Degradation of Acetic and Propionic Acids in the Methane Fermentation

6
8/12/2019 Degradation of Acetic and Propionic Acids in the Methane Fermentation http://slidepdf.com/reader/full/degradation-of-acetic-and-propionic-acids-in-the-methane-fermentation 1/6 War. Res. Vol. 25, No. 12, pp. 1549-1554, 1991 0043-1354/91 $3.00 + 0.00 Printed in Great Britain. All rights reserved Copyright © 1991 Pergamon Press pie DEGRADATION OF ACETIC AND PROPIONIC ACIDS IN THE METHANE FERMENTATION A. J. MAWSON, R. L. EARLE* and V. F. LARSEN'[" Department of Biotechnology, Massey University, Palmerston North, New Zealand First received March 1990; accepted in revised form May 1991) Abstract--A series of batch digestion experiments was performed to evaluate the effect of elevated acetic acid concentrations on the degradation of propionic acid and vice versa. Flask digesters were incubated at 37°C with acetic and propionic acids added at up to 2000 and 1500 mg 1 ~, respectively. It was found that increasing the concentration of either acid from low levels reduced the rate of its utilization and that increasing the acetic acid concentration from 1000 to 2000 mg 1-~ significantly inhibited degradation of propionic acid added at 500 mg I-~. Good agreement was obtained from fitting the logistic equation to the measured data and between duplicate runs performed within the experiments. The observed inhibition of propionate degradation by acetate confirms several earlier reports of prod uct inhibition in the literature and emphasizes the importance of controlling acid levels in maintaining satisfactory digester operation. Key words--acetic acid, propionic acid, VFA, anaerobic digestion, methane fermentation, inhibition NOMENCLATURE Aci = initial acetic acid concentration (mg 1-1 Actor, i = initial potential acetic acid pool (mg 1- ~ Pr~ = initial propionic acid concentration (mg 1- ~ UVFA = un-ionized volatile fatty acids VFA = volatile fatty acids INTRODUCTION Acetic and propionic acids are the major volatile fatty acids (VFAs) present during anaerobic digestion and their concentrations provide a useful measure of digester performance. Low acid levels indicate stable operation while high acid concentrations are invari- ably associated with digester failure (Pohland and Bloodgood, 1963; Hill et al., 1987). Propionic acid appears particularly sensitive to changes in the di- gester environment although rapid accumulation of both acetic and propionic acids during stressed oper- ation and prior to failure has also been frequently noted (Pohland and Bloodgood, 1963; Andrews and Pearson, 1965; Hobson et al., 1974; Asinari di san Marzano et al., 1981; Speece, 1983). Degradation of these accumulated acids is essential to the recovery and control of the digestion process, however several observations in the literature attest to the possibility of product inhibition of propionate degradation by acetate (Kaspar and Wuhrmann, 1978; Boone and Bryant, 1980; Zehnder and Koch, 1983; Boone and Xun, 1987; Tholozan et al., 1988; Gorris et al., 1989). As no systematic study of the phenomenon has been reported a series of batch *Member of the Governing Board. tPresent address: Department of Chemical Engineering, University of Strathclyde, Glasgow G1 IXJ, Scotland. experiments was performed to provide more infor- mation on interactions between the degradation of acetic and propionic acids. METHODS AND MATERIALS Equipment The experiments were performed using batch flask di- gesters with a working volume of 250 ml. These comprised fiat-bottomed 500 ml boiling flasks stoppered with rubber bungs and fitted with sampling and gas outlet ports. The gas produced was vented to the atmosphere through a water trap. The flasks were mixed by hand at least once per day and also within 1 h of sampling. Inoculum source and preparation Effluent from a completely-mixed 5.01. digester fed a semi-synthetic medium was collected under a N2-atmos- phere and used as the seed material. The digester was batch-fed every second day and operated with an average volumetric loading rate of 0.5kg COD m-3day -j. The medium was that of Hansson (1979) modified by the addition of resazurin at 0.0001% (w/v) and comprised glucose, yeast extract, salts and vitamins. As the VFA concentration was very low (total VFA ~ 20m gl -t) and stable in this effluent (Mawson, 1986), further treatment prior to use was unnecessary. Culture conditions and preparation Two sets of runs were performed. In the first, propionate was added at a constant initial level (Pr~) of 500 mg 1- ~and the concentration of acetate added (Ac~) was varied between 0 and 2000 mg 1- ~. In the second set of runs the procedure was reversed: acetate was added at 2000 mg 1 ~ and propi- onate was added in the range 0-1500 mg 1 ~. Initial acid concentrations are shown in Table 1. Standard solutions of acetic and propionic acids were prepared containing either 10 or 100 g 1 ~ acid. An inoeulum of 50 ml was added to about 150 ml of freshly distilled water; the appropriate volumes of substrates were added and the digester was made up to volume with more water. The runs were performed in random order and commenced on 3 separate days over a I week period. The substrate was 1549

Transcript of Degradation of Acetic and Propionic Acids in the Methane Fermentation

Page 1: Degradation of Acetic and Propionic Acids in the Methane Fermentation

8/12/2019 Degradation of Acetic and Propionic Acids in the Methane Fermentation

http://slidepdf.com/reader/full/degradation-of-acetic-and-propionic-acids-in-the-methane-fermentation 1/6

War. Res. Vo l. 25, No. 12, pp. 1549-1554, 1991 0043-1354/91 $3.00 + 0.00Printed in Great Britain. All rights reserved Copy right © 1991 Pergamo n Press pie

D E G R A D A T I O N O F AC E T IC A N D P R O P I O N I C A C ID S I N

T H E M E T H A N E F E R M E N T A T I O N

A. J . M AWSON, R . L . EARLE* a n d V. F . LARSEN'["

D e p a r t m e n t o f B i o t e c h n o lo g y , M a s s e y U n i v e rs i ty , P a l m e r s to n N o r t h , N e w Z e a l a n d

First received Ma rch 1990; accepted in revised for m M ay 1991)

A b s t r a c t - - A se r ie s o f ba t c h d iges t i on expe r im en t s w as pe r fo rm e d to e va lua t e t he e f fec t o f e leva t ed ace t icac id concen t r a t i ons on t he degrada t i on o f p rop ion i c ac id and v i ce ve r sa . F l a sk d iges t e r s w ere i ncuba t eda t 37°C w i th ace t i c and p rop ion i c ac ids added a t up t o 2000 an d 1500 m g 1 ~ , re spect ive ly . I t w as fou ndtha t i nc reas ing t he co ncen t r a t i on o f e i t he r ac id f rom low l eve ls r educed t he r a t e o f i t s u t i l i za t i on and t h a ti nc reas ing t he ace t i c ac id con cen t r a t i on f rom 1000 t o 2000 m g 1 -~ s ign i f i can tl y i nh ib i t ed deg rada t i on o fp rop io n i c ac id added a t 500 m g I-~. G oo d ag reem en t w as ob t a ine d f rom f i t t i ng t he l og i st i c equ a t i on t ot h e m e a s u r e d d a t a a n d b e t w e e n d u p l ic a t e r u n s p e r f o r m e d w i t h in t h e e x p e r i m e n ts . T h e o b s e r v e d i n h i b i t i o nof p rop io na t e de grad a t i on b y ace t a t e conf i rm s seve ra l ea r l i e r r epor t s o f p rod uc t i nh ib i t i on i n t he l i t e r a tu re

and em phas i zes t he im por t ance o f con t ro l l i ng ac id l eve l s i n m a in t a in ing sa t i s f ac to ry d iges t e r ope ra t i on .

Key words- -acet ic ac id , p rop ion i c ac id , V F A , anae rob i c d iges t i on , m e thane f e rm en ta t i on , i nh ib i t i on

NOMENCLATURE

A ci = i n i t i a l ace ti c ac id conc en t r a t i on (m g 1-1

A c t o r , i = i n i t i a l po t en t i a l ace t i c ac id p oo l (m g 1 - ~P r~ = i n i t i a l p rop ion i c ac id con cen t r a t i on (m g 1 - ~

U V F A = un- ion i zed vo l a t i l e f a t t y ac idsV F A = vo l a t i l e f a t t y ac ids

INTRODUCTION

A c e t i c a n d p r o p i o n i c a c i d s a r e th e m a j o r v o l a t il e f a tt y

a c id s ( V F A s ) p r e s e n t d u r i n g a n a e r o b i c d i g e s t io n a n d

t h e i r c o n c e n t r a t i o n s p r o v i d e a u s e fu l m e a s u r e o f

d i g e s t e r p e r f o r m a n c e . L o w a c i d l e ve l s i n d i c a t e s t a b l e

o p e r a t i o n w h i l e h i g h a c i d c o n c e n t r a t i o n s a r e i n v a ri -

a b l y a s s o c i a t e d w i t h d i g e s t e r f a i l u r e ( P o h l a n d a n d

B l o o d g o o d , 1 9 63 ; H i l l et a l . , 1 9 8 7 ) . P r o p i o n i c a c i d

a p p e a r s p a r t i c u l a r l y s e n s i t i v e t o c h a n g e s i n t h e d i-

g e s te r e n v i r o n m e n t a l t h o u g h r a p i d a c c u m u l a t i o n o f

b o t h a c e t i c a n d p r o p i o n i c a c i d s d u r i n g s t r e s s e d o p e r -a t i o n a n d p r i o r t o f a i l u r e h a s a l s o b e e n f r e q u e n t l y

n o t e d ( P o h l a n d a n d B l o o d g o o d , 1 96 3; A n d r e w s a n d

P e a r s o n , 1 9 6 5; H o b s o n et a l . , 1 9 7 4 ; A s i n a r i d i s a n

M a r z a n o et a l . , 1 9 8 1 ; S p e e c e , 1 9 8 3 ) .

D e g r a d a t i o n o f th e s e a c c u m u l a t e d a c i d s is e s s e n ti a l

t o t h e r e c o v e r y a n d c o n t r o l o f t h e d i g e s t io n p r o c e s s ,

h o w e v e r s e v e r a l o b s e r v a t i o n s i n t h e l i t e r a t u r e a t t e s t

t o t h e p o s s i b il i t y o f p r o d u c t i n h i b i t io n o f p r o p i o n a t e

d e g r a d a t i o n b y a ce t at e ( K a s p a r a n d W u h r m a n n ,

1 97 8; B o o n e a n d B r y a n t , 1 9 8 0; Z e h n d e r a n d K o c h ,

1 9 83 ; B o o n e a n d X u n , 1 9 87 ; T h o l o z a n et a l . , 1988 ;

G o r r i s et a l . , 1 9 89 ) . A s n o s y s t e m a t i c s t u d y o f t h e

p h e n o m e n o n h a s b e e n r e p o r t e d a se ri es o f b a t c h

* M e m b e r o f t h e G o v e r n i n g B o a r d .

t P r e s e n t a d d r e s s : D e p a r t m e n t o f C h e m i c a l E n g i n e e r i n g ,U n ive r s i t y o f S t r a thc lyde , G lasgow G 1 IX J , S co t l and .

e x p e r i m e n t s w a s p e r f o r m e d t o p r o v i d e m o r e i n f o r -

m a t i o n o n i n t e r a c t i o n s b e t w e e n t h e d e g r a d a t i o n o f

a c e t i c a n d p r o p i o n i c a c i d s .

METHODS AND MATERIALS

Equipment

T he expe r im en t s w ere pe r fo rm ed us ing ba t ch f l a sk d i -ges t e r s w i th a w o rk ing vo lum e o f 250 m l . T hese com pr i sedf i a t -bo t t om ed 500 m l bo i l i ng f l asks s t oppe red w i th r ub be rbung s and f i t t ed w i th s am pl ing and gas ou t l e t po r t s . T he gasp r o d u c e d w a s v e n t e d t o t h e a t m o s p h e r e t h r o u g h a w a t e rt r ap . T he f l a sks w ere m ixed by hand a t l ea s t once pe r dayand a l so w i th in 1 h o f s am pl ing .

Inoculum source and preparation

Eff luent f rom a complete ly-mixed 5.01. digester fed asem i - syn the t i c m ed ium w as co l l ec ted unde r a N 2-a tm os -phe re and used a s t he s eed m a te r i a l . T he d iges t e r w asb a t c h - f e d e v e r y s e c o n d d a y a n d o p e r a t e d w i t h a n a v e r a g ev o l u m e t r ic l o a d i n g r a t e o f 0 . 5 k g C O D m - 3 d a y - j . T h em ed ium w as t ha t o f H ansson (1979) m od i f i ed by t he

add i t i on o f r e sazur in a t 0 . 0001% (w /v ) and com pr i sedg lucose , yeas t ex t r ac t , s a l t s and v i t am ins . A s t he V F Ac o n c e n t r a t i o n w a s v e r y l o w ( t o t al V F A ~ 2 0 m g l - t ) a n ds t ab l e i n t h i s e f f l uen t (M aw son , 1986) , f u r t he r t r ea tm en tp r io r t o use w as unneces sa ry .

Culture conditions and preparation

T w o se t s o f runs w ere pe r fo rm ed . In t he f ir s t, p rop iona t ew as added a t a con s t an t i n i t i a l level (P r~ ) o f 500 m g 1 - ~ andthe conc en t r a t i o n o f ace t a t e added (A c~ ) w as va r i ed be tw een0 an d 2000 m g 1 - ~. I n t h e s econd se t o f runs t he p roc edurew as r eve r sed : ace t a t e w as adde d a t 2000 m g 1 ~ an d p rop i -ona t e w as ad ded i n t he r ange 0 -1500 m g 1 ~ . I n i t i a l ac idconcen t r a t i ons a r e show n in T ab l e 1 .

S t anda rd so lu t i ons o f ace t i c and p rop ion i c ac ids w erep repa red con t a in ing e i t he r 10 o r 100 g 1 ~ ac id . A n in oeu lumof 50 m l w as ad ded t o a bou t 150 m l o f f r e sh ly d is t i ll edw a t e r ; t h e a p p r o p r i a t e v o l u m e s o f s u b s t r a t e s w e r e a d d e da n d t h e d i g e st e r w as m a d e u p t o v o l u m e w i t h m o r e w a t e r .T h e r u n s w e r e p e r f o r m e d i n r a n d o m o r d e r a n d c o m m e n c e don 3 sepa ra t e days ove r a I w eek pe r iod . T he sub s t r a t e w a s

1549

Page 2: Degradation of Acetic and Propionic Acids in the Methane Fermentation

8/12/2019 Degradation of Acetic and Propionic Acids in the Methane Fermentation

http://slidepdf.com/reader/full/degradation-of-acetic-and-propionic-acids-in-the-methane-fermentation 2/6

1550 A .J . MAWSONet al.

Table 1. Initial aci d concentrations and fitte d rate co efficients (b) for acidutilization

Measu red initial Rate coefficientacid concentration for utilization of

Cond ition Aq Pr~ A c t o r ~ Run Ac Pr

Pr ~ 500

Ac ~ 2000

ND* 490 400 1 0.86 1.12530 520 950 2 0.64 0.80540 520 960 3 0.65 0.82

1060 480 1450 4 0.61 0.842110 480 2500 5 0.42 0.472190 510 2600 9 0.41 0.45

2240 ND 2240 6 0.35 - -t2170 ND 2170 7 0.31 -- t2220 220 2400 8 0.35 0.642110 480 2500 5 0.42 0.472190 510 2600 9 0.41 0.452140 1490 3350 10 0.14 --~1960 1510 3190 11 0.13 --~

*Below the limit o f detection, tlnsufficient data for analysis. :~Lineardegradationof a cids observed (see text).

n e u t r a li z e d w i t h a n e q u i m o l a r m i x t u r e o f 2 N N a O H a n dK O H t o r e d u c e p o t e n t i a l i n h i b i t io n a r is i n g f r o m a d d i t i o n o fthe ca t i ons (K u ge lm an an d C h in , 1971) . T he f l a sk d iges t e r sw ere f l u shed w i th 20% C O 2 i n N 2 (pas sed ove r hea t edcoppe r a t 320° C to r em ove t r aces o f 02 ) and i ncuba t ed a t37 + I"C .

Sampling and analytical procedures

T he d iges t e r l i quor w as sam pled im m edia t e ly a f t e r p r ep -a ra t i on and t hen eve ry second day . A 5 m l s am ple w asr e m o v e d a n d t h e V F A c o n c e n t r a t i o n d e te r m i n e d b y g a sc h r o m a t o g r a p h y f o l lo w i n g t h e p r o c e d u r e o f B a n f i e ld et al.( 19 7 8) . A S h i m a d z u G C - 5 A g a s c h r o m a t o g r a p h ( S h i m a d z uS e i sakusho L td , K yo to , J ap an) f i t t ed w i th a f l am e ion i za t i onde t ec to r op e ra t ed a t 185°C w as used . T he 2m x 3 m m i .d .g l as s c o l u m n w a s p a c k e d w i t h 1 0 % w / v F F A P o n C h r o m o -

so rb G . T he co lum n t em p era tu re w as 145°C and t he i n j ec to rpor t t em pera tu re w as 185° C . T he n i t rogen f l ow ra t e w as80 m l r a in -h a nd t he a i r a nd hydro gen f l ow ra t e s w ere 900an d 55 ml m in - ~, respect ively. Diges ter ef f luent sam plesw ere cen t r i fuged a t 2700g fo r 10m in and fo rm ic ac id(99 . 9% ) w as added t o t he su pe rna t an t l i quor (1 vo l fo r -m a te : 10 vo l supe rna t an t ) . T h e sam ple vo lum e in j ec t ed w as

# l . T he pH o f each sam ple w as a lso no t ed .

Analysis of results

T he da t a w ere ana lysed us ing t he non- l i nea r r eg re s s ionrou t i ne o f G E N S T A T (V er s ion 4 .04B ; L aw es A gr i cu l t u r a lT rus t 1980) run on a P r im e 750 com pute r . T he m ode lse l ec t ed t o desc r ibe subs t r a t e u t i l i za t i on w as t he s im plelog i st i c equ a t i on (D eW i t t , 1943 ; E dw a rds a nd W i lke 1968):

s = K/ 1 + e a+bt) (1)

w here

s = subs t r a t e conce n t r a t i on (g 1 - t )t = t ime (day)

K, a , b = constants .

T h e t e r m K / I + C ) i s an e s t im a te o f t he i n i t i a l subs t r a t econ cen tra t ion (g I t ) an d b i s a ra te coeff ic ient for su bst ra t eu t i l i za t i on (day l ) .

RESULTS

E f f e c t o f a c e t i c a c i d o n u t i l i za t i o n o f p r o p i o n i c a c i d

P r o p i o n a t e w a s a d d e d a t 5 0 0 m g 1 - 1 i n r u n s 1 - 5

a n d r u n 9 , w i t h r u n s 2 a n d 3 a n d r u n s 5 a n d 9

e s t a b l i s h e d w i t h d u p l i c a t e a c i d c o n c e n t r a t i o n s . T h e

p r o p i o n a t e c o n c e n t r a t i o n s f o r r u n s 1, 2 , 4 a n d 5 a re

s h o w n i n F i g . 1 a n d t h e f i t t e d r a t e c o e f fi c i e n t s ( b ) f o r

a l l t h e r e l e v a n t r u n s a r e l i s t e d i n t h e u p p e r p a r t o f

T a b l e 1. N o a c e t a t e w a s a d d e d i n r u n 1 a n d p r o p i -o n a t e d e g r a d a t i o n p r o c e e d e d a t a fa s t r a t e

( b = l . 1 2 d a y - 1 ) w i th a 9 0 % r e d u c t i o n i n Pr~

a c h i e v e d w i t h i n 6 d a y s . A q w a s i n c r e a s e d i n e a c h

s u b s e q u e n t r u n a n d i t i s c l e a r f r o m F i g . 1 t h a t t h i s

i n h i b i t e d p r o p i o n a t e d e g r a d a t i o n . T h e t i m e r eq u i r e d

t o a c h i e v e 9 0 % u t i l i z a t io n i n c r e a s e d t o 7 d a y s i n r u n

2 ( A c i = 5 3 0 m g l - ~ ) , t o 8 d a y s i n r u n 4

( A c ~ = 1 0 6 0 m g l - l ) a n d t o 11 d a y s f or r u n 5 ,

( A c i = 2 1 1 0 m g l - ~ ) . F o r r u n s 2 , 3 a n d 4 t h e r a te

c o e f fi c ie n t s f o r p r o p i o n a t e u t i l i z a t io n w e r e s i m i l a r a t

0 . 8 - 0 . 8 4 d a y - 1 , b u t t h i s w a s l o w e r e d s i g n i f i c a n t l y in

r u n s 5 a n d 9 t o 0 .4 5 - 0 . 4 7 d a y 1.D a t a f o r th e d u p l i c a t e r u n s a r e s h o w n i n F ig . 2 a n d

t h e o b s e r v e d a n d p r e d i c t e d d a t a f o r r u n s 2 a n d 5 a r e

p l o t t e d i n F i g . 3 . T h e s e c o n f i r m t h a t t h e f i t o f t h e

m o d e l a n d t h e a g r e e m e n t b e t w e e n t h e d u p l i c at e s w a s

a c c e p ta b l e , a l t h o u g h t h e p r o p i o n a t e c o n c e n t r a t i o n i n

r u n 9 w a s a lw a y s a p p r o x . 5 0 m g l - ~ h i g h e r t h a n t h a t

i n r u n 5 . A c c e p t a b l e a g r e e m e n t w a s a l s o o b t a i n e d i n

a l l o t h e r c a s e s ( M a w s o n , 1 9 8 6) .

E f f e c t o f p r o p io n i c a c i d o n u t i l i za t i o n o f a c e t i c a c i d

A c e t a t e w a s a d d e d a t a p p r o x . 2 0 0 0 m g 1 -l i n r u n s

5 - 1 1 w h i l e P r i w a s v a r i e d b e t w e e n l e ss t h a n 1 0 m l - i( r u n s 6 a n d 7 , p r o p i o n a t e n o t d e t e c te d ) a n d

1 5 0 0 m g l - I ( r u n s 1 0 a n d 1 1) . T h e r a t e c o e f fi c ie n t s

a p p e a r i n th e l o w e r p a r t o f T a b l e 1 . T h e s e w e r e

c a l c u la t e d f r o m t h e d e g r a d a t i o n o f a c e t a te a n d t h e

c o n t r i b u t i o n t o t h e a c e t a t e p o o l f r o m t h e u t i l i z a t i o n

o f p r o p i o n a t e a s s u m i n g t h i s w a s g i v en b y ( B r y a n t ,

1979) :

C H 3 C H 2 C O O - + 3 H 2 0

= C H 3 C O O - - + H C O 7 + H + + 3 H 2 .

T h e i n i t a l v a l u e o f t h i s p o t e n t i a l a c e t a t e p o o l (A cto r,i)

i s a l s o s h o w n i n T a b l e I .

F o r r u n s 5 - 9 ( P r < 6 0 0 m g l - l ) t h e r a t e c o e f f i c i e n ts

f o r a c e t a t e u t i l i z a t i o n w e r e s i m i l a r a n d t y p i c a ll y i n t h e

r a n g e 0 . 3 5 - 0 .4 1 d a y - 1, a l t h o u g h a s l ig h t ly l o w e r

v a l u e o f 0. 3 1 d a y - 1 w a s e s t i m a t e d f o r r u n 7 . A Cto r, f o r

Page 3: Degradation of Acetic and Propionic Acids in the Methane Fermentation

8/12/2019 Degradation of Acetic and Propionic Acids in the Methane Fermentation

http://slidepdf.com/reader/full/degradation-of-acetic-and-propionic-acids-in-the-methane-fermentation 3/6

V FA de g r ada t i o n i n anae r o b i c d i g e s t io n 1 55 1

6 0 0

• 5 0 0-.,.

.o 40 0 o . ,,

s , -

e . -

~ - 3 0 0 \ \ \ ~ . . .I . I " ' ° ' , ,

, , % ,

'. . %, .2 0 0= \ , o " . , ~0 ~ %% % .% . ' - °~ \ . % ,,.

0 b ' ' .\ % , % .% . - , .

Zi %.,, ~ .1 0 0

t

2 4 6 8 I 0 1 2

T im e s i n c e i n o c u l a t i o n ( d a y s )

Fig . 1 . Propionate ut i l i zat ion in s e lec ted runs wi th pro piona te ad ded at 500 mg I -L Init ial ace tate

c o nc e n t r a t i ons o f : < 1 0 m g l - ~ (r un 1 , ( Z )) , 5 3 0 m g l - l ( r un 2, A) , 1 0 6 0 m g l ' ( run 4 , [ ] ) , 2 1 1 0 m g l - l

(run 5, *).

t h e s e r u n s r a n g e d f r o m 2 1 7 0 t o 2 6 0 0 m g 1 ~. H o w e v e r

w h e n t h e t ot a l a c i d c o n c e n t r a t i o n w a s i n c r e a s e d to

o v e r 3 0 0 0 m g 1 ~ ( r u n s 1 0 a n d 1 1 ) th e r a t e p a r a m e t e r

w a s r e d u c e d s i g n i f ic a n t l y t o a p p r o x . 0 . 1 3 d a y ~ a n d

a c e t a t e w a s n o t c o m p l e t e l y d e g r a d e d e v e n a f t e r a n

e x t e n d e d f e r m e n t a t i o n ( M a w s o n , 1 9 86 ).

Effect o f increased propionate concentration on propi-

on te degradation

W h e n p r o p i o n a t e c o n s u m p t i o n i n t h o s e r u n s w i t h

s i m i l a r A q i s c o n s i d e r e d a s l ig h t d r o p i n t h e r at e

6 0 0

5 O 0t ~E

o

- 4 0 0k .

e -

3 0 0

0

2 0 00

' g .0S , -

1 0 0

c o e f f i c i e n t f r o m 0 . 6 4 d a y - 1 ( r u n 8 , P r i = 2 2 0 m g 1 - 1 )

t o 0 . 4 5 d a y - ~ i n r u n 9 ( P r i = 5 1 0 m g 1 ~ ) i s o b s e r v e d .

I n r u n s 1 0 a n d 1 1 h o w e v e r , p r o p i o n a t e d e g r a d a t i o n

w a s m u c h r e d u c e d a n d w a s l in e a r w i t h t im e . A b o u t

4 0 o f t h e i n it i al p r o p i o n a t e r e m a i n e d u n d e g r a d e d

a f te r 2 4 - 2 8 d a y s ( M a w s o n , 1 9 8 6) .

Effect of increased acetate concentr t ion on cet te

degradation

R a t e c o e f f i c ie n t s f o r a c e ta t e d e g r a d a t i o n i n t h o s e

r u n s w i th c o n s t a n t P q c a n b e c o m p a r e d i n T a b l e 1 .

i~ . ~ " ' ~ . : : .. . . . . . o . .

° " ° " , : ' : ~ : , , , ° " ° . , , ° ° . °

""? '&. "o

o ) : : . . . . . . . . . ° . . . . ." ,° , " ° , ° " ° ' ° . ~ . " ' , , °

" , ,> , . . . . . . . . .. " a .• , " , ~

' ° % , " O

:;:: ,-2 2 1 ,,., . . . . . . . . . .. . . . . . . .% ° %

; " A%

" ° ° ' ~ ) , . i ' ° ' ° , , ° .

i : : : : 2 k

" ° , , % , " ' , , , , .

• ~ t ° . . °

° " ' , , , ° " ' " r l ," ' , ° ° , , ° ° ° ° , ° . . , , °

w .

. . . . . . . . : : : ~ . .I I

2 4 6 8 1 0 1 2 1

T im e s i n c e i n o c u l a t i o n ( d a y s )

Fig . 2 . Pr o p io na t e u t i l i z a t i o n in dup l i c a t e runs w i t h pr o p io na t e adde d a t 5 0 0 m g l - ' . I n i ti a l ac et a te

concen trat ions o f : 530 mg 1 - ' ( run 2 , C) ) , 540 mg 1 ~ (run 3 , A ) , 2110 mg I ~ (run 5 , * ) , 2190 mg 1 - ' ( run

9 , [ ] ) .

Page 4: Degradation of Acetic and Propionic Acids in the Methane Fermentation

8/12/2019 Degradation of Acetic and Propionic Acids in the Methane Fermentation

http://slidepdf.com/reader/full/degradation-of-acetic-and-propionic-acids-in-the-methane-fermentation 4/6

1552 A .J . MAWSON t a l .

6 0 0

e . - -

I . $ , . ; ' - . - I : . .- . ,, . , , . ~ , . _ , : ~ . .

° ' ; ' ~ . h . . . ,

i 4 0 0 : : :: ': : :: : -: : . , , , ' . : : . ~ : . . .

=u 3 0 0 ~ A ' ' : % ' ' ' ' ' '~ ,

I I )

' ~ 2 0 0 ::.,~. ".:-~o ,.n.:::::::::::::::::.~l

m _ 1 0 0 A

=: : : : :22.m ...' , . : : : : : .~ .• ~ . . . ' - - - . . . . . .

I I I I . . . . . . . . T , . ' ~

2 4 6 8 1 0 1 2 1 4T im e s i n c e i n o c u l a t i o n ( d a y s )

Fig. 3. Observed and predicted pro pion ate concentrations for selected runs. Run 2, observed (. . . A .. .) ;run 2 , predicted ( . . . O . . . ; K = 0 .54 , a =- 3 .1 5 , b = 0 .80) ; run 5 , observed . . . , . . . ) ; run 5 , predicted

( . . .Fq . . . ; K = 0.49 , a = -3 .19 , b =0 .47 ) .

A s A C t o t , i i n c r e a s e d f r o m 4 0 0 m g 1 -1 (r u n 1 ) t o a b o u t

2500 mg -1 ( runs 5 an d 9 ) the r a te coef f ic ien t f o r

a c e t a t e u t i l i z a t i o n w a s r e d u c e d f r o m 0 .8 6 t o a b o u t

0 .4 d a y - 1 .

DISCUSSION AND CONCLUSIONS

T h e a c i d c o n c e n t r a t i o n s u s e d w e r e s e l e c t e d a f t e r

c o n s i d e r a t i o n o f t h e r e s u lt s o f s e v e ra l C S T R d i g e s t i o n

e x p e r i m e n t s w i t h t h e s e m i - s y n t h e ti c m e d i u m ( M a w -

s o n , 1 9 8 6 ) . T h e p r o p i o n a t e c o n c e n t r a t i o n u s u a l l y

v a r i e d w i t h i n a n a r r o w r a n g e a r o u n d 5 00 m g 1-1 a n d

H a n s s o n ( 19 7 9) a l s o n o t e d a s i m i l a r c o n c e n t r a t i o n i n

h i s w o r k w i t h t h e s a m e m e d i u m . T h e c o n c e n t r a t i o n

o f a c e t a t e v a r i e d w i d e l y i n t h e c o n t i n u o u s d i g e s t e r ,

b u t p e r i o d s o f s a t i s f a c t o r y o p e r a t i o n w e r e n o t e d

w h e n t h e l e v e l d i d n o t e x c e e d 5 0 0 m g l - l , w h i l e

2 0 0 0 m g 1 -1 w a s c h a r a c t e r i s t i c o f t h e c o n c e n t r a t i o n

d u r i n g r e t a r d e d o p e r a t i o n . A l s o w h e n a c e t a t e e x -

c e e d e d a b o u t 1 0 0 0- 1 50 0 m g 1 - 1 t h e r e w a s s o m e

e v i d e n ce p r o p i o n a t e d e g r a d a t i o n w a s r e t a r d e d (M a w -

son, 1986) .

T h e r e s u l t s d e m o n s t r a t e t h a t t h e a c i d c o n c e n -

t r a t i o n w i t h i n a d i g e s t e r m a r k e d l y i n f l u e n c e s t h e

p e r f o r m a n c e o f t h e m e t a b o l i c g r o u p s p a r t i c i p a t i n g i n

t h e m e t h a n e f e r m e n t a t i o n . I t i s c l e a r l y s h o w n t h a t

i n c r e a s i n g A c i to 2 0 0 0 m g 1 -1 s i g n i f i c a n t ly r e d u c e d t h e

u t i l i z a t i o n o f p r o p i o n a t e a d d e d a t 5 00 m g 1 -1 . O v e r a l l

t h e r a t e o f p r o p i o n a t e u t i l i z a t i o n w h e n a c e t a t e w a s

a d d e d a t 2 0 0 0 m g 1 -1 w a s a p p r o x i m a t e l y h a l f o f t h a t

w h e n a c e t a t e w a s p r e s e n t a t a b o u t 5 00 m g i - 1 o rl o w e r .

A s A q w a s i n c r e a s e d t o 2 0 00 m g 1 -1 w i t h p r o p i -

o n a t e a d d e d a t a c o n s t a n t l e v e l , a p r o g r e s s i v e re -

d u c t i o n i n t h e r a t e o f a c e t a t e d e g r a d a t i o n w a s

o b s e r v e d . S i m i l a r l y , i n c r e a s i n g P r i w h e n a c e t a t e w a s

a d d e d a t a c o n s t a n t i n i t i a l l e v e l r e d u c e d t h e r a t e o f

p r o p i o n a t e d e g r a d a t i o n a n d e v e n tu a l ly d e g r a d a t i o n

o f b o t h a c i d s w a s s e v e r e l y r e t a r d e d a t t h e h i g h e s t

p r o p i o n a t e c o n c e n t r a t i o n . T h e s e i n h i b i t i o n e f f e c t s

c o u l d n o t b e a t t r i b u t e d t o p H , w h i c h v a r i e d b y o n l y

0 . 1 - 0 . 3 p H u n i t s a c r o s s a l l d i g e s t e r s , o r t o t h e s a l t s

a d d e d ( K u g e l m a n a n d C h i n , 1 9 7 1 ; K a s p a r a n d

W u h r m a n n , 1 97 8; B o o n e a n d X u n , 1 98 7) .

T h e s e d a t a p r o v i d e e v i d e n c e o f b o t h s u b s t r a t e a n d

p r o d u c t i n h i b i t i o n o f k e y i n t e r m e d i a t e s i n t h e

m e t h a n e f e r m e n t a t i o n a n d s u p p o r t o t h e r o b s e r -

v a t i o n s i n t h e l i t e r a t u r e .

P r o d u c t i n h i b i t i o n o f p r o p i o n a t e d e g r a d a t i o n

h a s b e e n n o t e d i n d i g e s t e r s t r e a t i n g s e w a g e s l u d g e

( K a s p a r a n d W u h r m a n n , 1 97 8) a n d a m i x e d a c i d

f e e d ( G o r r i s e t a L , 1 9 8 9 ) , i n p r o p i o n a t e e n r i c h m e n t

c u l t u r e s ( Z e h n d e r a n d K o c h , 1 9 8 3 ; B o o n e a n d

X u n , 1 9 8 7; T h o l o z a n e t a l . , 1988) and in def ined

c o - c u l t u r e s ( B o o n e a n d B r y a n t , 1 98 0) . I n m o s t

c a s e s m o d e r a t e i n h i b i t i o n w a s r e p o r t e d a t a c e t i c

a c i d c o n c e n t r a t i o n s o f 1 5 - 30 m M ( 9 0 0- 1 8 00 m g l - 1 )

f o r i n i t i a l p r o p i o n i c a c i d c o n c e n t r a t i o n s i n t h e

r a n g e 1 0 - 2 5 m M ( 7 4 0 - 1 8 5 0 m g l - ~ ) ( B o on e a n d

B r y a n t , 1 9 8 0 ; Z e h n d e r a n d K o c h , 1 9 8 3 ; B o o n e a n d

X u n , 1 9 8 7 ; T h o l o z a n e t a L , 1 9 8 8 ) . K a s p a r a n d

W u h r m a n n ( 19 78 ) d i d n o t o b s e r v e p r o d u c t i n h i b i t i o n

a t 8 m M a c e t a t e ( 4 8 0 m g 1 - 1 ) b u t t h e e f fe c t w a s

p r o n o u n c e d a t 8 0 m M ( 48 0 0 m g 1 -1 ). T h e s e d a t a

s h o w r e a s o n a b l e a g r e e m e n t w i t h t h e w o r k r e p o r t e d

h e r e a n d a l s o t h a t o f H i l l e t a l . ( 1 9 8 7 ) w h o r e p o r t e d

t h a t g r e a t e r t h a n 5 0 % o f f a i li n g a n i m a l - m a n u r e

d i g e s t e r s h a d a c e t a t e c o n c e n t r a t i o n s i n e x c e s s o f

8 00 m g 1-1 a n d a p r o p i o n a t e t o a c e t a t e r a t i o g r e a t e r

than 1 .4 .

Page 5: Degradation of Acetic and Propionic Acids in the Methane Fermentation

8/12/2019 Degradation of Acetic and Propionic Acids in the Methane Fermentation

http://slidepdf.com/reader/full/degradation-of-acetic-and-propionic-acids-in-the-methane-fermentation 5/6

VFA degradation in anaerobic digestion 1553

Gorris e t a l . (1989) observed marked inhib itio n of

propio nic acid degradation (40-80 ) at levels of

abou t 200-500 mg 1 ~ acetate. This toxic concen-

tration appears very low and may have been due to

the reactor chosen (fluidized bed compared to sus-

pended growth systems) or the fact that the data were

obtained during start-up of the digesters when the

population may have been more sensitive to acetic

acid.

The toxicity of high acid concentrat ions, regardless

of the actual species present, has been document ed in

many studies and possible mechanisms for this have

been summarized in a recent review (Bajpai and

Iann otti , 1988). The inhi bit ion of methanogenesis has

been attributed to the action of un-ionized acids

(UVFAs) so both the pH and the total acid concen-

tration are impo rtant in determining the observed

effect. Kroeker e t a l . (1979) reported inhibition when

the UVF A concentration was in the range

30 -6 0m gl -~, while Duar te and Ander son (1982)

observed 50 inhibiti on of methane formation when

the U VFA co ncentr at ion exceeded 10 mg 1-~ in acetic

and glucose-fed digesters. In this work, approx. 50

inhibiti on of both acetic and pr opionate degradation

was observed in batch digesters with initial concen-

tra tio ns of 2000 mg 1- ~ acetate and 500 mg 1- ~ propi-

onate. At pH7.0, the corresponding UVFA

concentration is ab out 14m gl -~ (Kroeker e t a l . ,

1979) so in this respect the results are in general

agreement with these studies.

The culture used in this experiment appeared more

sensitive to the acetic acid concentr ation than others

reported. Substrate in hibi tion for acetic acid has been

noted at concentrations greater than 100mM

(6000 mg 1-l) (Yang and Okos, 1987; Clarens e t a l . ,

1988) while satisfactory performance is usually ob-

served for acetate concen trati ons of 50 mM or less

(Hob son and Shaw, 1976; Huser e t a l . , 1982; Valcke

and Verstraete, 1983; Yang and Okos, 1987). Propi-

onic acid appears more toxic to methano genic ecosys-

tems and significant substrate inhib ition has been

observed following additions of 1000mgl -l or

greater (McCar ty and Brousseau, 1963; Andrews,

1968; Hobso n and Shaw, 1976) although Jarrell and

Saulnier (1987) observed no inhibition of pure

methanog enic cultures at 70 g 1-1 propionate.

The results of this study are significant for digester

operation and control. Digester failure is character-

ized by an increase in the VFA conce ntrat ions and

there is now considerable evidence which shows this

can be detrimental to degradation of both acetic and

propio nic acids. Recovery of a digester from a period

of retarded operation will necessarily require ade-

quate time for the accumulated acids to be degraded

at the lower rate. Additionally, as the un-ionized acid

concentration appears to play an important role in

the reduction of methanogenic activity, the provision

of adequate alkalinity to buffer the pH is important

to minimize the effect of an increase in acid concen-

tration. Further difficulties may also arise when di-

gesters are poorly provided with nutrients as VFAs,

and particularly acetate, can accumulate rapidly

under these conditions (Speece and McCarty, 1964;

Speece, 1983; Mosey and Fernan des, 1988). In such

situations propionate degradation may be signifi-

cantly retarded and the time required for digester

recovery could be prolonged.

R E F E R E N C E S

Andrews J. F. (1968) A dynamic model of the anaerobicdigestion process. Proc. 23rd Purdue Indast . Waste Conf . ,

pp. 285-310.Andrews J. F. and Pearson E. A. (1965) Kinetics and

characteristics of volatile acid production in anaerobic fer-mentation processes. In t . J . Air Wat . Pol lu t . 9, 439--461.

Asinari di san Marzano C-M., Binot R., Bol T., Fripiat J-L.,Hutschemakers J., Melchior J-L., Perez I., Naveau H. andNyns E. J. (1981) Volatile fatty acids, an important stateparameter for the control of the reliability and theproductivities of methane anaerobic digestions. Bi omas s

1, 47-59.Bajpai R . K . and Iannotti E. L . (1988) Product inhibition.

In Handb ook on Anae r ob i c Fe r me n t a t i ons (Edited byErickson L. E. and Fung D. Y-C), pp. 207-241. Dekker,New York.

Banfield F. S., Meek D. M. and Lowden G. F. (1978)Manual and automated gas chromatographic proceduresfor the determination of volatile fatty acids. Water Re-search Centre Technical Report TR76.

Boone D. R. and Bryant M. P. (1980) Propionate degradingbacterium Sy n t r ophob ac t e r wo l i n i i sp. nov. gen. nov.,from methanogenic ecosystems. Appl . envir . Microb iol .40, 626~32.

Boone D. R. and Xun L. (1987) Effects ofpH, temperature,and nutrients on propionate degradation by a

methanogenic enrichment culture. Appl . envir . Microb iol .53, 1589-1592.Bryant M. P. (1979) Microbial methane production--theor-

etical aspects. J . Anim. Sc i . 48 , 193-201.Clarens M., Moletta R. and Dalmeyda M. L. (1988) The

influence of physico-chemical parameters on acetate fer-mentation of Me t hanos ar c i na MST A1. In Pos t e r Pape r s :

F i f t h I n t e r na t i ona l Sy mpos i um on Anae r ob i c D i ge s t i on(Edited by Tilche A. and Rozzi A.), pp. 27-30. MonduzziEditore, Bologna.

DeWitt C. C. (1943) Correlation of rate data. l ndus t . EngngChem. 35, 695-700.

Duarte A. C. and Anderson G. K. (1982) Inhibition mod-elling in anaerobic digestion. Wat. Sci. Technol. 14,749-763.

Edwards V. H. and Wilke C. R. (1968) Mathematicalrepresentation of batch culture data. Biotechnol. BioengngI0, 205-232.

Gorris L. G. M., van Deursen J. M. A., van der Drift C. andVogels G. D. (I 989) Inhibition of propionate degradationby acetate in methanogenic fluidized bed reactors. B i o -technol. Lett . 11, 61~56.

Hansson G. (1979) Effects of carbon dioxide and methaneon methanogenesis.Eur. J. appl. Micro bio l. Biotechnol. 6,351-359.

Hill D. T., Cobb S. A. and Bolte J. P. (1987) Using volatilefatty acid relationships to predict anaerobic digesterfailure. Trans. Am . S oc . agr ic . Engn g 30, 496-501.

Hobson P. N. and Shaw B. G. (1976) Inhibition of methaneproduction by Me t hanob ac t e r i um f o r mi c i c um. Wa t . Re s .

10, 849-852.Hobson P. N., Bousefield S. and Summers R. (1974) An-

aerobic digestion of organic matter. Crit . Rev. envir.Con t r o l 4, 131-191.

Huser B. A., Wuhrmann K. and Zehnder A. J. B. (1982)Methanothr ix soehngeni i gen. nov. sp. nov., a new ace-

WR 25/12--H

Page 6: Degradation of Acetic and Propionic Acids in the Methane Fermentation

8/12/2019 Degradation of Acetic and Propionic Acids in the Methane Fermentation

http://slidepdf.com/reader/full/degradation-of-acetic-and-propionic-acids-in-the-methane-fermentation 6/6

1554 A . J . MA w soN et al.

t o t r oph i c non- hydr ogen- ox i d i s i ng me t hane bac t e r i um.Ar c hs Mi c r ob i o l . 132, 1-9.

Jar re l l K. and Sau lnier M. (1987) Inhibi t ion of methanog en-es i s in pure cul tures by ammonia , fa t ty acids , and heavymetal s , and protect ion agains t heavy metal toxic i ty bysewage sludge. Can. J . Microb iol . 33, 551-554.

K aspa r H . F . and Wuhr mann K . 0978) Pr oduc t i nh i b i t i onin sludge digest ion. Microb . Ecol . 4, 241-248.

Kroeker E . J . , Schul tze D. D. , Spar l ing A. B. and LappH. M. (1979) Ana erobic t rea tm ent process s tabi li ty . J .Wat. Pol lu t . Control Fed. 51, 718-727.

Kug elma nn I . J . and Chin K. K. (1971 ) Toxic i ty , synergism,and anatagonism in anaerobic waste t rea tment processes .In Anae r ob i c B i o l og i c a l Tr e a t me n t Pr oc e s s es (Edi ted byPohland F. G.) , pp, 55-90. Amer ican Chemical Socie ty,Wash i ng t on , D .C .

Mawson A. J. (1986) Factors affect ing the rate and stabil i tyof the anaerobic d iges t ion process . Ph.D. thes i s, M asseyU ni ve r s i t y , Pa l mer s t on N or t h N ew Z ea l and .

M cCa r ty P. L . and Brosseau M . H. (1963 ) Effect of highconcent ra t ions of individual vola t i l e ac ids on anaerobict reatment . Proc. 18th Purdue lndust . Waste Conf . , pp.283-296.

Mosey F . E . and Fe r nandes X . A . ( 1988) Mo ni t o r i nghydrogen in biogas dur ing the anaerobic diges t ion ofsugars. In Pos t e r Pape r s : F i f th I n t e r na t i ona l Sy mpos i umon Anae r ob i c D i ge s t i on (Edi ted by Ti lche A. and RozziA.) , pp. 219-221. Monduzzi Edi tore , Bologna.

Poh l and F . G . and B l oodgood D . E . (1963) L abor a t o r ys tudies on mesophi l ic and thermophi l ic anaerobic s ludgedigestion. J . War. Pol lu t . Contro l Fed. 35, 11-42.

Spcece R. E . (1983) Anaerobic biotechnology for indust r ia lwastewater t rea tment . Envir. Sci. Technol. 17,416A - 427A .

Spccce R. E . and M cCar ty P. L . (1964) Nu t r ient requi re-ments an d biological solids accum ulat ion in anaerobic

diges t ion. In Adv anc e s i n Wa t e r P o l l u ti on Re s e ar ch (Ed-Red by Eckenfelder W. W.) , VoL 2, pp. 305-333. Perga-mon Press , London.

T ho l ozan J . L . , Sama i n E . , G r i ve t J . P . and A l bagnac G .(1988) Acetogenes i s pathway s f rom propio nate in en-r ichment cul ture . In Pos t e r Pape r s : F i f t h I n t e r na t i ona l

Sy mpos i um on Anae r ob i c D i ge s t i on (Edi ted by Ti lche A.and Rozzi A.) , pp. 85-99. M ondu zzi Edi tore , Bologna.

Valcke D. and Vers t raete W. (1983) A pract ica l method toes t imate the acetoclas t ic methanogenic biomass in an-aerobic sludges. J . Wa t . Pol lu t . Control Fed. 55,1191-1195.

Y ang S . T . and O kos M. R . ( 1987) K i ne t i c s t udy andmat hema t i ca l mode l l i ng o f me t hanogenes i s o f ace t a t eus ing pure cul tures of methano gens . Biotechnol. Bioengng

30, 661-667.Z ehnde r A . J . B . and K oc h M . E . ( 1983) T he r mod ynam i c

and kinet ic interact ions of the f inal s teps in anaerobicdigestion. In Pr oc . Eur . Sy mp . Anae r ob i c Was t e Wa t e rTreatment , pp. 86-96.