Design of a Gm-C filter of very low trans- conductance ...eestudentrg/ppt/SnehasishR.pdfSnehasish...

35
Presented by Snehasish Roychowdhury Department of Electrical Engineering, IIT Bombay Design of a Gm-C filter of very low trans- conductance & highly resistant to out-of- band Electromagnetic Interferences

Transcript of Design of a Gm-C filter of very low trans- conductance ...eestudentrg/ppt/SnehasishR.pdfSnehasish...

Page 1: Design of a Gm-C filter of very low trans- conductance ...eestudentrg/ppt/SnehasishR.pdfSnehasish Roychowdhury Department of Electrical Engineering, IIT Bombay Design of a Gm-C filter

Presented by

Snehasish Roychowdhury

Department of Electrical Engineering, IIT Bombay

Design of a Gm-C filter of very low trans-conductance & highly resistant to out-of-

band Electromagnetic Interferences

Page 2: Design of a Gm-C filter of very low trans- conductance ...eestudentrg/ppt/SnehasishR.pdfSnehasish Roychowdhury Department of Electrical Engineering, IIT Bombay Design of a Gm-C filter

Application: Gm-C filter of few Hz cut-off

Bio-Medical applications:

o Pulse rate of a human body is 72 pulses/min on average.

o Hence, to isolate and detect our pulses from environmental noises in electronic systems, low pass filters of cut-off frequency in Hz is needed.

o This is how we can reduce the out of band noises and interferences by low pass filtering.

13-Jun-16 Snehasish Roychowdhury 2

Page 3: Design of a Gm-C filter of very low trans- conductance ...eestudentrg/ppt/SnehasishR.pdfSnehasish Roychowdhury Department of Electrical Engineering, IIT Bombay Design of a Gm-C filter

Cut-off frequency of Gm-C filter 𝑣𝑖𝑛 βˆ’ π‘£π‘œπ‘’π‘‘ βˆ— πΊπ‘š = πΌπ‘œπ‘’π‘‘

Again,

π‘£π‘œπ‘’π‘‘ = πΌπ‘œπ‘’π‘‘ βˆ— (1

π‘ πΆπ‘™π‘œπ‘Žπ‘‘)

Hence, 𝑣𝑖𝑛 βˆ’ π‘£π‘œπ‘’π‘‘ βˆ— πΊπ‘š = π‘ πΆπ‘™π‘œπ‘Žπ‘‘π‘£π‘œπ‘’π‘‘

𝑣𝑖𝑛 βˆ— πΊπ‘š = π‘ πΆπ‘™π‘œπ‘Žπ‘‘ + πΊπ‘š βˆ— π‘£π‘œπ‘’π‘‘

π‘£π‘œπ‘’π‘‘

𝑣𝑖𝑛=

1

1+π‘ πΆπ‘™π‘œπ‘Žπ‘‘

πΊπ‘š

oHence, DC gain= 0dB

o Cut-off frequency of the filter is : πΊπ‘š

2Ο€πΆπ‘™π‘œπ‘Žπ‘‘ 𝐻𝑧

13-Jun-16 Snehasish Roychowdhury 3

Fig1: Gm-C filter using voltage follower configuration

Page 4: Design of a Gm-C filter of very low trans- conductance ...eestudentrg/ppt/SnehasishR.pdfSnehasish Roychowdhury Department of Electrical Engineering, IIT Bombay Design of a Gm-C filter

Block diagram of Gm-C filter

Cut-off freq=πΊπ‘š

2πœ‹πΆπ‘™π‘œπ‘Žπ‘‘

For 70Hz, Cload=1pF ,

Gm=0.47nA/V.

πΊπ‘š =π‘–π‘œπ‘’π‘‘

𝑣𝑖𝑑=

π‘–π‘œπ‘’π‘‘

π‘£π‘–π‘šβˆ— 𝐴𝑑𝑑𝑛. π‘“π‘Žπ‘π‘‘π‘œπ‘Ÿ

1

π‘˜

Voltage attenuator at input stage

reduces Gm

2nd stage Trans-conductor: Input: vim (voltage), output: Iout (current)

All transistors in Gm-C filter are in sub-threshold region.

13-Jun-16 Snehasish Roychowdhury 4

Fig2. Block diagram of Gm-C filter

Iout

Page 5: Design of a Gm-C filter of very low trans- conductance ...eestudentrg/ppt/SnehasishR.pdfSnehasish Roychowdhury Department of Electrical Engineering, IIT Bombay Design of a Gm-C filter

Cross-coupled trans-conductor design:

πΌπ‘œ1 = 𝐼1 + 𝐼3 & πΌπ‘œ2 = 𝐼2 + 𝐼4

𝐼1

𝐼2=

exp𝑣𝑠𝑠1βˆ’π‘£π‘š1

𝑛𝑉𝑇

exp𝑣𝑠𝑠1βˆ’π‘£π‘š2

𝑛𝑉𝑇

= exp (βˆ’π‘£π‘–π‘š

𝑛𝑉𝑇)

𝐼3

𝐼4=

exp𝑣𝑠𝑠2βˆ’π‘£π‘š2

𝑛𝑉𝑇

exp𝑣𝑠𝑠2βˆ’π‘£π‘š1

𝑛𝑉𝑇

= exp (π‘£π‘–π‘š

𝑛𝑉𝑇)

Now,

𝐼1 βˆ’ 𝐼2𝐼1 + 𝐼2

=exp

βˆ’π‘£π‘–π‘šπ‘›π‘‰π‘‡

βˆ’ 1

expβˆ’π‘£π‘–π‘šπ‘›π‘‰π‘‡

+ 1=

expβˆ’π‘£π‘–π‘š2𝑛𝑉𝑇

βˆ’ expπ‘£π‘–π‘š

2𝑛𝑉𝑇

expβˆ’π‘£π‘–π‘š12𝑛𝑉𝑇

+ expπ‘£π‘–π‘š

2𝑛𝑉𝑇

= βˆ’tanh (π‘£π‘–π‘š

2𝑛𝑉𝑇)

𝐼1 βˆ’ 𝐼2 = βˆ’πΌπ‘ π‘ 1 tanhπ‘£π‘–π‘š

2𝑛𝑉𝑇

𝐼3 βˆ’ 𝐼4 = 𝐼𝑠𝑠2 tanhπ‘£π‘–π‘š

2𝑛𝑉𝑇

πΌπ‘œπ‘‘ = πΌπ‘œ1 βˆ’ πΌπ‘œ2 = 𝐼𝑠𝑠2 βˆ’ 𝐼𝑠𝑠1 tanhπ‘£π‘–π‘š

2𝑛𝑉𝑇 … . . . (1)

13-Jun-16 Snehasish Roychowdhury 5

Fig3. Cross-coupled Trans-conductor

vim=vm1-vm2

vm1 vm2

Inputs of the trans-conductor: vm1 & vm2

Output current : Iod=Io1-Io2

Page 6: Design of a Gm-C filter of very low trans- conductance ...eestudentrg/ppt/SnehasishR.pdfSnehasish Roychowdhury Department of Electrical Engineering, IIT Bombay Design of a Gm-C filter

Voltage attenuator design:

DC Analysis:

Assume all gm’s & Ibias’s are

equal. Hence,

𝐼1 = 𝐼3 = 𝐼5 & 𝐼2 = 𝐼4 = 𝐼6

Now, for DC analysis, V1=V2

By symmetry,

Va=Vb=Vc &

V1=Vm1=Vm2=V2 ……………. (2)

13-Jun-16 Snehasish Roychowdhury 6

Fig ref: Sawigun, C.; Pal, D.; Demosthenous, A., "A wide-input linear range sub-threshold transconductor for sub-Hz filtering," in Circuits and Systems (ISCAS), Proceedings of 2010 IEEE International Symposium on , vol., no., pp.1567-1570,2010

Fig4. Normal voltage attenuator

Vm1 Vm2

Page 7: Design of a Gm-C filter of very low trans- conductance ...eestudentrg/ppt/SnehasishR.pdfSnehasish Roychowdhury Department of Electrical Engineering, IIT Bombay Design of a Gm-C filter

Voltage attenuator design (Ctd.)

Small signal Analysis:

Assumed all gm’s are equal.

(π‘£π‘Žβˆ’π‘£1) + (𝑣𝑐 βˆ’ 𝑣2) = 0

& π‘”π‘š

4π‘£π‘Ž βˆ’ 𝑣𝑐 = π‘”π‘š 𝑣𝑐 βˆ’ 𝑣2

(π‘£π‘Žβˆ’π‘£π‘) =2

3(𝑣1 βˆ’ 𝑣2) ….. (3)

Again,π‘”π‘š

4π‘£π‘Ž βˆ’ 𝑣𝑐 = π‘”π‘š π‘£π‘Ž βˆ’ π‘£π‘š1 = π‘”π‘š(π‘£π‘š2 βˆ’ 𝑣𝑐)

By solving: π‘£π‘š1 βˆ’ π‘£π‘š2 =π‘£π‘Žβˆ’π‘£π‘

2 ……. (4)

From (3) & (4), π‘£π‘š1 βˆ’ π‘£π‘š2 = π‘£π‘–π‘š =𝑣1βˆ’π‘£2

3=

𝑣𝑖𝑑

k …………. (5)

Attenuation factor for one stage attenuator = (1π‘˜ ).

13-Jun-16 Snehasish Roychowdhury 7

Fig5. ac equivalent of voltage attenuator

vm1 vm2

Page 8: Design of a Gm-C filter of very low trans- conductance ...eestudentrg/ppt/SnehasishR.pdfSnehasish Roychowdhury Department of Electrical Engineering, IIT Bombay Design of a Gm-C filter

Overall trans-conductor From (1) & (5),

πΌπ‘œπ‘‘ = 𝐼𝑠𝑠2 βˆ’ 𝐼𝑠𝑠1 tanh𝑣𝑖𝑑

2π‘˜π‘›π‘‰π‘‡ &

πΊπ‘š =(𝐼𝑠𝑠2βˆ’πΌπ‘ π‘ 1)

2π‘˜π‘›π‘‰π‘‡sech2 𝑣𝑖𝑑

2π‘˜π‘›π‘‰π‘‡ …(6)

Voltage Attenuator takes role in x-axis compression too.

Cross-coupled trans-conductor reduces Gm.

From Simulation: 𝐼𝑠𝑠1 = 4𝑛𝐴, 𝐼𝑠𝑠2 = 5.23𝑛𝐴, π‘˜ = 3

From eqn(6):Gmβ‰ˆ0.47nA/V. From simulation,

Gm has almost constant value:0.4637nS upto 140mVpp.

8 Fig6. Gm variation with input amplitude

(140mVpp, 0.463nA/V)

y=sech2(x)

Page 9: Design of a Gm-C filter of very low trans- conductance ...eestudentrg/ppt/SnehasishR.pdfSnehasish Roychowdhury Department of Electrical Engineering, IIT Bombay Design of a Gm-C filter

1st order Gm-C filter response

13-Jun-16 Snehasish Roychowdhury 9

Fig7. Closed loop Gm-C filter

Fig8. ac response of the Gm-C filter

Cut-off freq of unity gain

Closed loop confign: 71.18Hz

Roll off: -20dB/decade

Cut-off frequency, π‘“π‘œ =π‘”π‘š

2Ο€πΆπΏπ‘œπ‘Žπ‘‘

For Gm=0.463 nA/V , Cload=1pF , Theoretically cut-off frequency, fo=70.53Hz.

Page 10: Design of a Gm-C filter of very low trans- conductance ...eestudentrg/ppt/SnehasishR.pdfSnehasish Roychowdhury Department of Electrical Engineering, IIT Bombay Design of a Gm-C filter

HF linearity issue (coherent sampling)

13-Jun-16 Snehasish Roychowdhury 10

Fig10 : FFT Analysis (Log Magnitude vs frequency) with coherent sampling NWINDOW=29, NRECOED=512

Freq=10Hz

Amp=20mVpp

DC offset=78uV

Freq=1MHz

Amp=20mVpp

DC offset=0.24mV

Page 11: Design of a Gm-C filter of very low trans- conductance ...eestudentrg/ppt/SnehasishR.pdfSnehasish Roychowdhury Department of Electrical Engineering, IIT Bombay Design of a Gm-C filter

High frequency Interferences

Input stage offset is critical, as it is amplified at the output stage. So, we want to reduce offset at input stage, Voltage Attenuator.

Unity gain configura-

tion at high frequency

π‘‰π‘œπ‘’π‘‘ = 𝑉𝑏 = 𝑉𝐷𝐢

Hence, CM interference,

π‘£π‘π‘š =π‘£π‘Ž+𝑣𝑏

2= 𝑉𝐷𝐢 +

π‘£π‘’π‘šπ‘–

2

π‘£π‘‘π‘š = π‘£π‘Ž βˆ’ 𝑣𝑏 = π‘£π‘’π‘šπ‘–

It behaves like open loop

With both CM & DM

Interferences.DM inter-

ference can’t be avoided.

CM interference effect at output can be made zero by proper biasing technique.

13-Jun-16 Snehasish Roychowdhury 11

Fig11. High frequency equivalent circuit

CM interference

DM interference

Page 12: Design of a Gm-C filter of very low trans- conductance ...eestudentrg/ppt/SnehasishR.pdfSnehasish Roychowdhury Department of Electrical Engineering, IIT Bombay Design of a Gm-C filter

CM & DM Interferences

π»π‘π‘š =π‘£π‘œ1,π‘π‘š

π‘£π‘π‘š π‘£π‘‘π‘š=0

π»π‘‘π‘š =π‘£π‘œ1,π‘‘π‘š

π‘£π‘‘π‘š/2 π‘£π‘π‘š=0

Hence, π‘£π‘œ1 = π»π‘π‘šπ‘£π‘π‘š + 𝐻𝑑𝑣𝑑

& π‘£π‘œ2 = π»π‘π‘šπ‘£π‘π‘š βˆ’ 𝐻𝑑𝑣𝑑

13-Jun-16 Snehasish Roychowdhury 12

CM half circuit

DM half circuit

Fig12: Voltage attenuator

vo1 vo2 va vb

Page 13: Design of a Gm-C filter of very low trans- conductance ...eestudentrg/ppt/SnehasishR.pdfSnehasish Roychowdhury Department of Electrical Engineering, IIT Bombay Design of a Gm-C filter

Offset issues in front end Attenuator

Let, 𝒙 = π‘¨π’”π’Šπ’(ω𝒕)

For 2nd order harmonics at output:

π’™πŸ = π‘¨πŸπ’”π’Šπ’πŸ ω𝒕 =π‘¨πŸ

𝟐(𝟏 βˆ’ 𝒄𝒐𝒔(πŸΟ‰π’•))

Hence, 2nd order harmonics give DC offset that can’t be removed by low-pass filtering.

Offset 1 :

due to second order term : a2(Hcmvcm+Hdvd )2 ,

Offset 2 :

due to second order term : a2(Hcmvcm-Hdvd )2 ,

Hence, Offset 1 & Offset 2 are significantly different values from each other.

13

Page 14: Design of a Gm-C filter of very low trans- conductance ...eestudentrg/ppt/SnehasishR.pdfSnehasish Roychowdhury Department of Electrical Engineering, IIT Bombay Design of a Gm-C filter

Offset issues in front end Attenuator

This offset will increase further in second stage, where differential input is amplified by a high gain factor.

Let, net output vout=G*{(Offset1-Offset2)+2Hdvd} , G: gain of second stage= high

Draws huge offset at output.

Hence, elimination of offset

at the 1st stage is important.

Offset 1 :

due to : a2(Hcmvcm+Hdvd )2 ,

Offset 2 :

due to : a2(Hcmvcm-Hdvd )2 ,

Solution : as Hd≠0, we can make Hcm=0 for Offset1 = Offset 2.

By this, vout gets rid of any DC offset.

13-Jun-16 Snehasish Roychowdhury 14

Page 15: Design of a Gm-C filter of very low trans- conductance ...eestudentrg/ppt/SnehasishR.pdfSnehasish Roychowdhury Department of Electrical Engineering, IIT Bombay Design of a Gm-C filter

Reduce CM interference:

Outputs of attenuator: π‘£π‘œ1 = π»π‘π‘šπ‘£π‘ = π‘£π‘œ2 = π‘£π‘œ (say) {as vdm=0 here}

KCL at node s1 (7), vo1 (8), s2 (9):

𝑠𝐢𝑔𝑠1 + π‘”π‘š 𝑣𝑐 βˆ’ 𝑣𝑠1 + π‘”π‘š + 𝑠𝐢𝑔𝑠2 π‘£π‘œ βˆ’ 𝑣𝑠1 = 𝑠𝐢𝑇1𝑣𝑠1 (7)

π‘”π‘š + 𝑠𝐢𝑔𝑠2 π‘£π‘œ βˆ’ 𝑣𝑠1 + π‘”π‘š + 𝑠𝐢𝑔𝑠3 π‘£π‘œ βˆ’ 𝑣𝑠2 + 𝑠𝐢𝑇2π‘£π‘œ = 0 (8)

π‘”π‘š + 𝑠𝐢𝑔𝑠3 π‘£π‘œ = 𝑣𝑠2(π‘”π‘š + 𝑠(𝐢𝑔𝑠3 + 𝐢𝑇3)) (9)

From (9), find vs2 & Put in (8):

𝑣𝑠1 =

π‘£π‘œ1 2π‘”π‘š + 𝑠 𝐢𝑔𝑠2 + 𝐢𝑔𝑠3 + 𝐢𝑇2 βˆ’π‘”π‘š + 𝑠𝐢𝑔𝑠3

2

π‘”π‘š + 𝑠(𝐢𝑔𝑠3 + 𝐢𝑇3)

(π‘”π‘š+𝑠𝐢𝑔𝑠2)

Put vs1 in (7): π»π‘π‘š =π‘£π‘œ1

π‘£π‘π‘š=

(𝑠𝐢𝑔𝑠1)

(π‘”π‘š+𝑠𝐢𝑔𝑠2)βˆ’ 2π‘”π‘š1+𝑠 𝐢𝑇1+𝐢𝑔𝑠1+𝐢𝑔𝑠2

π‘”π‘š+𝑠𝐢𝑔𝑠22π‘”π‘š+𝑠 𝐢𝑔𝑠2+𝐢𝑔𝑠3+𝐢𝑇2 βˆ’

π‘”π‘š+𝑠𝐢𝑔𝑠32

π‘”π‘š+𝑠 𝐢𝑔𝑠3+𝐢𝑇3

Observation: Hcm decreases if CT1 & CT3 decreases. We want to minimize CT1 & CT3.

CT1=Cdb+Csb1+Csb2 , CT3=Csb3+ Cdb/2

13-Jun-16 Snehasish Roychowdhury 15

vcm vcm

vo1 vo2 s1 s2

Page 16: Design of a Gm-C filter of very low trans- conductance ...eestudentrg/ppt/SnehasishR.pdfSnehasish Roychowdhury Department of Electrical Engineering, IIT Bombay Design of a Gm-C filter

Reduction of CM interference(Ctd.)

CT1=Cdb+Csb1+Csb2 , CT3=Csb3+ Cdb/2

We want Csb=0, but in twin-tub CMOS process, shorting

S to B causes high well capacitance (CGND) at source.

Hence, one auxiliary pair source node(Vs1) is connected to

to bulk of main pair. This is Source-buffered structure.

Csb1+Csb2 sees almost same potential across it. Though

these two potentials are not exactly equal, but voltage

across Csb1+Csb2 is very small, causing it to be

virtually shorted.

In advantage, S & B of main pair are decoupled.

13-Jun-16 Snehasish Roychowdhury 16

Fig14: vertical p-MOS, Fig15: Source-buffering

Fig14 Ref: Jingjing Yu; Amer, A.; Sanchez-Sinencio, E., "Electromagnetic Interference Resisting Operational Amplifier," in Circuits and Systems I :Regular Papers, IEEE Transactions on , vol.61, no.7, pp.1917-1927, July 2014

Page 17: Design of a Gm-C filter of very low trans- conductance ...eestudentrg/ppt/SnehasishR.pdfSnehasish Roychowdhury Department of Electrical Engineering, IIT Bombay Design of a Gm-C filter

Common mode Transfer Function (Hcm)

13-Jun-16 Snehasish Roychowdhury 17

Fig17: Proposed Attenuator structure

Fig18: ac equivalent model of Half

Circuit for Common mode inputs

π’ˆπ’Žπ’—π’™πŸ = π’ˆπ’Žπ’—π’ˆπ’”πŸ + π’ˆπ’Žπ’ƒπ’—π’ƒπ’”πŸ

π’ˆπ’Žπ’—π’™πŸ = π’ˆπ’Žπ’—π’ˆπ’”πŸ + π’ˆπ’Žπ’ƒπ’—π’ƒπ’”πŸ

π’ˆπ’Žπ’—π’™πŸ = π’ˆπ’Žπ’—π’ˆπ’”πŸ‘ + π’ˆπ’Žπ’ƒπ’—π’ƒπ’”πŸ‘

𝐢1 = 𝐢𝑔𝑠1 + 𝐢𝑒π‘₯𝑑

Page 18: Design of a Gm-C filter of very low trans- conductance ...eestudentrg/ppt/SnehasishR.pdfSnehasish Roychowdhury Department of Electrical Engineering, IIT Bombay Design of a Gm-C filter

Calculation for CMTF (Hcm)

Applying KCL at A,B,C,D,E,X nodes, we get six equations.

By solving these equations, we get:

π‘―π’„π’Ž(∞) =𝒗𝒙

π’—πŸ=

πœΆπŸΙ£πŸβˆ’πœΆπŸΙ£πŸ

πœΆπŸπœ·πŸβˆ’πœΆπŸπœ·πŸ

Here, Ξ±1, Ξ±2 ,Ξ²1, Ξ²2 ,Ι£1, Ι£2 are constant values at very high

Frequency, coming from parasitic capacitances & C1.

By making , Hcm(∞)=0, we find a quadratic equation of C1.

By solving the equation , (C1=Cgs1+Cext ) we find:

π‘ͺ𝒆𝒙𝒕 = πŸ—πŸ“π’‡π‘­

Adding this amount of external capacitance will make Hcm= 0 at very high frequency.

13-Jun-16 Snehasish Roychowdhury 18

Fig18: ac equivalent model of Half

Circuit for Common mode inputs

Page 19: Design of a Gm-C filter of very low trans- conductance ...eestudentrg/ppt/SnehasishR.pdfSnehasish Roychowdhury Department of Electrical Engineering, IIT Bombay Design of a Gm-C filter

Comparison I (100mVpp)

13-Jun-16 Snehasish Roychowdhury 19

In frequency range [10Hz-100MHz], Maximum EMI induced offset (Magnitude): (i) Voltage attenuator with

cross-coupled transconductor based Gm-C filter:: 1.996% (ii) Proposed Gm-C filter:: 0.459%

Upto 100KHz, offsets are

almost same as parasitic effect

comes at high frequencies.

Upto 100KHz, EMI induced

Offset is very low(~uV). This

proves good linearity of the fil-

ter at low frequency.

Proposed Gm-C filter shows

small offset even at high freq

due to its immunity to CM inter

ference.

Acc to calculation, offset will

reach zero at infinite frequency

Fig19: EMI induced DC offset variation

with frequency for 100mVpp input signal

Page 20: Design of a Gm-C filter of very low trans- conductance ...eestudentrg/ppt/SnehasishR.pdfSnehasish Roychowdhury Department of Electrical Engineering, IIT Bombay Design of a Gm-C filter

Comparison II ( FFT: 50mVpp, 1MHz)

13-Jun-16 Snehasish Roychowdhury 20

Fig 20:Voltage attenuator with

cross-coupled trans-conductor

based Gm-C filter

DC offset=1.908mV

Fig 21: Proposed EMI

Resisting Gm-C Filter

DC offset=0.46mV

Coherent sampling: fin=1MHz, NWINDOW=29, NRECORD=512 : irreducible. DC Offset is reduced in EMI resisting filter.

Page 21: Design of a Gm-C filter of very low trans- conductance ...eestudentrg/ppt/SnehasishR.pdfSnehasish Roychowdhury Department of Electrical Engineering, IIT Bombay Design of a Gm-C filter

Comparison III (1MHz)

13-Jun-16 Snehasish Roychowdhury 21

With input amplitude,EMI induced DC offset increases. Rate of increment is less in proposed Filter.

For non-lineatity of the filter

at high frequency, DC offset

is high. Let, vin=Asin(Ο‰t). ie.

𝑣𝑖𝑛2 =

𝐴2

21 βˆ’ cos Ο‰t .This DC

Offset is high when amplitude

is high as seen in figure.

But, by making Hcm(∞)=0,

we are reducing non-linearity

of the filter at high frequency.

This is why at 𝑓 ≫ πΊπ΅π‘Š

(f=1MHz here), this proposed

filter is much immune to

Electromagnetic Interference.

(CM interference precisely)

Fig22: EMI Induced DC offset variation

with input EMI amplitude at 1MHz

Page 22: Design of a Gm-C filter of very low trans- conductance ...eestudentrg/ppt/SnehasishR.pdfSnehasish Roychowdhury Department of Electrical Engineering, IIT Bombay Design of a Gm-C filter

Conclusion

Advantage:

oFor out-of band EMI frequencies, when parasitic capacitances come in picture, EMI induced DC offset becomes a challenging issue. Hence, This approach for EMI resisting highly linear sub-kilohertz Gm-C filter is noble in this field.

Disadvantage:

o Added power dissipation

o Transistor area increment

13-Jun-16 Snehasish Roychowdhury 22

Page 23: Design of a Gm-C filter of very low trans- conductance ...eestudentrg/ppt/SnehasishR.pdfSnehasish Roychowdhury Department of Electrical Engineering, IIT Bombay Design of a Gm-C filter

THANK YOU

13-Jun-16 Snehasish Roychowdhury 23

Page 24: Design of a Gm-C filter of very low trans- conductance ...eestudentrg/ppt/SnehasishR.pdfSnehasish Roychowdhury Department of Electrical Engineering, IIT Bombay Design of a Gm-C filter

Source buffering We want to make Hcm=0 & accordingly we’ll choose C1

KCL at node C(10),E(11),D(12):

𝑠𝐢𝑔𝑠 + π‘”π‘š1 𝑣1 + 𝑣𝐸 βˆ’ 2𝑣𝐴 βˆ’ 2𝑣𝑏𝑠1 = 𝑠𝐢𝑇1𝑣𝐴 + 𝑠(𝐢𝑏𝑠1 + 𝐢𝑇1)𝑣𝑏𝑠1 .(10)

2𝑣𝐸 βˆ’ 𝑣𝐷 βˆ’ 𝑣𝐢 𝑠𝐢𝑔𝑠 + π‘”π‘š1 + 𝑠𝐢𝑇2𝑣𝐸 = 0 .(11)

𝑣𝐸 βˆ’ 𝑣𝐡 βˆ’ 𝑣𝑏𝑠2 𝑠𝐢𝑔𝑠 + π‘”π‘š1 = 𝑠𝐢𝑏𝑠2+𝐢𝑇3

2𝑣𝑏𝑠2 + 𝑠

𝐢𝑇3

2𝑣𝐡 .(12)

Solving (11) & (12) to omit vE:

π‘”π‘š + 𝑠 𝐢𝑔𝑠 +𝐢𝑠𝑏2+𝐢𝑇3

22π‘”π‘š + 𝑠 2𝐢𝑔𝑠2 + 𝐢𝑇2 βˆ’ π‘”π‘š + 𝑠𝐢𝑔𝑠

2βˆ— 𝑣𝑏𝑠2 + 𝑣𝐡 = (𝑣𝐴 + 𝑣𝑏𝑠1) π‘”π‘š + 𝑠𝐢𝑔𝑠

2 (13)

Put vE value from(12) in (10):

𝑠𝐢𝑔𝑠 + π‘”π‘š1 𝑣1 + 𝑣𝑏𝑠2 π‘”π‘š + 𝑠 𝐢𝑔𝑠 +𝐢𝑠𝑏2+𝐢𝑇3

2+ 𝑣𝐡 π‘”π‘š + 𝑠 𝐢𝑔𝑠 +

𝐢𝑇3

2=

𝑣𝐴 2π‘”π‘š + 𝑠 2𝐢𝑔𝑠 + 𝐢𝑇1 + 𝑣𝑏𝑠1 2π‘”π‘š + 𝑠 2𝐢𝑔𝑠 + 𝐢𝑇1 + 𝐢𝑠𝑏1 (14)

13-Jun-16 Snehasish Roychowdhury 24

Fig12: ac equivalent of the CM Half circuit

Page 25: Design of a Gm-C filter of very low trans- conductance ...eestudentrg/ppt/SnehasishR.pdfSnehasish Roychowdhury Department of Electrical Engineering, IIT Bombay Design of a Gm-C filter

Now, KCL at A(15), B(16), X(17):

𝑠𝐢1 + π‘”π‘š 𝑣1 + 𝑣π‘₯ + 2π‘”π‘šπ‘ + 𝑠𝐢𝑏𝑠1 𝑣𝑏𝑠1 = 2π‘”π‘š + 𝑠 2𝐢1 + 𝐢𝑇1 𝑣𝐴 ….…. (15)

𝑠𝐢1 + π‘”π‘š 𝑣π‘₯ + π‘”π‘šπ‘1 +𝑠𝐢𝑠𝑏2

2𝑣𝑠𝑏2 = π‘”π‘š + 𝑠 𝐢1 +

𝐢𝑇3

2𝑣𝐡 ……. (16)

2π‘”π‘š + 𝑠 2𝐢1 + 𝐢𝑇2 𝑣π‘₯ + π‘”π‘šπ‘ 𝑣𝑏𝑠1 + 𝑣𝑏𝑠2 = (𝑣𝐴 + 𝑣𝐡)(π‘”π‘š + 𝑠𝐢1) ……. (17)

For minimizing,we assume:

𝑀 𝑣𝑏𝑠2 + 𝑣𝐡 = 𝑁 𝑣𝐴 + 𝑣𝑏𝑠1 ……………………………..….…… (13.a) , 𝑀 = π‘”π‘š + 𝑠 𝐢𝑔𝑠 +𝐢𝑠𝑏2+𝐢𝑇3

22π‘”π‘š + 𝑠 2𝐢𝑔𝑠2 + 𝐢𝑇2 βˆ’ π‘”π‘š + 𝑠𝐢𝑔𝑠

2 ,

𝑁 = π‘”π‘š + 𝑠𝐢𝑔𝑠2

𝑃𝑣1 + 𝑄𝑣𝑏𝑠2 + 𝑅𝑣𝐡 = 𝑆𝑣𝐴 + 𝑇𝑣𝑏𝑠1 …………………….………. (14.a) 𝑃 = 𝑠𝐢𝑔𝑠 + π‘”π‘š1 , 𝑄 = π‘”π‘š + 𝑠 𝐢𝑔𝑠 +𝐢𝑠𝑏2+𝐢𝑇3

2, 𝑅 = π‘”π‘š + 𝑠 𝐢𝑔𝑠 +

𝐢𝑇3

2

𝐴 𝑣1 + 𝑣𝑋 + 𝐡𝑣𝑏𝑠1 = 𝐢𝑣𝐴……………………………………….…... (15.a) 𝑆 = 2π‘”π‘š + 𝑠 2𝐢𝑔𝑠 + 𝐢𝑇1 , 𝑇 = 2π‘”π‘š + 𝑠 2𝐢𝑔𝑠 + 𝐢𝑇1 + 𝐢𝑠𝑏1 , 𝐴 = 𝑠𝐢1 + π‘”π‘š , 𝐡 = 2π‘”π‘šπ‘ + 𝑠𝐢𝑏𝑠1

𝐷𝑣𝑋 + 𝐸𝑣𝑏𝑠2 = 𝐹𝑣𝐡 …………………………………………………….... (16.a) 𝐢 = 2π‘”π‘š + 𝑠 2𝐢1 + 𝐢𝑇1 , 𝐷 = 𝑠𝐢1 + π‘”π‘š , 𝐸 = π‘”π‘šπ‘1 +𝑠𝐢𝑠𝑏2

2,

𝐹 = π‘”π‘š + 𝑠 𝐢1 +𝐢𝑇3

2

𝐺𝑣𝑋 + 𝐻 𝑣𝑏𝑠1 + 𝑣𝑏𝑠2 = 𝐼(𝑣𝐴 + 𝑣𝐡) …………………………….. (17.a) 𝐺 = 2π‘”π‘š + 𝑠 2𝐢1 + 𝐢𝑇2 , 𝐻 = π‘”π‘šπ‘, 𝐼 = (π‘”π‘š + 𝑠𝐢1)

Solving (13.a) & (14.a):

𝑣𝑏𝑠2 = 𝑋2𝑣1 + π‘Œ2𝑣𝐡 + 𝑍2𝑣𝐴 where, 𝑋2 =𝑁𝑃

(π‘‡π‘€βˆ’π‘π‘„), π‘Œ2 =

βˆ’(π‘†βˆ’π‘‡)

(π‘‡π‘€βˆ’π‘π‘„), 𝑍2 =

βˆ’(π‘‡π‘€βˆ’π‘π‘…)

(π‘‡π‘€βˆ’π‘π‘„) ………(18)

𝑣𝑏𝑠1 = 𝑋1𝑣1 + π‘Œ1𝑣𝐡 + 𝑍1𝑣𝐴 where , 𝑋1 =𝑀𝑃

(π‘‡π‘€βˆ’π‘π‘„), π‘Œ1 =

𝑀(π‘…βˆ’π‘„)

(π‘‡π‘€βˆ’π‘π‘„), 𝑍1 = βˆ’ 1 +

𝑀 π‘†βˆ’π‘‡

π‘‡π‘€βˆ’π‘π‘„ ….….. (19)

13-Jun-16 Snehasish Roychowdhury 25

Page 26: Design of a Gm-C filter of very low trans- conductance ...eestudentrg/ppt/SnehasishR.pdfSnehasish Roychowdhury Department of Electrical Engineering, IIT Bombay Design of a Gm-C filter

At high frequency (s∞), we find the following:

𝑋2 =𝑁𝑃

(π‘‡π‘€βˆ’π‘π‘„)=

𝐢𝑔𝑠3

2𝐢𝑔𝑠+𝐢𝑇1+𝐢𝑠𝑏1 𝐢𝑔𝑠+𝐢𝑠𝑏2+𝐢𝑇3

22𝐢𝑔𝑠+𝐢𝑇2 βˆ’πΆπ‘”π‘ 

2 βˆ’πΆπ‘”π‘ 2 (𝐢𝑔𝑠+

𝐢𝑠𝑏2+𝐢𝑇32

)

π‘Œ2 =βˆ’π‘(π‘†βˆ’π‘‡)

(π‘‡π‘€βˆ’π‘π‘„)=

𝐢𝑠𝑏1βˆ—πΆπ‘”π‘ 2

2𝐢𝑔𝑠+𝐢𝑇1+𝐢𝑠𝑏1 𝐢𝑔𝑠+𝐢𝑠𝑏2+𝐢𝑇3

22𝐢𝑔𝑠+𝐢𝑇2 βˆ’πΆπ‘”π‘ 

2 βˆ’πΆπ‘”π‘ 2 (𝐢𝑔𝑠+

𝐢𝑠𝑏2+𝐢𝑇32

)

𝑍2 =βˆ’ π‘‡π‘€βˆ’π‘π‘…

(π‘‡π‘€βˆ’π‘π‘„)=

𝐢𝑔𝑠2 (𝐢𝑔𝑠+

𝐢𝑇32

)βˆ’ 2𝐢𝑔𝑠+𝐢𝑇1+𝐢𝑠𝑏1 𝐢𝑔𝑠+𝐢𝑠𝑏2+𝐢𝑇3

22𝐢𝑔𝑠+𝐢𝑇2 βˆ’πΆπ‘”π‘ 

2

2𝐢𝑔𝑠+𝐢𝑇1+𝐢𝑠𝑏1 𝐢𝑔𝑠+𝐢𝑠𝑏2+𝐢𝑇3

22𝐢𝑔𝑠+𝐢𝑇2 βˆ’πΆπ‘”π‘ 

2 βˆ’πΆπ‘”π‘ 2 (𝐢𝑔𝑠+

𝐢𝑠𝑏2+𝐢𝑇32

)

𝑋1 =𝑀𝑃

π‘‡π‘€βˆ’π‘π‘„=

𝐢𝑔𝑠+𝐢𝑠𝑏2+𝐢𝑇3

2 2𝐢𝑔𝑠+𝐢𝑇2 βˆ’πΆπ‘”π‘ 2 𝐢𝑔𝑠

2𝐢𝑔𝑠+𝐢𝑇1+𝐢𝑠𝑏1 𝐢𝑔𝑠+𝐢𝑠𝑏2+𝐢𝑇3

2 2𝐢𝑔𝑠+𝐢𝑇2 βˆ’πΆπ‘”π‘ 2 βˆ’πΆπ‘”π‘ 

2 (𝐢𝑔𝑠+𝐢𝑠𝑏2+𝐢𝑇3

2 )

π‘Œ1 =𝑀(π‘…βˆ’π‘„)

π‘‡π‘€βˆ’π‘π‘„=

βˆ’ 𝐢𝑔𝑠+𝐢𝑠𝑏2+𝐢𝑇3

2 2𝐢𝑔𝑠+𝐢𝑇2 βˆ’πΆπ‘”π‘ 2 βˆ—

𝐢𝑇32

2𝐢𝑔𝑠+𝐢𝑇1+𝐢𝑠𝑏1 𝐢𝑔𝑠+𝐢𝑠𝑏2+𝐢𝑇3

2 2𝐢𝑔𝑠+𝐢𝑇2 βˆ’πΆπ‘”π‘ 2 βˆ’πΆπ‘”π‘ 

2 (𝐢𝑔𝑠+𝐢𝑠𝑏2+𝐢𝑇3

2 )

𝑍1 =𝑀(π‘†βˆ’π‘‡)

π‘‡π‘€βˆ’π‘π‘„=

𝐢𝑔𝑠+𝐢𝑠𝑏2+𝐢𝑇3

2 2𝐢𝑔𝑠+𝐢𝑇2 βˆ’πΆπ‘”π‘ 2 βˆ—πΆπ‘ π‘1

2𝐢𝑔𝑠+𝐢𝑇1+𝐢𝑠𝑏1 𝐢𝑔𝑠+𝐢𝑠𝑏2+𝐢𝑇3

2 2𝐢𝑔𝑠+𝐢𝑇2 βˆ’πΆπ‘”π‘ 2 βˆ’πΆπ‘”π‘ 

2 𝐢𝑔𝑠+𝐢𝑠𝑏2+𝐢𝑇3

2

βˆ’ 1

All terms are independent of C1

13-Jun-16 Snehasish Roychowdhury 26

Page 27: Design of a Gm-C filter of very low trans- conductance ...eestudentrg/ppt/SnehasishR.pdfSnehasish Roychowdhury Department of Electrical Engineering, IIT Bombay Design of a Gm-C filter

Put equation(19) in (15.a): 𝑣1 𝐴 + 𝐡𝑋1 + π΅π‘Œ1𝑣𝐡 + 𝐴𝑣𝑋 = 𝐢 βˆ’ 𝐡𝑍1 𝑣𝐴

Put equation(18) in (16.a): 𝐷𝑣𝑋 + 𝐸𝑋2𝑣1 + 𝐸𝑍2𝑣𝐴 = 𝐹 βˆ’ πΈπ‘Œ2 𝑣𝐡

Put value of vA from first equation in second equation: 𝛼1𝑣𝐡 = 𝛽1𝑣𝑋 + Ι£1𝑣1 (20)

where, 𝛼1 = 𝐹 βˆ’ πΈπ‘Œ2 𝐢 βˆ’ 𝐡𝑍1 βˆ’ 𝐸𝑍2π΅π‘Œ1 , 𝛽1 = 𝐷 𝐢 βˆ’ 𝐡𝑍1 + 𝐸𝑍2𝐴 , Ι£1 = 𝐸𝑋2 𝐢 βˆ’ 𝐡𝑍1 + 𝐸𝑍2 𝐴 + 𝐡𝑋1

From (18) & (19), put values vbs1 & vbs2 in (17.a): 𝛼2𝑣𝐡 = 𝛽2𝑣𝑋 + Ι£2𝑣1 (21)

where, 𝛼2 = 𝐼 +πΌπ΅π‘Œ1

πΆβˆ’π΅π‘1βˆ’ 𝐻 π‘Œ1 + π‘Œ2 βˆ’

𝐻 𝑍1+𝑍2 π΅π‘Œ1

πΆβˆ’π΅π‘1 , 𝛽2 = 𝐺 +

𝐴𝐻 𝑍1+𝑍2

πΆβˆ’π΅π‘1βˆ’

𝐴𝐼

πΆβˆ’π΅π‘1 , Ι£2 = 𝐻 𝑋1 + 𝑋2 +

𝐻 𝑍1+𝑍2 𝐴+𝐡𝑋1

πΆβˆ’π΅π‘1βˆ’

𝐴+𝐡𝑋1 𝐼

πΆβˆ’π΅π‘1

From (20) & (21): 𝛼2

𝛼1𝛽1𝑣𝑋 + Ι£1𝑣1 = 𝛽2𝑣𝑋 + Ι£2𝑣1

π‘―π’„π’Ž =𝜢𝟐ɣ𝟏 βˆ’ 𝜢𝟏ɣ𝟐

𝜢𝟏𝜷𝟐 βˆ’ 𝜢𝟐𝜷𝟏

For Hcm=0, we find: 𝜢𝟐ɣ𝟏 βˆ’ 𝜢𝟏ɣ𝟐=0

𝐼(𝐢 βˆ’ 𝐡𝑍1) + πΌπ΅π‘Œ1 βˆ’ 𝐻 π‘Œ1 + π‘Œ2 (𝐢 βˆ’ 𝐡𝑍1) βˆ’ 𝐻 𝑍1 + 𝑍2 π΅π‘Œ1 βˆ— 𝐸𝑋2 𝐢 βˆ’ 𝐡𝑍1 + 𝐸𝑍2 𝐴 + 𝐡𝑋1 = 𝐹 βˆ’ πΈπ‘Œ2 𝐢 βˆ’ 𝐡𝑍1 βˆ’ 𝐸𝑍2π΅π‘Œ1 βˆ— 𝐻 𝑋1 + 𝑋2 (𝐢 βˆ’ 𝐡𝑍1) + 𝐻 𝑍1 + 𝑍2 𝐴 + 𝐡𝑋1 βˆ’ 𝐴 + 𝐡𝑋1 𝐼

1st term: 𝐼(𝐢 βˆ’ 𝐡𝑍1) + πΌπ΅π‘Œ1 βˆ’ 𝐻 π‘Œ1 + π‘Œ2 (𝐢 βˆ’ 𝐡𝑍1) βˆ’ 𝐻 𝑍1 + 𝑍2 π΅π‘Œ1 divide numerator and denominator by [order of

max(num, den) = 2] , we’ll find the term is simplified to: (𝐢1) 2𝐢1 + 𝐢𝑇1 βˆ’ 𝐢𝑏𝑠1𝑍1 + 𝐢1𝐢𝑏𝑠1π‘Œ1

2nd term: 𝐸𝑋2 𝐢 βˆ’ 𝐡𝑍1 + 𝐸𝑍2 𝐴 + 𝐡𝑋1 divide numerator and denominator by s2 gives:

𝐢𝑠𝑏2

2𝑋2 2𝐢1 + 𝐢𝑇1 βˆ’ 𝐢𝑏𝑠1𝑍1 +

𝐢𝑠𝑏2

2𝑍2 C1 + Cbs1𝑋1

13-Jun-16 Snehasish Roychowdhury 27

Page 28: Design of a Gm-C filter of very low trans- conductance ...eestudentrg/ppt/SnehasishR.pdfSnehasish Roychowdhury Department of Electrical Engineering, IIT Bombay Design of a Gm-C filter

3rd term: 𝐹 βˆ’ πΈπ‘Œ2 𝐢 βˆ’ 𝐡𝑍1 βˆ’ 𝐸𝑍2π΅π‘Œ1 is simplified by dividing num & den by s2 and put s∞

: 𝐢1 +𝐢𝑇3

2βˆ’

𝐢𝑠𝑏2

2βˆ— π‘Œ2 2𝐢1 + 𝐢𝑇1 βˆ’ 𝐢𝑏𝑠1𝑍1 βˆ’

𝐢𝑠𝑏2

2𝐢𝑏𝑠1 𝑍2π‘Œ1

4th term: 𝐻 𝑋1 + 𝑋2 (𝐢 βˆ’ 𝐡𝑍1) + 𝐻 𝑍1 + 𝑍2 𝐴 + 𝐡𝑋1 βˆ’ 𝐴 + 𝐡𝑋1 𝐼 is simplifed by dividing num & den by s2 and put s∞ : βˆ’ C1 + 𝐢𝑏𝑠1𝑋1 (𝐢1)

π‘ͺ𝟏𝟐 πŸ’π‘ΏπŸ + πŸπ’πŸ βˆ’ 𝟐 +

π‘ͺ𝟏 𝟐π‘ͺπ‘»πŸπ‘ΏπŸ βˆ’ 𝟐π‘ͺπ’ƒπ’”πŸπ’πŸπ‘ΏπŸ + πŸπ‚π›π¬πŸπ‘ΏπŸπ’πŸ + π‘ͺπ‘»πŸ βˆ’ π‘ͺπ’ƒπ’”πŸπ’πŸ + π‘ͺπ’ƒπ’”πŸπ’€πŸ πŸπ‘ΏπŸ + π’πŸ βˆ’ π‘ͺπ‘»πŸ βˆ’ π‘ͺπ’ƒπ’”πŸπ’πŸ βˆ’ π‘ͺπ’ƒπ’”πŸπ’πŸπ’€πŸ + 𝟐π‘ͺπ’ƒπ’”πŸπ‘ΏπŸ +π‘ͺπ‘»πŸ βˆ’ π‘ͺπ’ƒπ’”πŸπ’πŸ + π‘ͺπ’ƒπ’”πŸπ’€πŸ π‘ͺπ‘»πŸπ‘ΏπŸ βˆ’ π‘ͺπ’ƒπ’”πŸπ’πŸπ‘ΏπŸ + π‚π›π¬πŸπ‘ΏπŸπ’πŸ βˆ’ π‘ͺπ’ƒπ’”πŸπ‘ΏπŸ(π‘ͺπ‘»πŸ βˆ’ π‘ͺπ’ƒπ’”πŸπ’πŸ βˆ’ π‘ͺπ’ƒπ’”πŸπ’πŸπ’€πŸ) = 0

This follows the form: π‘ŽπΆ12 + 𝑏𝐢1 + 𝑐 = 0

From DC simulation: Cgs=7.05fF , Csb1=17.14fF , Csb2=17.02fF, CT1=10.46fF , CT2=10.47fF , CT3=10.47fF , gm=42.4nA/V

Hence, putting the values in all equations, π‘Ž = βˆ’4.03, 𝑏 = βˆ’2.53 βˆ— 10βˆ’15 & 𝑐 = 4.12 βˆ— 10βˆ’26

π‘ͺ𝟏 = βˆ’πŸ. πŸ“πŸ‘ βˆ— πŸπŸŽβˆ’πŸπŸ“ βˆ’ βˆ’πŸ. πŸ“πŸ‘ βˆ— πŸπŸŽβˆ’πŸπŸ“ 𝟐 + πŸ’ βˆ— πŸ’. πŸŽπŸ‘ βˆ— πŸ’. 𝟏𝟐 βˆ— πŸπŸŽβˆ’πŸπŸ”

𝟐 βˆ— πŸ’. πŸŽπŸ‘= 𝟏𝟎𝟎. πŸ•πŸ— 𝒇𝑭

𝐢1 = 𝐢𝑔𝑠 + 𝐢𝑒π‘₯𝑑 , Here, Cgs=7.05fF , 𝐢𝑒π‘₯𝑑 = 93.74𝑓𝐹

We consider, π‘ͺ𝒆𝒙𝒕 = πŸ—πŸ“π’‡π‘­

13-Jun-16 Snehasish Roychowdhury 28

RETURN

Page 29: Design of a Gm-C filter of very low trans- conductance ...eestudentrg/ppt/SnehasishR.pdfSnehasish Roychowdhury Department of Electrical Engineering, IIT Bombay Design of a Gm-C filter

Infinite frequency for 1st term:

1st term:

𝐼(𝐢 βˆ’ 𝐡𝑍1) + πΌπ΅π‘Œ1 βˆ’ 𝐻 π‘Œ1 + π‘Œ2 (𝐢 βˆ’ 𝐡𝑍1) βˆ’ 𝐻 𝑍1 + 𝑍2 π΅π‘Œ1

= π‘”π‘š + 𝑠𝐢1 2π‘”π‘š + 𝑠 2𝐢1 + 𝐢𝑇1 βˆ’ 2π‘”π‘šπ‘ + 𝑠𝐢𝑏𝑠1 𝑍1 + 2π‘”π‘šπ‘ + 𝑠𝐢𝑏𝑠1 π‘Œ1

βˆ’ π‘”π‘šπ‘ π‘Œ1 + π‘Œ2 2π‘”π‘š + 𝑠 2𝐢1 + 𝐢𝑇1 βˆ’ ,π‘”π‘šπ‘ 𝑍1 + 𝑍2 2π‘”π‘šπ‘ + 𝑠𝐢𝑏𝑠1 π‘Œ1-

The critical frequencies above which (at least 10 times) we are considering the approximation of s∞ is valid:

𝑖 π‘”π‘š

𝐢1=

42.2𝑛

100.79𝑓 = 67.48 𝐾𝐻𝑧

𝑖𝑖2π‘”π‘š

2𝐢1 + 𝐢𝑇1= 64.27 𝐾𝐻𝑧

𝑖𝑖𝑖2π‘”π‘šπ‘

𝐢𝑏𝑠1= 74.9 𝐾𝐻𝑧

13-Jun-16 Snehasish Roychowdhury 29

Page 30: Design of a Gm-C filter of very low trans- conductance ...eestudentrg/ppt/SnehasishR.pdfSnehasish Roychowdhury Department of Electrical Engineering, IIT Bombay Design of a Gm-C filter

Infinite frequency for 2nd term:

2nd term:

𝐸𝑋2 𝐢 βˆ’ 𝐡𝑍1 + 𝐸𝑍2 𝐴 + 𝐡𝑋1

= π‘”π‘šπ‘1 +𝑠𝐢𝑏𝑠2

2,𝑋2 2π‘”π‘š + 𝑠 2𝐢1 + 𝐢𝑇1 βˆ’ 2π‘”π‘šπ‘ + 𝑠𝐢𝑏𝑠1 𝑍1 + 𝑍2* π‘”π‘š + 𝑠𝐢1 + 2π‘”π‘šπ‘ + 𝑠𝐢𝑏𝑠1 𝑋1+-

The critical frequencies above which (at least 10 times) we are considering the approximation of s∞ is valid:

𝑖2π‘”π‘šπ‘‹2 βˆ’ 2π‘”π‘šπ‘π‘1

2𝐢1 + 𝐢𝑇1 𝑋2 βˆ’ 𝐢𝑏𝑠1𝑍1= 71.33 𝐾𝐻𝑧

𝑖𝑖(π‘”π‘š+2π‘”π‘šπ‘π‘‹1)

𝐢1 + 𝐢𝑏𝑠1𝑋1= 67.16 𝐾𝐻𝑧

13-Jun-16 Snehasish Roychowdhury 30

Page 31: Design of a Gm-C filter of very low trans- conductance ...eestudentrg/ppt/SnehasishR.pdfSnehasish Roychowdhury Department of Electrical Engineering, IIT Bombay Design of a Gm-C filter

Infinite frequency for 3rd term:

3rd term:

𝐹 βˆ’ πΈπ‘Œ2 𝐢 βˆ’ 𝐡𝑍1 βˆ’ 𝐸𝑍2π΅π‘Œ1

= π‘”π‘š + π‘”π‘šπ‘π‘Œ2 + 𝑠 𝐢1 +𝐢𝑇3

2βˆ’

𝐢𝑏𝑠2

2π‘Œ2 2π‘”π‘š βˆ’ 2π‘”π‘šπ‘ + 𝑠 2𝐢1 + 𝐢𝑇1 βˆ’ 𝐢𝑏𝑠1𝑍1 βˆ’ 𝑍2π‘Œ1(π‘”π‘šπ‘

+𝑠𝐢𝑏𝑠2

2)(2π‘”π‘šπ‘ + 𝑠𝐢𝑏𝑠1)

The critical frequencies above which (at least 10 times) we are considering the approximation of s∞ is valid:

π‘–π‘”π‘š + π‘”π‘šπ‘π‘Œ2

𝐢1 +𝐢𝑇32 βˆ’

𝐢𝑏𝑠22 π‘Œ2

= 64.18 𝐾𝐻𝑧

𝑖𝑖2(π‘”π‘š βˆ’ π‘”π‘šπ‘)

2𝐢1 + 𝐢𝑇1 βˆ’ 𝐢𝑏𝑠1𝑍1= 54.6 𝐾𝐻𝑧

13-Jun-16 Snehasish Roychowdhury 31

Page 32: Design of a Gm-C filter of very low trans- conductance ...eestudentrg/ppt/SnehasishR.pdfSnehasish Roychowdhury Department of Electrical Engineering, IIT Bombay Design of a Gm-C filter

Infinite frequency for 4th term:

4th term:

𝐻 𝑋1 + 𝑋2 (𝐢 βˆ’ 𝐡𝑍1) + 𝐻 𝑍1 + 𝑍2 𝐴 + 𝐡𝑋1 βˆ’ 𝐴 + 𝐡𝑋1 𝐼

= π‘”π‘šπ‘ 𝑋1 + 𝑋2 2π‘”π‘š + 𝑠(2𝐢1+𝐢𝑇1 βˆ’ 2π‘”π‘šπ‘ + 𝑠𝐢𝑏𝑠1 𝑍1- + π‘”π‘šπ‘(𝑍1 + 𝑍2),π‘”π‘š + 𝑠𝐢1 + 2π‘”π‘šπ‘ + 𝑠𝐢𝑏𝑠1 𝑋1-

βˆ’ (π‘”π‘š + 𝑠𝐢1),π‘”π‘š + 𝑠𝐢1 + 2π‘”π‘šπ‘ + 𝑠𝐢𝑏𝑠1 𝑋1-

The critical frequencies above which (at least 10 times) we are considering the approximation of s∞ is valid:

π‘–π‘”π‘š + 2π‘”π‘šπ‘π‘‹1

𝐢1 + 𝐢𝑏𝑠1𝑋1= 67.16 𝐾𝐻𝑧

𝑖𝑖2(π‘”π‘š βˆ’ π‘”π‘šπ‘π‘1)

2𝐢1 + 𝐢𝑇1 βˆ’ 𝐢𝑏𝑠1𝑍1= 64.37 𝐾𝐻𝑧

13-Jun-16 Snehasish Roychowdhury 32

Page 33: Design of a Gm-C filter of very low trans- conductance ...eestudentrg/ppt/SnehasishR.pdfSnehasish Roychowdhury Department of Electrical Engineering, IIT Bombay Design of a Gm-C filter

𝑀 = π‘”π‘š + 𝑠 𝐢𝑔𝑠 +𝐢𝑠𝑏2+𝐢𝑇3

22π‘”π‘š + 𝑠 2𝐢𝑔𝑠2 + 𝐢𝑇2 βˆ’ π‘”π‘š + 𝑠𝐢𝑔𝑠

2 ,

𝑁 = π‘”π‘š + 𝑠𝐢𝑔𝑠2, 𝑃 = 𝑠𝐢𝑔𝑠 + π‘”π‘š1 ,

𝑄 = π‘”π‘š + 𝑠 𝐢𝑔𝑠 +𝐢𝑠𝑏2+𝐢𝑇3

2, 𝑅 = π‘”π‘š + 𝑠 𝐢𝑔𝑠 +

𝐢𝑇3

2

𝑆 = 2π‘”π‘š + 𝑠 2𝐢𝑔𝑠 + 𝐢𝑇1 , 𝑇 = 2π‘”π‘š + 𝑠 2𝐢𝑔𝑠 + 𝐢𝑇1 + 𝐢𝑠𝑏1 ,

𝐴 = 𝑠𝐢1 + π‘”π‘š , 𝐡 = 2π‘”π‘šπ‘ + 𝑠𝐢𝑏𝑠1

𝐢 = 2π‘”π‘š + 𝑠 2𝐢1 + 𝐢𝑇1 , 𝐷 = 𝑠𝐢1 + π‘”π‘š ,

𝐸 = π‘”π‘šπ‘1 +𝑠𝐢𝑠𝑏2

2, 𝐹 = π‘”π‘š + 𝑠 𝐢1 +

𝐢𝑇3

2

𝐺 = 2π‘”π‘š + 𝑠 2𝐢1 + 𝐢𝑇2 , 𝐻 = π‘”π‘šπ‘, 𝐼 = (π‘”π‘š + 𝑠𝐢1)

𝑋2 =𝑁𝑃

(π‘‡π‘€βˆ’π‘π‘„), π‘Œ2 =

βˆ’π‘(π‘†βˆ’π‘‡)

(π‘‡π‘€βˆ’π‘π‘„), 𝑍2 =

βˆ’(π‘‡π‘€βˆ’π‘π‘…)

(π‘‡π‘€βˆ’π‘π‘„)

𝑋1 =𝑀𝑃

(π‘‡π‘€βˆ’π‘π‘„), π‘Œ1 =

𝑀(π‘…βˆ’π‘„)

(π‘‡π‘€βˆ’π‘π‘„), 𝑍1 = βˆ’ 1 +

𝑀 π‘†βˆ’π‘‡

π‘‡π‘€βˆ’π‘π‘„

13-Jun-16 Snehasish Roychowdhury 33

For X1,2 , Y1,2, Z1,2 , the frequencies above which we can considerπ‘ βˆž , are given as following:

M,Q: (i) π‘”π‘š

𝐢𝑔𝑠+𝐢𝑏𝑠2+𝐢𝑇3

2

= 324.5𝐾𝐻𝑧

(ii) 2π‘”π‘š

2𝐢𝑔𝑠+𝐢𝑇2= 549.3𝐾𝐻𝑧

N,P : π‘”π‘š

𝐢𝑔𝑠= 957.2𝐾𝐻𝑧

R: 2π‘”π‘š

2𝐢𝑔𝑠+𝐢𝑇3= 549.3𝐾𝐻𝑧

T: π‘”π‘š

𝐢𝑔𝑠+𝐢𝑇1+𝐢𝑏𝑠1

2

< 549𝐾𝐻𝑧

S: 2π‘”π‘š

2𝐢𝑔𝑠+𝐢𝑇1= 549.3𝐾𝐻𝑧

Conclusion: All the terms are considered individually to find the frequency above which we can consider our assumption is valid. Ie Hcm is zero. From all the terms above, we find highest frequency =957.2 KHz. Hence, above almost 10 times, of it ie 9-10 MHz, we can Assume frequency to be infinite. All our assumptions are valid above this frequency. This is valid as 10MHz is considered typically in EMI frequency range.

Page 34: Design of a Gm-C filter of very low trans- conductance ...eestudentrg/ppt/SnehasishR.pdfSnehasish Roychowdhury Department of Electrical Engineering, IIT Bombay Design of a Gm-C filter

Comparison (100mVpp)

13-Jun-16 Snehasish Roychowdhury 34

In frequency range [10Hz-100MHz], Maximum EMI induced offset (Magnitude): (i) Voltage attenuator with

cross-coupled transconductor based Gm-C filter:: 1.996% (ii) Proposed Gm-C filter:: 0.459%

Here, we see the EMI

Induced DC offset is reduced

significantly for this proposed

Gm-C filter compared to

Uncompesated Gm-C filter

From the frequency near

10MHz, which is considered to

Be the minimum value of

Infinty while calculating CMTF,

Hcm(∞)=0.

Fig19: EMI induced DC offset variation

with frequency for 100mVpp input signal

Page 35: Design of a Gm-C filter of very low trans- conductance ...eestudentrg/ppt/SnehasishR.pdfSnehasish Roychowdhury Department of Electrical Engineering, IIT Bombay Design of a Gm-C filter

DC offset reduction at high frequency

13-Jun-16 Snehasish Roychowdhury 35

π‘£π‘œ1 = π»π‘π‘šπ‘£π‘π‘š + π»π‘‘π‘šπ‘£π‘‘π‘š

2 &

π‘£π‘œ2 = π»π‘π‘šπ‘£π‘π‘š βˆ’ π»π‘‘π‘šπ‘£π‘‘π‘š

2

And, π‘‰π‘œ1 = π‘£π‘œ1 + 𝑉𝐷𝐢 & π‘‰π‘œ2 = π‘£π‘œ2 + 𝑉𝐷𝐢

CASE1: If Common mode interference

comes at attenuator output, then from

equations above: |π‘£π‘œ1| β‰  |π‘£π‘œ2| Unequal capacitive division occurs

across gate-source of M1 & M2 due to

CT,tail and as a result, |vgs,M1|β‰ |vgs,M2| ie

finite offset current IOS at output.

CASE2: Instead, if we make Hcm=0

somehow, ie no CM Interference at

attenuator output, π‘£π‘œ1 = |π‘£π‘œ2|

In this case, P acts as virtual ground as second stage doesn’t see any common mode input. ie Ios=0.

This is why we need to minimize Hcm of the first stage to reduce DC offset at output.