Design the interface carbon materials & its application in ......Lithium ion capacitor (LIC)...

33
Design the interface carbon materials & its application in lithium ion capacitors LI Feng (李峰) Shenyang National Lab for Material Science Institute of Metal Research, CAS 72 Wenhua Road, Shenyang, China [email protected]

Transcript of Design the interface carbon materials & its application in ......Lithium ion capacitor (LIC)...

Page 1: Design the interface carbon materials & its application in ......Lithium ion capacitor (LIC) Separator. Electrolyte. Active Materials : Carbon. Current Collector. U. ... ighest retention

Design the interface carbon materials &

its application in lithium ion capacitors

LI Feng (李峰)

Shenyang National Lab for Material Science

Institute of Metal Research, CAS

72 Wenhua Road, Shenyang, China

[email protected]

Page 2: Design the interface carbon materials & its application in ......Lithium ion capacitor (LIC) Separator. Electrolyte. Active Materials : Carbon. Current Collector. U. ... ighest retention

Outline

Carbon & Supercapacitor

Materials - From Design to High Energy

Cell - From Power to Function

Summary

Page 3: Design the interface carbon materials & its application in ......Lithium ion capacitor (LIC) Separator. Electrolyte. Active Materials : Carbon. Current Collector. U. ... ighest retention

Applications of electrochemical energystorage system (ES)2

(ES)2

H. D. Yoo, Materials Today, 2014. 17. 110-121

Page 4: Design the interface carbon materials & its application in ......Lithium ion capacitor (LIC) Separator. Electrolyte. Active Materials : Carbon. Current Collector. U. ... ighest retention

Requirement of Application

LIC

C. Zhong, Chemical Society Reviews. 2015, 44, 7485-7539

Larger energy capacity

Better safety

Longer life

Higher power capacity

Wider temperature range

Lithium ion capacitor (LIC)

Page 5: Design the interface carbon materials & its application in ......Lithium ion capacitor (LIC) Separator. Electrolyte. Active Materials : Carbon. Current Collector. U. ... ighest retention

Separator

Electrolyte

Active Materials : CarbonCurrent Collector

U

Configuration of LICs Cell

Anode & Cathode can be same

Page 6: Design the interface carbon materials & its application in ......Lithium ion capacitor (LIC) Separator. Electrolyte. Active Materials : Carbon. Current Collector. U. ... ighest retention

Advantage and disadvantages

A: D:

High energy > 20 Wh/kg

High Cell voltage > 4 V

Long Life

Low power(Graphite) Low capacitance(AC)

K. Naoi, Energy & Environmental Science. 2012, 5, 9363–9373

4.2-4.3 VLIC

Page 7: Design the interface carbon materials & its application in ......Lithium ion capacitor (LIC) Separator. Electrolyte. Active Materials : Carbon. Current Collector. U. ... ighest retention

Material Level Cell Level

Capacitance

Cycle

Material

Energy

Power

Capacitance

Cycle

System

Page 8: Design the interface carbon materials & its application in ......Lithium ion capacitor (LIC) Separator. Electrolyte. Active Materials : Carbon. Current Collector. U. ... ighest retention

Strategies to improve energy density

C: specific capacitance (F/g)

Q: specific capacity (mAh/g)

U: working voltage (V)

High-capacity materials High-voltage electrolytes

aqueousorganic

Energy density (E):

E : Number & potential

Page 9: Design the interface carbon materials & its application in ......Lithium ion capacitor (LIC) Separator. Electrolyte. Active Materials : Carbon. Current Collector. U. ... ighest retention

1.5V

4.5 V

0 V

4.5V

Our example:

Symmetric graphene SCs in LiPF6 /EC+DMC electrolyte:

Working voltage relies on the electrode potential window.

Common Phenomena after Assembly of LICs

Page 10: Design the interface carbon materials & its application in ......Lithium ion capacitor (LIC) Separator. Electrolyte. Active Materials : Carbon. Current Collector. U. ... ighest retention

Question & Solution

• How to bring electrode materials and electrolytes into full play in LIC devices?

From the Fact:C and U are determined on the potential window of

each individual electrode in LICs.

To Solution:Tuning electrode potential window (EPW).

Page 11: Design the interface carbon materials & its application in ......Lithium ion capacitor (LIC) Separator. Electrolyte. Active Materials : Carbon. Current Collector. U. ... ighest retention

Tuning initial electrode potential (E0V) to

optimize EPW of each individual electrode

Our Method

Page 12: Design the interface carbon materials & its application in ......Lithium ion capacitor (LIC) Separator. Electrolyte. Active Materials : Carbon. Current Collector. U. ... ighest retention

Why can EP be tuned?

For LICs, Electrode potential

(EP) depends on surface

charge density of electrode

materials.

Pote

ntia

l

the state of charge

Batteries

LICs

potential plateau

Batteries LICs

Mechanism ofenergy storage

Phase transformationin bulk

Surface double-layeradsorption,

Surface Faradic reaction

Free energy (G) −nFE (content) 1/2 CE2 =1/2 ΔQE (variable)

Page 13: Design the interface carbon materials & its application in ......Lithium ion capacitor (LIC) Separator. Electrolyte. Active Materials : Carbon. Current Collector. U. ... ighest retention

Our Approach

E0V

E’0V

Page 14: Design the interface carbon materials & its application in ......Lithium ion capacitor (LIC) Separator. Electrolyte. Active Materials : Carbon. Current Collector. U. ... ighest retention

Twographeneelectrodes

Discharged to 1.16V

0.01~1.16V20 cycles

ECI bygalvanostatic

charge/discharge

Postive electrode

Held at 1.16V for 2h

Held at 1.16V for 2h

Negative electrode

Process of Tuning EP

Assembledinto twohalf-cells

with Licounter

Disassemledfrom half cellsand assembled into a SC device

② ③

Page 15: Design the interface carbon materials & its application in ......Lithium ion capacitor (LIC) Separator. Electrolyte. Active Materials : Carbon. Current Collector. U. ... ighest retention

4.3V

Performance of LIC after Tuning EP

Graphene:

U & C are improved simultaneously.

Page 16: Design the interface carbon materials & its application in ......Lithium ion capacitor (LIC) Separator. Electrolyte. Active Materials : Carbon. Current Collector. U. ... ighest retention

Charge/discharge Curves of

graphene LIC at different

current densities

1C = 175 mA/g

Capacitance retention of

graphene before/after

tuning EP

fourfold

Performance of LIC after Tuning EP

Page 17: Design the interface carbon materials & its application in ......Lithium ion capacitor (LIC) Separator. Electrolyte. Active Materials : Carbon. Current Collector. U. ... ighest retention

Ragone Plot

63 Wh kg-1

at 11kW kg-1

Energy density improved by 10 Times!

152 Wh kg-1

Weng Z, Li F, et al, Angew. Chem. Int. Ed. 2013. A Hot Paper selected.

Page 18: Design the interface carbon materials & its application in ......Lithium ion capacitor (LIC) Separator. Electrolyte. Active Materials : Carbon. Current Collector. U. ... ighest retention

Cycle Stability after Tuning EP

Graphene SC SWCNT SC

91%75%

The last 20 cycles of graphene SLIC

4.73 V

0.42 V

E0V = 1.17 V

C of positive electrode decreases

4.3 V 4.3 V

? Why & What

Page 19: Design the interface carbon materials & its application in ......Lithium ion capacitor (LIC) Separator. Electrolyte. Active Materials : Carbon. Current Collector. U. ... ighest retention

0 100 2000

1

2

3

4

Pote

ntia

l (V

vs. L

i/Li+ )

Specific Capacity

Cathode

Anode

Reason for performance decay

Unstablewindow

OO

H

OO

H

O

OH

Electrolyte reduction

Byproducts

Cathode

1 2 3 4-0.6

-0.4

-0.2

0.0

0.2

Curre

nt (m

A)

Potential vs. Li/Li+

1st

10th5thChallenge:

To minimize electrolyte reduction

e-

e-

e-

e-

Graphene cathode

Page 20: Design the interface carbon materials & its application in ......Lithium ion capacitor (LIC) Separator. Electrolyte. Active Materials : Carbon. Current Collector. U. ... ighest retention

0 1 2 3 4 5 61

2

3

Volta

ge

Time (h) for PEC

Electrolyte with LiODFB

PEC Region(Protective layer formation)

Unstable window

Preliminary electrochemical coating (PEC)

1 2 3 4-0.6

-0.4

-0.2

0.0

0.2

Curre

nt (m

A)

Potential vs. Li/Li+

1st (reduction of LiODFB)

10th5th

Mechanism of PEC (Decomposition of LiODFB)

J. Electrochem. Soc., 156 (2009) A318

BF O C

ODFB-1

Li+

LiBC2O4F2 ≈ 1.7V

Ion- conductiveElectron -insulating

Page 21: Design the interface carbon materials & its application in ......Lithium ion capacitor (LIC) Separator. Electrolyte. Active Materials : Carbon. Current Collector. U. ... ighest retention

Twographeneelectrodes

Discharged to 1.16V

0.01~1.16V20 cycles

PEC+ ECI bygalvanostatic

charge/discharge

Postive electrode

Held at 1.16V for 2h

Held at 1.16V for 2h

Negative electrode

ECI bygalvanostatic

charge/discharge

NEW Process for Tuning EP

Assembledinto twohalf-cells

with Licounter

Disassemledfrom half cellsand assembled

into a LIC device

② ③

Page 22: Design the interface carbon materials & its application in ......Lithium ion capacitor (LIC) Separator. Electrolyte. Active Materials : Carbon. Current Collector. U. ... ighest retention

OO

H

OO

H

OH

OO

H

OO

H

O

OH

Electrolyte reduction

Armored graphene (A-G)

PEC

Byproducts

Graphene (G)

PEC

No electrons

Baymax Armed Baymax

What happen during PEC

XY Shan, F LI, et al, Adv Energy Mater, 2016: 1502064

Page 23: Design the interface carbon materials & its application in ......Lithium ion capacitor (LIC) Separator. Electrolyte. Active Materials : Carbon. Current Collector. U. ... ighest retention

0 100 200 300 4000

200

400

600 Fresh cell 10th cycle 50th cycle 100th cycle

-Z''

(ohm

)

Z' (ohm)

G PEC-G

(a) (b)

0 200 400 600 8000

200

400

600

800 Fresh cell 10th cycle 50th cycle 100th cycle

Z' (ohm)

-Z''

(ohm

)

EIS after Cycled

Original cathode After PEC

Increasing Stable

Page 24: Design the interface carbon materials & its application in ......Lithium ion capacitor (LIC) Separator. Electrolyte. Active Materials : Carbon. Current Collector. U. ... ighest retention

Electrochemical performance of A-GLISC

020406080

100120140160

5 10 20 30 50 100

GLISCA-GLISC

Spec

ific

capa

city

(mA

hg-

1)

Current density / C

0 400 800 12000

1

2

3

4

5

Volta

ge (V

)

Time (sec.)

5C 10C 20C 30C 50C 100C

102 103 104100

101

102

103

Ener

gy D

ensi

ty (W

h kg

-1)

Power Density (W kg-1)

Fe3O4/G//3D G

AG//Li4Ti5O12

AC//TiO2-RGO

AC//Li4Ti5O12

All-graphene battery

A-GLISC

GLISC

Li+ PF6-A

node

Cathode

- +

Anode

Cathode

- +

GLISC A-GLISC

PEC

G A-G-2G G

Page 25: Design the interface carbon materials & its application in ......Lithium ion capacitor (LIC) Separator. Electrolyte. Active Materials : Carbon. Current Collector. U. ... ighest retention

0 200 400 600 800 10000

30

60

90

120

150

180

Cycle number

Spec

ific

Cap

acity

(mA

hg-1)

Cou

lom

bic

effic

ienc

y (%

)

0

20

40

60

80

100

GLISCCoulombic efficiency of A-GLISC

A-GLISC

Coulombic efficiency of GLISC

0

20

40

60

80

100

Cap

acity

Ret

entio

n (%

)

80 %

Lithium storage systems

Decay of 0.011% per cycle

Highest retention among lithium ion

capacitors reported up to now.

Cycling stability of A-GLISC

Page 26: Design the interface carbon materials & its application in ......Lithium ion capacitor (LIC) Separator. Electrolyte. Active Materials : Carbon. Current Collector. U. ... ighest retention

Cycled GG

A-G-2 Cycled A-G-2

1µm

0

20

40

60

80

100

Ato

mic

Per

cent

age

(%) C

O F P

1µm

0

20

40

60

80

100

Ato

mic

Per

cent

age

(%) C

O F P

1µm

0

20

40

60

80

100

Ato

mic

Per

cent

age

(%) C

O F P

1µm

0

20

40

60

80

100

Ato

mic

Per

cent

age

(%) C

O F P

Results after cycled

P

Page 27: Design the interface carbon materials & its application in ......Lithium ion capacitor (LIC) Separator. Electrolyte. Active Materials : Carbon. Current Collector. U. ... ighest retention

Material Level Cell Level

Smart ?!

Page 28: Design the interface carbon materials & its application in ......Lithium ion capacitor (LIC) Separator. Electrolyte. Active Materials : Carbon. Current Collector. U. ... ighest retention

0 40 80 1200

2

4

Specific capacity (mAhg-1)

Volta

ge (V

) 4.3 V

SWCNTs-SLIC

Electrolyte limit

2.8 V

SWCNTs-SC

① ② ③

_On-lineECI

PE Charge

NEDischarge

Device

+

NE vs. Li discharge

PE vs. Li charge

Fulfill on-line ECI in device

2 um 10 nm

Electrode materials: SWCNTs

_

+

E’ovFull cell

Voltage modulator Energy boosting

High-Energy output

Page 29: Design the interface carbon materials & its application in ......Lithium ion capacitor (LIC) Separator. Electrolyte. Active Materials : Carbon. Current Collector. U. ... ighest retention

Integrate intelligence into LICs

👍👍 Monitor per electrode

👍👍 Built-in alerts for safety

👍👍 Self diagnosis & regeneration

Smart LICs --- Transparent Box

Charge DischargeSCs

Transparent Box

How to bring interactivity and autonomy into LICs?

+_ Smart device into SCs

Sensitive to internalchange inside SCs

V1V2

Feedback

Our strategy:

XY Shan, F Li et al, Energy storage materials 1:146-151 2015

Page 30: Design the interface carbon materials & its application in ......Lithium ion capacitor (LIC) Separator. Electrolyte. Active Materials : Carbon. Current Collector. U. ... ighest retention

Feedback Safety monitoring

0 50 100 1500.0

1.5

3.0

4.5

Specific capacity / mAhg-1

Pote

ntia

l vs.

Li/L

i+

Feedback:V1, V2: Voltage sensorsV1 alerts when < 0V;V2 alerts when > 4.5V

5 μm

Graphene

Ep-Max En-Min

Ep-Max

V2 alerts and device turns off!

Smart function

_

+> 4.5V Electrolyte

< 0V Li plating V1

V2

Feedback

Energyoutput

0 100 2000

50

100

150Po

tent

ial (V

vs. L

i+ /Li)

Spec

ific c

apac

ity (m

Ahg-1

)

Cycle number

Charge Discharge

0.1

0.2

0.3

4.4

4.6

Ep-Max

En-Min

Electrolyte limit

Cycle Capacity

Page 31: Design the interface carbon materials & its application in ......Lithium ion capacitor (LIC) Separator. Electrolyte. Active Materials : Carbon. Current Collector. U. ... ighest retention

Feedback + Voltage modulator Self-regeneration

0 100 200 300 3500

50

100

0

50

100

Cycle number

Coul

ombi

c Effi

cienc

y (%)

Spec

ific C

apac

ity (m

Ahg-1

)

G-SLIC G-SLIC-R

Discharge

Regeneration (G-SLIC-R)

Coulombic efficiency

0.875 1.750 2.6250

50

100

150

Capa

city

(mAh

g-1)

Current density (Ag-1)

G-SCG-SLICG-SLIC-R

Smart function

_

+> 4.5V Electrolyte

< 0V Li plating V1

V2

Feedback

① ② ③

_

PE Charge

NEDischarge

+

On-line ECI

V2 alerts and device turns off!

0 50 100 1500.0

1.5

3.0

4.5

Specific capacity / mAhg-1

Pote

ntia

l vs.

Li/L

i+ Ep-Max

Page 32: Design the interface carbon materials & its application in ......Lithium ion capacitor (LIC) Separator. Electrolyte. Active Materials : Carbon. Current Collector. U. ... ighest retention

Summary• Energy density of carbon based LICs are dependent

on working potential window after assembled to

LIC devices, which can be tuning.

• Optimization of potential window from materials to

cell design can attain LICs with high energy

density, long life & smart .

• Developing novel design and assemble technology

for LICs.

Page 33: Design the interface carbon materials & its application in ......Lithium ion capacitor (LIC) Separator. Electrolyte. Active Materials : Carbon. Current Collector. U. ... ighest retention

Acknowledgement

• NSFC

• MOST

• CAS

• Prof. Huiming Cheng @ IMR

• Dr. Xuyi Shan @ IMR

• Mr. Yuzuo Wang @IMR

• Dr. Ze Weng @ Yale, USA

• Dr. Dawei Wang @ NSW, Australia

• Prof. Zhangquan Peng @ CIAC, CAS

Thank you very much

for your attention!