Deep Space Transport (DST) and Mars Mission Architecture · DST Driving Assumptions Assumption Crew...

20
1 Deep Space Transport (DST) and Mars Mission Architecture John Connolly NASA Mars Study Capability Team October 17 2017

Transcript of Deep Space Transport (DST) and Mars Mission Architecture · DST Driving Assumptions Assumption Crew...

Page 1: Deep Space Transport (DST) and Mars Mission Architecture · DST Driving Assumptions Assumption Crew Number 4 Crew VehicleLifetime/Dormancy 15 year lifetime with up to 3 years dormant

1

Deep Space Transport (DST) and Mars Mission Architecture

John ConnollyNASA Mars Study Capability Team

October 17 2017

Page 2: Deep Space Transport (DST) and Mars Mission Architecture · DST Driving Assumptions Assumption Crew Number 4 Crew VehicleLifetime/Dormancy 15 year lifetime with up to 3 years dormant

Phase4b:MarsHumanLanding

Missions

Endswithtesting,researchand

demoscomplete*AsteroidRedirect CrewedMissionMarksMovefrom

Phase1toPhase2

EndswithoneyearcrewedMars-classshakedowncruise

Today

2030Mid-2020s

*ThereareseveralotherconsiderationsforISSend-of-life

Human Space Exploration Phases From ISS to the Surface of Mars

2

Phase0:ExplorationSystemsTestingonISS

Phase1:CislunarFlightTestingofExploration

Systems

Phase2:CislunarValidationofExplorationCapability

Phase3:CrewedMissionsBeyondEarth-MoonSystem

Phase4a:Developmentandrobotic

preparatorymissions

Planningforthedetailsandspecificobjectiveswillbeneededin~2020

Page 3: Deep Space Transport (DST) and Mars Mission Architecture · DST Driving Assumptions Assumption Crew Number 4 Crew VehicleLifetime/Dormancy 15 year lifetime with up to 3 years dormant

Phase2:DeepSpaceTransport

DeepSpaceGateway

DeepSpaceGateway(DSG)

PHASE2

Orion

Page 4: Deep Space Transport (DST) and Mars Mission Architecture · DST Driving Assumptions Assumption Crew Number 4 Crew VehicleLifetime/Dormancy 15 year lifetime with up to 3 years dormant

Earth Moon

Phase 2 Mission Elements

Orion

Deep Space Transport

Deliverpayloadstocislunarspace

Space Launch System

TransfercrewandcargofromEarthtocisLunarspaceandbacktoEarth

Deep Space Gateway

CislunarSpaceisusedforDeepSpaceGatewayDeploymentandDeepSpaceTransport Checkout

Pre-decisional/Not for distribution/NASA Internal use only

Page 5: Deep Space Transport (DST) and Mars Mission Architecture · DST Driving Assumptions Assumption Crew Number 4 Crew VehicleLifetime/Dormancy 15 year lifetime with up to 3 years dormant

Deep Space Transport Functionality

• Emphasis on supporting shakedown cruise by 2029• Shakedown cruise to be performed in lunar vicinity• Utilizes deep space interfaces and common design standards

• Example Assumptions• Deep Space Transport provides habitation and transportation needs for

transporting crew into deep space including supporting human Mars-class missions

• The Transport system life will be designed for:• Reused for 3 Mars-class missions with resupply and minimal

maintenance• Crew of 4 for 1,000 day-class missions in deep space• Launched on one SLS 1B cargo vehicle - resupply and minimal

outfitting to be performed in cislunar space

5

Page 6: Deep Space Transport (DST) and Mars Mission Architecture · DST Driving Assumptions Assumption Crew Number 4 Crew VehicleLifetime/Dormancy 15 year lifetime with up to 3 years dormant

DST Driving Assumptions

Assumption

CrewNumber 4Crew

Vehicle Lifetime/Dormancy 15yearlifetimewithupto3yearsdormantoperation

DimensionsConstraints 7.2mdiametershelltomeet8.4mpayloadshroudconstraint.0.95eccentricityenddomestomaximize usefulvolume

HabitableVolume >25m3/person

Dockingmechanisms 3passive, 1activeISScompliantdockingmechanismsforcislunaraggregation

Extravehicular Activity ContingencyEVA onlyusingmodifiedLaunch,Entry,andAbort(LEA)suitsandaninflatableairlock

6More complete set of assumptions in paper

Page 7: Deep Space Transport (DST) and Mars Mission Architecture · DST Driving Assumptions Assumption Crew Number 4 Crew VehicleLifetime/Dormancy 15 year lifetime with up to 3 years dormant

Deep Space Transport EVA Assumptions

7

Page 8: Deep Space Transport (DST) and Mars Mission Architecture · DST Driving Assumptions Assumption Crew Number 4 Crew VehicleLifetime/Dormancy 15 year lifetime with up to 3 years dormant

Interior Layout Features

8

Central stowage

Large logistics storage with nested crew quarters for radiation protection

Image credit: NASA

Galley/Wardroom Research/ExerciseMedical/Research

Hygienearea

Page 9: Deep Space Transport (DST) and Mars Mission Architecture · DST Driving Assumptions Assumption Crew Number 4 Crew VehicleLifetime/Dormancy 15 year lifetime with up to 3 years dormant

PHASE3

DeepSpaceTransport(DST)

FirstHumanMissiontoMarsSphereofInfluence

Page 10: Deep Space Transport (DST) and Mars Mission Architecture · DST Driving Assumptions Assumption Crew Number 4 Crew VehicleLifetime/Dormancy 15 year lifetime with up to 3 years dormant

Mission to Mars Sphere of Influence (Phase 3)

• Emphasis on first human mission to Mars’ sphere of influence• First long duration flight with self sustained systems• Autonomous mission with extended communication delay• First crewed mission involving limited abort opportunities

• Example Assumptions• 8.4 m Cargo Fairing for SLS launches in Phase 3• Crew of 4 for Mars class (1000+ day) mission independent of Earth• Orion used for crew delivery and return to/from cislunar space• Re-usable DST/Habitat and Propulsion Stage

• Hybrid (SEP/Chemical) In-Space Propulsion System• Gateway used for aggregation and re-fueling of DST

10

Page 11: Deep Space Transport (DST) and Mars Mission Architecture · DST Driving Assumptions Assumption Crew Number 4 Crew VehicleLifetime/Dormancy 15 year lifetime with up to 3 years dormant

Example Phase 3 Mission Elements

MarsMoon

Deliverpayloadstocislunarspace

Space Launch System

Deep Space Gateway

Orion

TransfercrewandcargofromEarthtocislunarspaceandbacktoEarth CrewOperationsin

MartianVicinity

Deep Space Transport

Communications System

Earth-to-Marscommunication

Earth

Page 12: Deep Space Transport (DST) and Mars Mission Architecture · DST Driving Assumptions Assumption Crew Number 4 Crew VehicleLifetime/Dormancy 15 year lifetime with up to 3 years dormant

High-Mars Orbit

Orionreturn(nocrew)

High-Earth Orbit

Deep Space Gateway

Checkoutbeforeeachmission

1

6

7

8

9

10

11

12

132

12

Launch Loiter HighThrustChemical LowThrustElectric

Mars Orbital MissionExample Operational Concept

# CrewPhaseCriticalEvent System ReturntoEarthOptions

4 LunarGravityAssist#1 DST/Orion DSTpowered returntoHEO/Orionreturn

5 LunarGravityAssist#2 DST DSTpoweredreturntoHEO

5 Earth-MarsTransit(earlyphase) DST DST poweredreturntoHEO(availableforlimitedtimepostdeparture- TBD)

6 Earth-Mars TransitThrusting SEP None– continue toMars

7 MarsOrbit Insertion Chem Backflip(TBD) – continue mission

8 Marsorbitreorientation SEP None– continuemission

9 Trans-EarthInjection Chem None– continuemission

10 Mars-EarthTransitThrusting SEP None– continuemission

11 LunarGravityAssist#3 DST None– continuemission

11 LunarGravityAssist#4 DST None– continue mission

12 OrionLaunch SLS/Orion HEOLoiter

12 EarthReturnviaOrion Orion HEOLoiter 306days

438days

291days

4

12

5

3

Page 13: Deep Space Transport (DST) and Mars Mission Architecture · DST Driving Assumptions Assumption Crew Number 4 Crew VehicleLifetime/Dormancy 15 year lifetime with up to 3 years dormant

Mars Orbital MissionOverview – 2033 Mission Example

Deep Space Transport ~ 300 kW Electric Propulsion (EP) power~ 470 kW solar array power at start of the mission~ 20 kW power to the spacecraft and payload~ 24 t EP propellant and ~ 16 t chemical propellant~ 48 t Payload

~ 21.9 t habitat with 26.5 t logistics and spares to support 4 crew

Mission Concept of Operations1. After crew rendezvous with the Transport in high elliptical Earth

orbit it catches lunar gravity assists for Earth Departure– Most opportunities don’t require a chemical departure burn

but some harder outbound opportunities do2. Transport uses EP in heliocentric space to complete transit to

Mars3. Transport captures into Mars orbit with chemical propulsion 4. Crew performs remote observations of Mars vicinity for 438 days

(88 orbits) 5. Transport departs Mars via a chemical propulsion departure burn6. Transport uses EP to return to Earth7. Lunar gravity assists to recapture into Earth sphere of influence.

1.EarthDeparture3/2033

∆V=0km/s

6.EarthArrival1/2036

∆V=0km/s

3.MarsArrival1/2034

Chemical∆V=~0.3km/s

4.MarsDeparture3/2035

Chemical∆V=~0.3km/s

2.Outbound306days

SEP∆V=~3km/s

5.Inbound291days

SEP∆V=~3km/s

Mars SOI

13

D

Page 14: Deep Space Transport (DST) and Mars Mission Architecture · DST Driving Assumptions Assumption Crew Number 4 Crew VehicleLifetime/Dormancy 15 year lifetime with up to 3 years dormant

PHASE4MarsSurfaceMissions

Page 15: Deep Space Transport (DST) and Mars Mission Architecture · DST Driving Assumptions Assumption Crew Number 4 Crew VehicleLifetime/Dormancy 15 year lifetime with up to 3 years dormant

Mars Surface Mission Feasibility (Phase 4)

• Emphasis on establishing Mars surface field station• First human landing on Mars’ surface• First three missions revisit a common landing site

• Example Assumptions• Re-use of Deep Space Transport for crew transit to Mars• 4 additional, reusable Hybrid SEP In-Space Propulsion stages support Mars

cargo delivery• 10 m cargo fairing for SLS Launches in Phase 4• Missions to Mars’ surface include the following:

• Common EDL hardware with precision landing• Modular habitation strategy• ISRU used for propellant (oxidizer) production• Fission Surface Power• 100 km-class Mobility (Exploration Zone)

15

Page 16: Deep Space Transport (DST) and Mars Mission Architecture · DST Driving Assumptions Assumption Crew Number 4 Crew VehicleLifetime/Dormancy 15 year lifetime with up to 3 years dormant

High-Mars Orbit

Orionreturn(nocrew)

High-Earth Orbit

Deep Space Gateway

Checkoutbeforeeachmission

1

6

10

12

13

14

152

14

Launch Loiter HighThrustChemical LowThrustElectric

Mars Surface MissionExample Operational Concept

# CrewPhaseCriticalEvent System ReturntoEarthOptions

4 LunarGravityAssist#1 DST/Orion DSTpowered returntoHEO/Orionreturn

5 LunarGravityAssist#2 DST DSTpoweredreturntoHEO

5 Earth-MarsTransit(earlyphase) DST DST poweredreturntoHEO(availableforlimitedtimepostdeparture- TBD)

6 Earth-Mars TransitThrusting SEP None– continue toMars

7 MarsOrbit Insertion Chem Backflip(TBD) – continue mission

8 Rendezvous&MarsDescent Lander RemaininMarsorbit forreturn

9 MarsAscent Ascent None– mustascendtoorbit

10 Marsorbitreorientation SEP None– continuemission

11 Trans-EarthInjection Chem None– continuemission

12 Mars-EarthTransitThrusting SEP None– continuemission

13 LunarGravityAssist#3 DST None– continuemission

13 LunarGravityAssist#4 DST None– continue mission

14 OrionLaunch SLS/Orion HEOLoiter

14 EarthReturnviaOrion Orion HEOLoiter

390days

300days

370days

4

16

5

3

7 11

8

9

Page 17: Deep Space Transport (DST) and Mars Mission Architecture · DST Driving Assumptions Assumption Crew Number 4 Crew VehicleLifetime/Dormancy 15 year lifetime with up to 3 years dormant

Example Phase 4 Mission Elements

MarsMoon

Deliverpayloadstocislunarspace

Space Launch System

Deep Space Gateway

Orion

TransfercrewandcargofromEarthtocislunarspaceandbacktoEarth CrewOperationsin

MartianVicinity

Deep Space Transport,Hybrid SEP

Cargo Transport

Earth

Mars Ascent Vehicle

Entry-Descent Lander

Surface Habitat and Science Lab Surface Mobility Surface Utilities

Power,InSituResourceUtilization

PlanetarySpaceSuitsandroboticorpressurizedrovers

Sustain4crewforupto500daysperExpedition

Deliverequipmentandconsumables

Logistics Carrier

Land20-30tpayloadsonMars

TransfercrewandcargofromtheMarssurfacetoMarsorbit

Earth-to-Mars,Marssurface-to-Marsorbit,andMarssurface-to-surfacecommunication

Transport100-200taggregatedpayloadsandcrewbetweenEarth

andMars

Communications System

Page 18: Deep Space Transport (DST) and Mars Mission Architecture · DST Driving Assumptions Assumption Crew Number 4 Crew VehicleLifetime/Dormancy 15 year lifetime with up to 3 years dormant

• End State– “Lewis and Clark”– Field Station (revisit)– Towards permanent habitation

• Mission Duration– In-Space– Surface

• Mars Descent and Ascent– Duration– Scale/capabilities of descent and ascent vehicles

• Transfer Among Surface Elements– Pressurized vs unpressurized– Dust control

• Spacesuit Commonalty– Launch/In-space EVA/Mars EDL/Mars Surface/Mars Ascent/Earth

Entry– Volumetric constraints

• ISRU– Availability of locally produced consumables

• Maintenance and Spares

18

Human Mars Architecture Decisions Related To EVA

Page 19: Deep Space Transport (DST) and Mars Mission Architecture · DST Driving Assumptions Assumption Crew Number 4 Crew VehicleLifetime/Dormancy 15 year lifetime with up to 3 years dormant

19

Page 20: Deep Space Transport (DST) and Mars Mission Architecture · DST Driving Assumptions Assumption Crew Number 4 Crew VehicleLifetime/Dormancy 15 year lifetime with up to 3 years dormant

Human Mars Mission Design Decisions

20

MissionArchitecture/EndStateTransportation

Earth-to-Orbit

PrimaryProgramFocus MissionClass LevelofHuman

ActivityEarthBased

MissionSupport CostEmphasis Reusability CrewLaunchVehicle

Propellantand/orLogisticsLaunchVehicle

ElementLaunchVehicle

LaunchVehicle

ShroudSize/SLS2BFairing

Earth-to-OrbitFlightsperExpedition

LaunchVehicleRate

Flags&Footprints/Lewis&Clark

OppositionClass-ShortStay(1-60

sols)

Robotic/Telerobotic

ContinualControl

LowCost/GradualBuild-Up None SLS/Orion SLS SLS

8.4mDiameter,

ShortLength2 1peryear

ResearchBase /AntarcticField

Analog

ConjunctionClass-LongStay(300+

sols)Expeditions Moderate

InterventionHighCost/

GradualBuild-UpIn-Space

Habitation International International International8.4m

Diameter,LongLength

4 2peryear

PrimaryActivity:Science&Research

All-Upvs.SplitMission Human-Tended NoDaily

InterventionLowCost/Fast

Build-UpIn-Space

Transportation Commercial Commercial Commercial10m

Diameter,ShortLength

6 3peryear

PrimaryActivity:ResourceUtilization

ContinuousPresence Minimal HighCost/Fast

Build-Up EDLandAscent Combination Combination Combination10m

Diameter,LongLength

8 6peryear

PrimaryActivity:HumanExpansion

HumanSettlements SurfaceSystems 12mDiameter 10+

HumanColonization

InfrastructureforPermanentHabitation

Transportation

Cis-EarthInfrastructure DeepSpace

InitialOrbit Long-TermStaging

SupportingSpace

InfrastructureMass

Orion In-SpaceRefueling

EarthReturnMode

Cis-LunarPropulsion

MarsOrbitPropulsion

ChemicalPropellant

In-SpaceHabitation

In-SpaceHabitatDuration

No.ofCrewtoOrbit

Pathway

DRO Cis-LunarHab <50mt TakeOriontoMars Yes DirectEntry AllChemical/

CryogenicAllChemical/Cryogenic

NTO/Hydrazine

MonolithicTransitHab 600days 2 DSG>2-yearFlyby>

Long-StaySurface

NearRectilinearHaloOrbit(NRHO)

NoCis-LunarInfrastructure 50- 100mt LeaveOrion

inOrbit No EarthOrbitCapture

AllChemical/Storable

AllChemical/Storable

LOX/Methane

ModularTransitHab 1000days 3 DSG>2-yearFlyby>

Short-StaySurface

LEO 100- 200mt LunarOrbitCapture NTR NTR LOX/

Hydrogen Combination 1200days 4 DSG>3-yearOrbital>Long-StaySurface

HEO >200mt SEP OCT 5 DSG>3-yearOrbital>Short-StaySurface

HybridSEP/Chem

HybridSEP/Chem 6

HybridSEP/Hypergols

HybridSEP/Hypergols >6

SplitSEP/Chem

SplitSEP/Chem

Q-Drive Q-DriveSEP/Chem/Aerobrake

SEP/Chem/Aerobrake

NEP NEPBimodalNTR BimodalNTR

Transportation

DeepSpace EarthReturn

Destination MarsParkingOrbit

MarsOrbitInsertion-Cargo

MarsOrbitInsertion-Crew

MarsOrbitOperations

MarsDescent

Propellant

AscentVehiclePropellant-FromEarth

AscentVehiclePropellant-FromISRU

MAVPayloadUp

EarthCaptureOrbit

EarthReturnScheme

MarsPre-Deployment

DescenttoEarth'sSurface

EarthEntryVehicle

MarsOrbit 1-sol Propulsive Propulsive Minimal Storables Cryogenic LOXOnly 0kg

DirectEntry

(with

Transithab

flyby)

Direct

EntryConsumables Direct Orion

Phobos 5-sol Aerobrake AerobrakeRendezvous/

TransferCryogenic Hypergol LOXMethane 250kg DRO

Propulsive

CaptureNone

Separate

SystemCommercial

Mars' Surface 500kmCircular None None

Vehicle

Refurbishmen

t

Other LOX/Hydrogen >250kg NHRO Landers Combination

Combination Areosynchronous Other HEOEarthReturn

Propellant

LunarFirst

Areosynchronous

MarsFlyby

Backflip

GrandTour

Fast

HumanHealth Surface

Radiation Countermeasures DesignConsiderations

FirstSurfaceMissionDate

CrewSurfaceStayTime

No.ofCrewtoSurface

LanderPayloadSize(MetricTons)

LandedMassper

Crewmember(MetricTons)

LanderEntryType

LandingLocation LanderAltitude Landing

Accuracy

Passive Zero-Gw/Exercise Psychology 2035ShortStay(1-60sols)

2 1818mtlander:6.0- 36.0mt

BluntBody NearEquator - 6kmMOLA <100m

Active ArtificialShortArm Medical 2037LongStay(300+sols)

3 2020mtlander:6.7- 40.0mt

MidL/D Polar 0kmMOLA 100m- 1km

ArtificialLongArm Dust 2039 4 2222mtlander:7.3- 44.0mt

Inflatable Mid-Latitude +2kmMOLA >1km

2041+ 5 2525mtlander:8.3- 50.0mt

DeployableNorthern

Hemisphere

6 2727mtlander:9.0- 54.0mt

AllPropulsiveSouthern

Hemisphere

>6 3030mtlander:10.0- 60.0mt

Differentforeachmission

4040mtlander:13.3- 80.0mt

Surface

ISRU Power HabitatType

LifeSupport

PlanetaryOutpost

ExcursionRadius/

ExplorationZone

LengthofSurfaceStay

PlanetarySciences

LaboratorySciences ECLSS Trash Robotics

LandingZone

Surveys

CargoHandling

SurfaceCommunication

None Solar Monolithic Open

Different

forEach

Expedition

<10km 7sols

Teleoperationof

Instrument/

Networks

None Open ContainersLowLatency

TeleroboticsOrbital

Crane/

HoistLineofSight

Demonstration

OnlyNuclear Modular Closed

Single

Outpost10- 100km 14sols

ReconGeology/

Geophysiology

BasicAnalysis

/NoLab

50- 75%

ClosedRecycle Autonomous Robotic Ramp RelaySatellite

Atmospheric

OxygenRTG Inflatable

Multiple

Outposts>100km 30sols FieldWork

Moderate

Geochemical

+LifeScience

75- 90%

ClosedCombination

Crew

PartneredATHLETE

Waterfrom

RegolithCombination Rigid 90sols

Drilling/

GeophysicalTests

Full-ScaleLife

Science

>90%

ClosedOther

Waterfromfrom

SubsurfaceIce

Local

Features

and

Resources

300- 500

sols

Fabrication/

Manufacturing

500- 1000

sols

Combination

>1000sols,

overlapping

crews

Export

Thecurrentbigpicturedesignchoicesoffersup5.3x1037possiblecombinations