis of a 150m Guyed Telecommunication Tower

Mast Rotation (degree)

Page 130: Detailed Nonlinear Seismic Analysis of a 150m Guyed Telecommunication Tower

File Name = out.15OpHV

Tower Height (m) = 150

Earthquake Accelerogram = Parkfield (Horizontal + Vertical)

Total Weight (KN) = 334.02

(First Column) Value due to Self Weight & Initial Prestress (Second Column) Time (sec) at Maximum Response (Third Column) Maximum Response due to Earthquake Lines represent the variables at stay levels (midspans between stay levels, base and top part of tower, if applicable)

Earthquake Force (kN)

Cable Tension (kN)

Mast Shear (kN)

Mast Axial Force (kN)

Page 131: Detailed Nonlinear Seismic Analysis of a 150m Guyed Telecommunication Tower

Mast Moment ( k r - m )

Cable Oscillation (m)

Mast Horizontal Displacement (m)

Mast Axial Displacement (m)

Page 132: Detailed Nonlinear Seismic Analysis of a 150m Guyed Telecommunication Tower

Mast Rotation (degree)

Page 133: Detailed Nonlinear Seismic Analysis of a 150m Guyed Telecommunication Tower

File Name = out.15OtHV

Tower Height (m) = 150

Earthquake Accelerogram = Taft (Horizontal + Vertical)

Total Weight (KN) = 333.90

(First Column) Value due to Self Weight & Initial Prestress (Second Column) Time (sec) at Maximum Response (Third Column) Maximum Response due to Earthquake Lines represent the variables at stay levels (midspans between stay levels, base and top part of tower, if applicable) ................................................

Earthquake Force (kN)

0.03 7.305 141.45 0.00 6.950 8.08 0.04 7.460 29.40 0.00 7.500 26.46 0.00 7.320 22.34 -0.01 11.475 28.11 0.00 11.755 26.02 0.00 7.330 33.34

Cable Tension (kN)

21.62 7.435 6.28 17.21 7.460 11.31 31.37 7.500 22.92 43.18 7.565 21.23 22.31 11.735 13.22 49.32 11.745 28.34 76.08 9.280 16.83

Mast Shear (kN)

0.00 7.585 0.00 9.295 0.00 7.910 -0.01 7.595 0.00 8.225 0.00 11.485 0.00 10.215 0.00 8.195

Mast Axial Force ( k N )

1030.24 9.8iO 1020.99 9.810 1010.31 9.810 983.35 9.810 911.33 9.610 896.63 4.480 881 -73 4.480 805.74 4.480

Page 134: Detailed Nonlinear Seismic Analysis of a 150m Guyed Telecommunication Tower

409.68 4.480 397.57 4.480

Mast Moment (kN-mi

0.00 7.450 -0.01 9.255 -0.01 7.750 0.00 7.740 0.00 7.455 0.00 7.890 0.00 7.720 0.01 8.175 0.00 7.845 0.02 9.460 0.00 7.935 -0.01 7.980 -0.06 8.215 -0.10 8.265

Cable Oscillation (mi

0.40 4.470 0.41 4.015 0.55 4.080 0.64 4.160 1.51 4.275 1.84 4.355 1.82 4.445

Mast Horizontal Displacement (m)

0.00 9.155 0.00 7.435 0.00 7.445 0.00 7.460 0.00 7.480 0.00 7.280 0.00 7.295 0.00 7.315 0.00 10.285 0.00 11.470 0.00 11.750 0.00 6.270 0.00 6.280 0.00 7.330 0.00 7.325

Mast Axial Displacement (mi

0.00 11.815 -0.01 9.805 -0.01 9.810 -0.01 9.810 -0.02 9.810 -0.02 11.965 -0.03 11.970 -0.03 11.970 -0.03 11.970

Page 135: Detailed Nonlinear Seismic Analysis of a 150m Guyed Telecommunication Tower

Mast Rotation (degree)