D Upgrade New Solenoid, Tracking System Si, SciFi,Preshowers Shielding Forward Mini-drift chambers...

32
D Upgrade New Solenoid, Tracking System Si, SciFi,Preshowers Shielding Forward Mini-drift chambers Forward Scintillator Central Scintillator + New Electronics, Trig, DAQ

Transcript of D Upgrade New Solenoid, Tracking System Si, SciFi,Preshowers Shielding Forward Mini-drift chambers...

Page 1: D  Upgrade New Solenoid, Tracking System Si, SciFi,Preshowers Shielding Forward Mini-drift chambers Forward Scintillator Central Scintillator + New Electronics,

D Upgrade

New

Sole

noid

, Tra

ckin

g S

yste

mS

i, S

ciF

i,P

resh

ow

ers

Sh

ield

ing

Forw

ard

Min

i-d

rift

ch

am

bers

Forw

ard

Scin

tillato

rC

en

tral S

cin

tillato

r

+ N

ew

Ele

ctr

on

ics,

Tri

g,

DA

Q

Page 2: D  Upgrade New Solenoid, Tracking System Si, SciFi,Preshowers Shielding Forward Mini-drift chambers Forward Scintillator Central Scintillator + New Electronics,

Luminosity and cross section

Luminosity is a measure of the beam intensity (particles per area per second) ( L~1031/cm2/s )

“integrated luminosity” is a measure of the amount of data collected (e.g. ~100 pb-1)

cross section is measure of effective interaction area, proportional to the probability that a given process will

occur. 1 barn = 10-24 cm2

1 pb = 10-12 b = 10-36 cm2 = 10- 40 m2

interaction rate:

LdtnLdtdn /

Page 3: D  Upgrade New Solenoid, Tracking System Si, SciFi,Preshowers Shielding Forward Mini-drift chambers Forward Scintillator Central Scintillator + New Electronics,

Standard Model A theoretical model of

interactions of elementary particles

Symmetry: – SU(3) x SU(2) x U(1)

“Matter particles”– quarks

up, down, charm,strange, top bottom

– leptons electron, muon, tau, neutrinos

“Force particles”– Gauge Bosons

(electromagnetic force) W, Z (weak, elctromagnetic) g gluons (strong force)

Higgs boson– spontaneous symmetry breaking of

SU(2)– mass

Page 4: D  Upgrade New Solenoid, Tracking System Si, SciFi,Preshowers Shielding Forward Mini-drift chambers Forward Scintillator Central Scintillator + New Electronics,

Standard Model

Page 5: D  Upgrade New Solenoid, Tracking System Si, SciFi,Preshowers Shielding Forward Mini-drift chambers Forward Scintillator Central Scintillator + New Electronics,

Brief History of the Standard Model Late 1920’s - early 1930’s: Dirac, Heisenberg,

Pauli, & others extend Maxwell’s theory of EM to include Special Relativity & QM (QED) - but it only works to lowest order!

1933: Fermi introduces 1st theory of weak interactions, analogous to QED, to explain decay.

1935: Yukawa predicts the pion as carrier of a new, strong force to explain recently observed hadronic resonances.

1937: muon is observed in cosmic rays – first mistaken for Yukawa’s particle

1938: heavy W as mediator of weak interactions? (Klein)

1947: pion is observed in cosmic rays

1949: Dyson, Feynman, Schwinger, and Tomonaga introduce renormalization into QED - most accurate theory to date!

1954: Yang and Mills develop Gauge Theories

1950’s - early 1960’s: more than 100 hadronic “resonances” have been observed !

1962 two neutrinos! 1964: Gell-Mann & Zweig propose a scheme

whereby resonances are interpreted as composites of 3 “quarks”. (up, down, strange)

Page 6: D  Upgrade New Solenoid, Tracking System Si, SciFi,Preshowers Shielding Forward Mini-drift chambers Forward Scintillator Central Scintillator + New Electronics,

Brief History of the Standard Model (continued)

1970: Glashow, Iliopoulos, Maiani: 4th quark (charm) explains suppression of K decay into

1964-1967:spontaneous symmetry breaking (Higgs, Kibble)

1967: Weinberg & Salam propose a unified Gauge Theory of electroweak interactions, introducing the W,Z as force carriers and the Higgs field to provide the symmetry breaking mechanism.

1967: deep inelastic scattering shows “Bjorken scaling”

1969: “parton” picture (Feynman, Bjorken)

1971-1972: Gauge theories are renormalizable (t’Hooft, Veltman, Lee, Zinn-Justin..)

1972: high pt pions observed at the CERN ISR

1973: Gell-Mann & Fritzsch propose that quarks are held together by a Gauge-Field whose quanta, gluons, mediate the strong force Quantum Chromodynamics

1973: “neutral currents” observed (Gargamelle bubble chamber at CERN)

Page 7: D  Upgrade New Solenoid, Tracking System Si, SciFi,Preshowers Shielding Forward Mini-drift chambers Forward Scintillator Central Scintillator + New Electronics,

Brief History of the Standard Model (continued)

1975: J/ interpreted as cc bound state (“charmonium”)

1974: J/ discovered at BNL/SLAC;

1976: lepton discovered at SLAC

1977: discovered at Fermilab in 1977, interpreted as bb bound state (“bottomonium”) 3rd generation

1979: gluon “observed” at DESY

1982: direct evidence for jets in hadron hadron interactions at CERN (pp collider)

1983: W, Z observed at CERN (pp collider built for that purpose)

1995: top quark found at Fermilab (D0, CDF)

1999: indications for “neutrino oscillations” (Super-Kamiokande experiment)

2000: direct evidence for tau neutrino () at Fermilab (DONUT experiment)

2003: Higgs particle observed at Fermilab (?????)

-

-

Page 8: D  Upgrade New Solenoid, Tracking System Si, SciFi,Preshowers Shielding Forward Mini-drift chambers Forward Scintillator Central Scintillator + New Electronics,

Cathode ray history

1855 German inventor Heinrich Geissler develops mercury pump - produces first good vacuum tubes, these tubes, as

modified by Sir William Crookes, become the first to produce cathode rays, leading eventually to the discovery of the

electron (and a bit farther down the road to television).

1858 Julius Plücker shows that cathode rays bend under the influence of a magnet suggesting that they are connected in some way; this leads in 1897 to discovery that cathode rays are composed of electrons.

1865 H. Sprengel improves the Geissler vacuum pump. Plücker uses Geissler tubes to show that at lower pressure,

the Faraday dark space grows larger. He also finds that there is an extended glow on the walls of the tube and that

this glow is affected by an external magnetic field.

1869 J.W. Hittorf finds that a solid body put in front of the cathode cuts off the glow from the walls of the tube.

Establishes that "rays" from the cathode travel in straight lines.

Page 9: D  Upgrade New Solenoid, Tracking System Si, SciFi,Preshowers Shielding Forward Mini-drift chambers Forward Scintillator Central Scintillator + New Electronics,

1871 C.F. Varley is first to publish suggestion that cathode rays are composed of particles. Crookes proposes that

they are molecules that have picked up a negative charge from the cathode and are repelled by it.

1874 George Johnstone Stoney estimates the charge of the then unknown electron to be about 10-20 coulomb, close to

the modern value of 1.6021892 x 10-19 coulomb. (He used the Faraday constant (total electric charge per mole of

univalent atoms) divided by Avogadro's Number. James Clerk Maxwell had recognized this method soon after

Faraday had published, but he did not accept the idea that electricity is composed of particles.) Stoney also proposes

the name "electrine" for the unit of charge on a hydrogen ion. In 1891, he changes the name to "electron."

1876 Eugen Goldstein shows that the radiation in a vacuum tube produced when an electric current is forced through

the tube starts at the cathode; Goldstein introduces the term cathode ray to describe the light emitted.

1881 Herman Ludwig von Helmholtz shows that the electrical charges in atoms are divided into definite integral

portions, suggesting the idea that there is a smallest unit of electricity.

Page 10: D  Upgrade New Solenoid, Tracking System Si, SciFi,Preshowers Shielding Forward Mini-drift chambers Forward Scintillator Central Scintillator + New Electronics,

1883 Heinrich Hertz shows that cathode rays are not deflected by electrically charged metal plates, which would

seem to indicate (incorrectly) that cathode rays cannot be charged particles.

1886 Eugen Goldstein observes that a cathode-ray tube produces, in addition to the cathode ray, radiation that travels

in the opposite direction - away from the anode; these rays are called canal rays because of holes (canals) bored in

the cathode; later these will be found to be ions that have had electrons stripped in producing the cathode ray.

1890 Arthur Schuster calculates the ratio of charge to mass of the particles making up cathode rays (today known as

electrons) by measuring the magnetic deflection of cathode rays. Joseph John (J.J.) Thomson first becomes interested

in the discharge of electricity through a gas a low pressure, that is to say, cathode rays.

Page 11: D  Upgrade New Solenoid, Tracking System Si, SciFi,Preshowers Shielding Forward Mini-drift chambers Forward Scintillator Central Scintillator + New Electronics,

1892 Heinrich Hertz who has concluded (incorrectly) that cathode rays must be some form of wave, shows that the

rays can penetrate thin foils of metal, which he takes to support the wave hypothesis. Philipp von Lenard develops a

cathode-ray tube with a thin aluminum window that permits the rays to escape, allowing the rays to be studied in the

open air.

1894 J.J. Thomson announces that he has found that the velocity of cathode rays is much lower than that of light. He

obtained the value of 1.9 x 107 cm/sec, as compared to the value 3.0 x 1010 cm/sec for light. This was in response to

the prediction by Lenard that cathode rays would move with the velocity of light. However, by 1897, he distrusts this

measurement.

Special Note: At this time there was great rivalry between German and British researchers. As concerning the nature

of the cathode ray, the Germans tended to the explanation that cathode rays were a wave (like light), whereas the

British tended to believe that the cathode ray was a particle. As events unfold over the next few decades,

both will be proven correct.

Page 12: D  Upgrade New Solenoid, Tracking System Si, SciFi,Preshowers Shielding Forward Mini-drift chambers Forward Scintillator Central Scintillator + New Electronics,

In fact, J.J. Thomson will be awarded the Nobel Prize in Physics in 1906 for proving the electron is a particle and his

son, George Paget Thomson, will be awarded the Nobel Prize in Physics in 1937 for showing that the electron is a

wave.

1895 Jean-Baptiste Perrin shows that cathode rays deposit a negative electric charge where they impact, refuting

Hertz's concept of cathode rays as waves and showing they are particles.

1896 Pieter P. Zeeman discovers that spectral lines of gases placed in a magnetic field are split, a phenomenon call

the Zeeman effect; Hendrik Antoon Lorentz explains this effect by assuming that light is produced by the motion of

charged particles in the atom. Lorentz uses Zeeman's observations of the behavior of light in magnetic field to

calculate the charge to mass ratio of the electron in an atom, a year before electrons are discovered and 15 years

before it is known that electron are constituents of atoms.

Page 13: D  Upgrade New Solenoid, Tracking System Si, SciFi,Preshowers Shielding Forward Mini-drift chambers Forward Scintillator Central Scintillator + New Electronics,

1869: Johann Hittorf (1824-1914) (Münster)– determined that discharge in a vacuum tube was

accomplished by the emission of rays ( named “glow rays” by him, later termed “cathode rays”) capable of casting a shadow of an opaque body on the wall of the tube.

– rays seemed to travel in straight lines and produce a fluorescent glow where they passed through the glass.

– Rays deflected by magnetic field 1870’s: William Crookes (1832-1919) (London):

– detailed investigation of discharges;– Confirms Hittorf’s findings about deflection in

magnetic field– Concludes that rays consist of particles carrying

negative charge 1886 - 1887: Heinrich Hertz (1857-1894)

(Karlsruhe)– Built apparatus to generate and detect

electromagnetic waves predicted by Maxwell’s theory High voltage induction coil to cause spark discharge

between two pieces of brass; once spark forms conducting path between two brass conductors charge oscillated back and forth, emitting e.m. radiation

Circular copper wire with spark gap used as receiver; presence of oscillating charge in receiver signaled by spark across the spark gap

– Experiment successful – – detected radiation up to 50 ft away– Established that radiation had properties

reminiscent of light: was reflected and refracted as expected, could be polarized, speed = speed of light

Page 14: D  Upgrade New Solenoid, Tracking System Si, SciFi,Preshowers Shielding Forward Mini-drift chambers Forward Scintillator Central Scintillator + New Electronics,

1887: Heinrich Hertz:– Unexpected new observation: when receiver

spark gap is shielded from light of transmitter spark, the maximum spark-length became smaller

– Further investigation showed: Glass effectively shielded the spark Quartz did not Use of quartz prism to break up light into

wavelength components find that wavelength which makes little spark more powerful was in the UV

Hertz’ conclusion: “I confine myself at present to communicating the results obtained, without attempting any theory respecting the manner in which the observed phenomena are brought about”

Page 15: D  Upgrade New Solenoid, Tracking System Si, SciFi,Preshowers Shielding Forward Mini-drift chambers Forward Scintillator Central Scintillator + New Electronics,

1888: Wilhelm Hallwachs (1859-1922) (Dresden)– Performs experiment to elucidate effect observed

by Hertz: Clean circular plate of Zn mounted on insulating

stand; plate connected by wire to gold leaf electroscope

Electroscope charged with negative charge – stays charged for a while; but if Zn plate illuminated with UV light, electroscope loses charge quickly

Electroscope charged with positive charge: UV light has no influence on speed of charge leakage.

– But still no explanation– Calls effect “lichtelektrische Entladung” (light-

electric discharge)

Page 16: D  Upgrade New Solenoid, Tracking System Si, SciFi,Preshowers Shielding Forward Mini-drift chambers Forward Scintillator Central Scintillator + New Electronics,

1894: Hertz and Philipp Lenard (1862-1947):– Further investigations of cathode rays using

discharge tubes: Cathode rays penetrate through thin Al window

ate end of tube, Cause fluorescence over distance of few

centimeters in air Deflected by magnetic field No deflection by electric fields (later explained due to insufficiently good

vacuum)

1895: Wilhelm Röntgen (1845-1923) (Würzburg)– Uses discharge tubes designed by Hittorf and

Lenard (but improved pump) to verify Hertz’ and Lenard’s experiments

– Discovers X-rays -- forget about cathode rays!

Page 17: D  Upgrade New Solenoid, Tracking System Si, SciFi,Preshowers Shielding Forward Mini-drift chambers Forward Scintillator Central Scintillator + New Electronics,

Röntgen and X-rays:

From Life magazine,6 April 1896

Hand of Anna Röntgen

Page 18: D  Upgrade New Solenoid, Tracking System Si, SciFi,Preshowers Shielding Forward Mini-drift chambers Forward Scintillator Central Scintillator + New Electronics,

1895: Jean Perrin (1870-1942) (Paris):– Modifies cathode ray tube – adds “Faraday cup” which is

connected to electrometer– Shows that cathode rays carry negative charge

1896: Hendrik A Lorentz (1853-1928) (Leiden)– Formulates atomistic interpretation of Maxwell’s

equations in terms of electrically charged particles (called “ions” by him)

– “Lorentz force” = force exerted by magnetic field on moving charged particles

1896: Pieter A. Zeeman (1865-1943) (Amsterdam)– Observes broadening of Na D line in magnetic field– measures broadening vs field strength

1896: Explanation of this effect by Lorentz: based on light emitted by “ions” orbiting within Na atom Calculates expected broadening f (e/m)B By comparing with measured line broadening, obtains

estimate of e/m of “ions” in Na atom: e/m 107 emu/g 1011 C/kg

(cf modern value of 1.76x10 C11/kg) 1897: three experiments measuring e/m, all with

improved vacuum:– Emil Wiechert (1861-1928) (Königsberg)

Measures e/m – value similar to that obtained by Lorentz Assuming value for charge = that of H ion, concludes that

“charge carrying entity is about 2000 times smaller than H atom”

Cathode rays part of atom? Study was his PhD thesis, published in obscure journal –

largely ignored– Walther Kaufmann (1871-1947) (Berlin)

Obtains similar value for e/m, points out discrepancy, but no explanation

– J. J. Thomson

Page 19: D  Upgrade New Solenoid, Tracking System Si, SciFi,Preshowers Shielding Forward Mini-drift chambers Forward Scintillator Central Scintillator + New Electronics,

1897: Joseph John Thomson (1856-1940) (Cambridge)– Improves on tube built by Perrin with Faraday

cup to verify Perrin’s result of negative charge– Conclude that cathode rays are negatively

charged “corpuscles” – Then designs other tube with electric deflection

plates inside tube, for e/m measurement– Result for e/m in agreement with that obtained

by Lorentz, Wiechert, Kaufmann, Wien– Bold conclusion: “we have in the cathode rays

matter in a new state, a state in which the subdivision of matter is carried very much further than in the ordinary gaseous state: a state in which all matter... is of one and the same kind; this matter being the substance from which all the chemical elements are built up.“

Page 20: D  Upgrade New Solenoid, Tracking System Si, SciFi,Preshowers Shielding Forward Mini-drift chambers Forward Scintillator Central Scintillator + New Electronics,
Page 21: D  Upgrade New Solenoid, Tracking System Si, SciFi,Preshowers Shielding Forward Mini-drift chambers Forward Scintillator Central Scintillator + New Electronics,
Page 22: D  Upgrade New Solenoid, Tracking System Si, SciFi,Preshowers Shielding Forward Mini-drift chambers Forward Scintillator Central Scintillator + New Electronics,

1899: J.J. Thomson: studies of photoelectric effect: – Modifies cathode ray tube: make metal

surface to be exposed to light the cathode in a cathode ray tube

– Finds that particles emitted due to light are the same as cathode rays (same e/m)

1902: Philipp Lenard– Studies of photoelectric effect

Measured variation of energy of emitted photoelectrons with light intensity

Use retarding potential to measure energy of ejected electrons: photo-current stops when retarding potential reaches Vstop

Surprises:

– Vstop does not depend on light intensity

– energy of electrons does depend on color (frequency) of light

Page 23: D  Upgrade New Solenoid, Tracking System Si, SciFi,Preshowers Shielding Forward Mini-drift chambers Forward Scintillator Central Scintillator + New Electronics,
Page 24: D  Upgrade New Solenoid, Tracking System Si, SciFi,Preshowers Shielding Forward Mini-drift chambers Forward Scintillator Central Scintillator + New Electronics,
Page 25: D  Upgrade New Solenoid, Tracking System Si, SciFi,Preshowers Shielding Forward Mini-drift chambers Forward Scintillator Central Scintillator + New Electronics,

1905: Albert Einstein (1879-1955) (Bern)– Gives explanation of observation relating to

photoelectric effect: Assume that incoming radiation consists of “light

quanta” of energy hf (h = Planck’s constant,

f=frequency) electrons will leave surface of metal with energy

E = hf – W W = “work function” = energy

necessary to get electron out of the metal

When cranking up retarding voltage until current stops, the highest energy electrons must have had energy eVstop on leaving the cathode

Therefore eVstop = hf – W

Minimum light frequency for a given metal, that for which quantum of energy is equal to work function

1906 – 1916 Robert Millikan (1868-1963) (Chicago)– Did not accept Einstein’s explanation– Tried to disprove it by precise measurements– Result: confirmation of Einstein’s theory,measurement of h with 0.5% precision

1923: Arthur Compton (1892-1962)(St.Louis):– Observes scattering of X-rays on electrons

Page 26: D  Upgrade New Solenoid, Tracking System Si, SciFi,Preshowers Shielding Forward Mini-drift chambers Forward Scintillator Central Scintillator + New Electronics,

Neutrino

Page 27: D  Upgrade New Solenoid, Tracking System Si, SciFi,Preshowers Shielding Forward Mini-drift chambers Forward Scintillator Central Scintillator + New Electronics,

Particle detectors, cont’d

Scintillator:– energy liberated in de-excitation and

capture of ionization electrons emitted as light - ``scintillation light'’

– light channeled to photomultiplier in light guide (e.g. optical fibers);

– scintillating materials: certain crystals (e.g. NaI), transparent plastics with doping (fluors and wavelength shifters)

proportional tube:– metallic tube with thin wire in center, filled

with gas, HV between wall (-, “cathode”) and central wire (+,”anode”); strong electric field near wire;

– charged particle in gas ionization electrons liberated;

– electrons accelerated in electric field can liberate other electrons by ionization which in turn are accelerated and ionize “avalanche of electrons” moves to wire current pulse; current pulse amplified electronic signal:

– gas is usually noble gas (e.g. argon), with some additives e.g. carbon dioxide, methane, isobutane,..) as “quenchers”;

Page 28: D  Upgrade New Solenoid, Tracking System Si, SciFi,Preshowers Shielding Forward Mini-drift chambers Forward Scintillator Central Scintillator + New Electronics,

Particle detectors, cont’d

multi wire proportional chamber:– contains many parallel anode wires between

two cathode planes (array of prop.tubes with separating walls taken out)

– operation similar to proportional tube;– cathodes can be metal strips or wires get

additional position information from cathode signals.

drift chamber:– field shaping wires and electrodes on wall to

create very uniform electric field, and divide chamber volume into “drift cells”, each containing one anode wire;

– within drift cell, electrons liberated by passage of particle move to anode wire, with avalanche multiplication near anode wire;

– arrival time of pulse gives information about distance of particle from anode wire; ratio of pulses at two ends of anode wire gives position along anode wire;

Page 29: D  Upgrade New Solenoid, Tracking System Si, SciFi,Preshowers Shielding Forward Mini-drift chambers Forward Scintillator Central Scintillator + New Electronics,

Particle detectors, cont’d

Cherenkov detector:– measure Cherenkov light (amount and/or

angle) emitted by particle going through counter volume filled with transparent gas liquid, aerogel, or solid get information about speed of particle.

calorimeter:– “destructive” method of measuring a

particle's energy: put enough material into particle's way to force formation of electromagnetic or hadronic shower (depending on kind of particle)

– eventually particle loses all of its energy in calorimeter;

– energy deposit gives measure of original particle energy.

Note: many of the detectors and techniques developed for particle and nuclear physics are now being used in medicine, mostly diagnosis, but also for therapy.

Page 30: D  Upgrade New Solenoid, Tracking System Si, SciFi,Preshowers Shielding Forward Mini-drift chambers Forward Scintillator Central Scintillator + New Electronics,

Particle detectors, cont’d

Scintillator:– energy liberated in de-excitation and

capture of ionization electrons emitted as light – “scintillation light'’

– light channeled to photomultiplier in light guide (e.g. optical fibers);

– scintillating materials: certain crystals (e.g. NaI), transparent plastics with doping (fluors and wavelength shifters)

proportional tube:– metallic tube with thin wire in center, filled

with gas, HV between wall (-, “cathode”) and central wire (+,”anode”); strong electric field near wire;

– charged particle in gas ionization electrons liberated;

– electrons accelerated in electric field can liberate other electrons by ionization which in turn are accelerated and ionize “avalanche of electrons” moves to wire current pulse; current pulse amplified electronic signal:

– gas is usually noble gas (e.g. argon), with some additives e.g. carbon dioxide, methane, isobutane,..) as “quenchers”;

Page 31: D  Upgrade New Solenoid, Tracking System Si, SciFi,Preshowers Shielding Forward Mini-drift chambers Forward Scintillator Central Scintillator + New Electronics,

Particle detectors, cont’d

multi wire proportional chamber:– contains many parallel anode wires between

two cathode planes (array of prop.tubes with separating walls taken out)

– operation similar to proportional tube;– cathodes can be metal strips or wires get

additional position information from cathode signals.

drift chamber:– field shaping wires and electrodes on wall to

create very uniform electric field, and divide chamber volume into “drift cells”, each containing one anode wire;

– within drift cell, electrons liberated by passage of particle move to anode wire, with avalanche multiplication near anode wire;

– arrival time of pulse gives information about distance of particle from anode wire; ratio of pulses at two ends of anode wire gives position along anode wire;

Page 32: D  Upgrade New Solenoid, Tracking System Si, SciFi,Preshowers Shielding Forward Mini-drift chambers Forward Scintillator Central Scintillator + New Electronics,

Particle detectors, cont’d

Cherenkov detector:– measure Cherenkov light (amount and/or

angle) emitted by particle going through counter volume filled with transparent gas liquid, aerogel, or solid get information about speed of particle.

calorimeter:– “destructive” method of measuring a

particle's energy: put enough material into particle's way to force formation of electromagnetic or hadronic shower (depending on kind of particle)

– eventually particle loses all of its energy in calorimeter;

– energy deposit gives measure of original particle energy.

Note: many of the detectors and techniques developed for particle and nuclear physics are now being used in medicine, mostly diagnosis, but also for therapy.