Curved motion

22
Curved motion

description

Introduction to circular (ballistic) and circular motion, centripetal acceleration and force. Kepler's 3rd law.

Transcript of Curved motion

Page 1: Curved motion

Curved motion

Page 2: Curved motion

Overview

Curved motion 2

The trajectory and velocity of an object is fully determined by… 1. Its initial place 𝑠02. Its initial velocity 𝑣0

3. The present overall force field Σ 𝐹

𝑣0

𝑠0

Ξ£ 𝐹 𝑣0

𝑣0

𝑠0 Ξ£ 𝐹

𝑣0

𝑠0

Σ 𝐹

Uniform Ξ£ 𝐹 ON thesame working line as 𝑣0

= Linear motion

Uniform Ξ£ 𝐹 NOT ON thesame working line as 𝑣0

= Projectile motion

Ξ£ 𝐹 always directed to ONEsingle point + constant 𝑣 .= Circular motion

Page 3: Curved motion

Velocity change βˆ† 𝑣 as a vector

Curved motion 3

𝑣0

Σ 𝐹

𝑣0

𝑣0

Σ 𝐹

𝑣0

Σ 𝐹

Ξ” 𝑣 = π‘ŽΞ”π‘‘ =1

π‘šΞ£ 𝐹Δ𝑑 The velocity always changes in the direction of the overall force

Ξ” 𝑣

𝑣1

Ξ” 𝑣

𝑣1

𝑣1

𝑣2

Ξ” 𝑣

Ξ” 𝑣

Ξ” 𝑣

𝑣1

Verify in the pictures that always βˆ† 𝑣 βˆ•βˆ• Ξ£ 𝐹

Difficult because Σ 𝐹changes direction

during Δ𝑑So Δ𝑑 must be small

Page 4: Curved motion

Projectile (ballistic) motion

Curved motion 4

𝑣0

β„Ž1β„Ž0

𝑣1

𝑣2

πΉπ‘Š

Range

Trajectory

Assumption: Ξ£ 𝐹 = πΉπ‘Š (only uniform downwards weight, no air resistance)

Page 5: Curved motion

Projectile motion, scalar treatment - I

Curved motion 5

𝑣0

β„Ž1β„Ž0

𝑣1

𝑣2

πΉπ‘Š

Use the energy conservation law 𝐸0 = 𝐸1 = 𝐸2

Range

Trajectory

𝐸𝑝0 + πΈπ‘˜0 = 𝐸𝑝1 + πΈπ‘˜1 β‡’1

2π‘šπ‘£0

2 + π‘šπ‘”β„Ž0 =1

2π‘šπ‘£1

2 + π‘šπ‘”β„Ž1 β‡’1

2𝑣0

2 + π‘”β„Ž0 =1

2𝑣1

2 + π‘”β„Ž1

To calculate the maximum height, apply 𝐸0 = 𝐸1

4 unknowns, so 3 must be known

Page 6: Curved motion

Projectile motion, scalar treatment - II

Curved motion 6

𝑣0

β„Ž1β„Ž0

𝑣1

𝑣2

πΉπ‘Š

Range

Trajectory

𝐸𝑝0 + πΈπ‘˜0 = 𝐸𝑝2 + πΈπ‘˜2 β‡’1

2π‘šπ‘£0

2 + π‘šπ‘”β„Ž0 =1

2π‘šπ‘£2

2 + π‘šπ‘” βˆ™ 0 β‡’1

2𝑣0

2 + π‘”β„Ž0 =1

2𝑣2

2

To calculate the final velocity, apply 𝐸0 = 𝐸2

3 unknowns, so 2 must be known

Page 7: Curved motion

Projectile motion, scalar treatment - III

Curved motion 7

𝑣0

β„Ž1β„Ž0

𝑣1

𝑣2

πΉπ‘Š

Example: β„Ž0 = 10.0π‘š, 𝑣0 = 20.0π‘šπ‘ βˆ’1, 𝑣1 = 18.0π‘šπ‘ βˆ’1

Range

Trajectory

Maximum height: 1

2𝑣0

2 + π‘”β„Ž0 =1

2𝑣1

2 + π‘”β„Ž1 β‡’1

220.02 + 9.81 βˆ™ 10.0 =

1

218.02 + 9.81 βˆ™ β„Ž1 β‡’ β„Ž1 = 13.9π‘š

Final velocity: 1

2𝑣0

2 + π‘”β„Ž0 =1

2𝑣2

2 + π‘”β„Ž2 β‡’1

220.02 + 9.81 βˆ™ 10.0 =

1

2𝑣2

2 β‡’ 𝑣2 = 24.4π‘šπ‘ 2

Important: Scalar treatment does not solve: time values & angle values & range !

Page 8: Curved motion

Projectile motion, vector treatment - I

Curved motion 8

πΉπ‘Š

𝑣

𝑠

𝑠π‘₯

𝑠𝑦 𝑣π‘₯

𝑣𝑦

start

origin

Resolve 𝑠, 𝑣, π‘Ž, and 𝐹 in separate π‘₯ & 𝑦 direction.1. Make sure π‘₯-axis is horizontal, 𝑦-axis is vertical2. Choose origin below the start point on β„Ž = 03. Choose β€˜+ directions’: to right and upwards

In that case the equations of motion can be written independently for both directions:

𝑠π‘₯ = 𝑠π‘₯0 + 𝑣π‘₯0 βˆ™ 𝑑 + 1 2π‘Žπ‘₯ βˆ™ 𝑑2

𝑣π‘₯ = 𝑣π‘₯0 + π‘Žπ‘₯ βˆ™ 𝑑

𝑠𝑦 = 𝑠𝑦0 + 𝑣𝑦0 βˆ™ 𝑑 + 1 2π‘Žπ‘¦ βˆ™ 𝑑2

𝑣𝑦 = 𝑣𝑦0 + π‘Žπ‘¦ βˆ™ 𝑑

With the correct initial values this becomes easier…

πœƒ

Page 9: Curved motion

Projectile motion, vector treatment - II

Curved motion 9

πΉπ‘Š

𝑣

𝑠

𝑠π‘₯

𝑠𝑦 𝑣π‘₯

𝑣𝑦

start

origin

Choose:𝑠π‘₯0 = 0 & 𝑠𝑦0 = β„Ž0

𝑣π‘₯0 = 𝑣0πΆπ‘œπ‘ πœƒ & 𝑣𝑦0 = 𝑣0π‘†π‘–π‘›πœƒ

π‘Žπ‘₯ = 0 & π‘Žπ‘¦ = βˆ’π‘”

Now the equations reduce to:𝑠π‘₯ = 𝑣π‘₯0 βˆ™ 𝑑

𝑠𝑦 = β„Ž0 + 𝑣𝑦0 βˆ™ 𝑑 βˆ’ 1 2𝑔 βˆ™ 𝑑2

𝑣𝑦 = 𝑣𝑦0 βˆ’ 𝑔 βˆ™ 𝑑

And for a horizontal projection (πœƒ = 0)𝑠π‘₯ = 𝑣0 βˆ™ 𝑑

𝑠𝑦 = β„Ž0 βˆ’ 1 2𝑔 βˆ™ 𝑑2

𝑣𝑦 = βˆ’π‘” βˆ™ 𝑑

πœƒ

Page 10: Curved motion

Projectile motion, vector treatment - III

Curved motion 10

πΉπ‘Š

𝑣 = 20.0π‘šπ‘ βˆ’1

origin

Exampleβ„Ž0 = 10.0π‘š, πœƒ = 0.0Β°, 𝑣0 = 20.0π‘šπ‘ βˆ’1

𝑠π‘₯ = 20.0 βˆ™ 𝑑𝑠𝑦 = 10 βˆ’ 4.905 βˆ™ 𝑑2

𝑣𝑦 = βˆ’9.81 βˆ™ 𝑑

Time at the ground: set 𝑠𝑦 = 0 β‡’ 10 βˆ’ 4.905 βˆ™ 𝑑2 = 0 β‡’ 𝑑 = 1.43𝑠

Range: 𝑠π‘₯ 1.43 = 20 βˆ™ 1.43 = 28.6π‘š

Final velocity: 𝑣π‘₯ 1.43 = 20π‘šπ‘ βˆ’1 𝑣𝑦 1.43 = βˆ’9.81 βˆ™ 1.43 = βˆ’14.0π‘šπ‘ βˆ’1

Magnitude: 𝑣 1.43 = 202 + 142 = 24.4π‘šπ‘ βˆ’1

Angle: πœƒ 1.43 = π‘‘π‘Žπ‘›βˆ’1 𝑣𝑦 𝑣π‘₯ = π‘‘π‘Žπ‘›βˆ’1 βˆ’14.0 20.0 = βˆ’35.0Β°

β„Ž0

Page 11: Curved motion

Projectile motion, vector treatment - IV

Curved motion 11

πΉπ‘Š

𝑣 = 20.0π‘šπ‘ βˆ’1

𝑣π‘₯

𝑣𝑦

origin

Exampleβ„Ž0 = 10.0π‘š, πœƒ = 30.0Β°, 𝑣0 = 20.0π‘šπ‘ βˆ’1

𝑣0π‘₯ = 20πΆπ‘œπ‘  30Β° = 17.32π‘šπ‘ βˆ’1

𝑣0𝑦 = 20𝑆𝑖𝑛 30Β° = 10.0π‘šπ‘ βˆ’1𝑠π‘₯ = 17.32 βˆ™ 𝑑

𝑠𝑦 = 10 + 10 βˆ™ 𝑑 βˆ’ 4.905 βˆ™ 𝑑2

𝑣𝑦 = 10 βˆ’ 9.81 βˆ™ 𝑑

Time at highest point: set 𝑣𝑦 = 0 β‡’ 10 βˆ’ 9.81 βˆ™ 𝑑 β‡’ 𝑑 = 1.02𝑠

Height of highest point: 𝑠𝑦 1.02 = 10 + 10 βˆ™ 1.02 βˆ’ 4.905 βˆ™ 1.022 = 15.1π‘š

Time at the ground: set 𝑠𝑦 = 0 β‡’ 10 + 10 βˆ™ 𝑑 βˆ’ 4.905 βˆ™ 𝑑2 = 0

4.905𝑑2 βˆ’ 10𝑑 βˆ’ 10 = 0 β‡’ 𝑑 =10 Β± 102 βˆ’ 4 βˆ™ 10 βˆ™ βˆ’4.905

2 βˆ™ 4.905= 2.77𝑠

Range: 𝑠π‘₯ 2.77 = 17.32 βˆ™ 2.77 = 48.0π‘šFinal velocity: 𝑣π‘₯ 2.77 = 17.32π‘šπ‘ βˆ’1 𝑣𝑦 2.77 = 10 βˆ’ 9.81 βˆ™ 2.77 = βˆ’17.2π‘šπ‘ βˆ’1

Magnitude: 𝑣 2.77 = 17.322 + 17.22 = 24.4π‘šπ‘ βˆ’1

Angle: πœƒ 2.77 = π‘‘π‘Žπ‘›βˆ’1 𝑣𝑦 𝑣π‘₯ = π‘‘π‘Žπ‘›βˆ’1 βˆ’17.2 17.32 = βˆ’44.8Β°

β„Ž0

30Β°

Page 12: Curved motion

Projectile motion, vector treatment - V

Curved motion 12

πΉπ‘Š

𝑣 = 20.0π‘šπ‘ βˆ’1

β„Ž0 = 10.0π‘š

30.0Β°

𝑣 = 24.4π‘šπ‘ βˆ’1

β„Ž1 = 15.1π‘š

πœƒ = βˆ’35.0Β° πœƒ = βˆ’44.8Β°

28.6π‘š48.0π‘š

RESULTS of the calculation

Page 13: Curved motion

Acceleration in circular motion

Curved motion 13

𝑣0

𝑣1Ξ”πœ™

π‘Ÿ

π‘Ÿ

𝑣0

𝑣1

Ξ” 𝑣

Ξ”πœ™ A

BΞ” 𝑠

In a circle segment: π‘Žπ‘Ÿπ‘ 𝐴𝐡 = π‘Ÿ βˆ™ Ξ”πœ™ (π‘Ÿπ‘Žπ‘‘)If πœ™ small: Δ𝑠 = π‘Ÿ βˆ™ Ξ”πœ™ β‡’ Ξ”πœ™ = βˆ†π‘  π‘Ÿ

The 2 triangles are similar, so:

βˆ†πœ™(π‘ π‘šπ‘Žπ‘™π‘™) =Δ𝑣

𝑣=

Δ𝑠

π‘Ÿ

Divide by Δ𝑑:Δ𝑣

𝑣 βˆ™ βˆ†π‘‘=

Δ𝑠

π‘Ÿ βˆ™ βˆ†π‘‘β‡’ π‘Ÿ

βˆ†π‘£

βˆ†π‘‘= 𝑣

βˆ†π‘ 

βˆ†π‘‘β‡’ π‘Ÿ βˆ™ π‘Ž = 𝑣2

π‘Ž =𝑣2

π‘ŸCentripetal acceleration

Page 14: Curved motion

Force in circular motion

Curved motion 14

𝑣0

𝑣1

A

B

According to Newton’s 2nd law an acceleration π‘Žrequires an overall force Σ𝐹 = π‘šπ‘Ž

In other words:An object that orbits around a point at a distance π‘ŸWith a velocity 𝑣 requires an overall force:

𝐹𝑐𝑝𝑑 = π‘šπ‘Žπ‘π‘π‘‘ =π‘šπ‘£2

π‘ŸCentripetal force

𝐹𝑐𝑝𝑑

Page 15: Curved motion

Force in circular motion – Example I

Curved motion 15

Moon circles around EarthDistance Earth - Moon π‘Ÿ = 384.4 βˆ™ 106π‘šPeriod 𝑇 = 27.32𝑑Mass π‘š = 7.35 βˆ™ 1022π‘˜π‘”

𝑣 =2πœ‹π‘Ÿ

𝑇=

2πœ‹ βˆ™ 384.4 βˆ™ 106

27.32 βˆ™ 24 βˆ™ 3600= 1023π‘šπ‘ βˆ’1

π‘Žπ‘π‘π‘‘ =𝑣2

π‘Ÿ=

10232

384.4 βˆ™ 106 = 2.724 βˆ™ 10βˆ’3π‘šπ‘ βˆ’2

𝐹𝑐𝑝𝑑 = π‘šπ‘Žπ‘π‘π‘‘ = 2.002 βˆ™ 1020𝑁

This force is provided by the gravitational pull of the Earth

Page 16: Curved motion

Force in circular motion – Example IIa

Curved motion 16

Fairground looping – lowest pointRadius π‘Ÿ = 14π‘šVelocity 𝑣 = 24π‘šπ‘ βˆ’1

Mass (you) π‘š = 65π‘˜π‘”

π‘Žπ‘π‘π‘‘ =𝑣2

π‘Ÿ=

242

14= 41π‘šπ‘ βˆ’2 𝐹𝑐𝑝𝑑 = π‘šπ‘Žπ‘π‘π‘‘ = 2.67 βˆ™ 103𝑁

Weight πΉπ‘Š = 0.64 βˆ™ 103𝑁 works in the wrong direction!

A normal force 𝐹𝑁 = 2.67 βˆ™ 103 + 0.64 βˆ™ 103 = 3.3 βˆ™ 103𝑁is required to provide the necessary 𝐹𝑐𝑝𝑑

β€œyou feel the chair pressing you upwards” πΉπ‘Š

𝐹𝑐𝑝𝑑 = Ξ£ 𝐹

𝐹𝑁

Page 17: Curved motion

Force in circular motion – Example IIb

Curved motion 17

Fairground looping – highest pointRadius π‘Ÿ = 14π‘šVelocity 𝑣 = 5.2π‘šπ‘ βˆ’1

Mass (you) π‘š = 65π‘˜π‘”

π‘Žπ‘π‘π‘‘ =𝑣2

π‘Ÿ=

5.22

14= 1.9π‘šπ‘ βˆ’2 𝐹𝑐𝑝𝑑 = π‘šπ‘Žπ‘π‘π‘‘ = 126𝑁

Weight πΉπ‘Š = 638𝑁 works in the correct direction, but is too much!

An upwards normal force 𝐹𝑁 = 638 βˆ’ 126 = 5.1 βˆ™ 102𝑁is required to compensate weight and provide the necessary 𝐹𝑐𝑝𝑑

β€œyou are saved by the braces (belts)”

πΉπ‘Š

𝐹𝑐𝑝𝑑 = Ξ£ 𝐹

𝐹𝑁

You are 2 Γ— 14π‘š higher now and your velocity equals 5.2π‘šπ‘ βˆ’2

in stead of 24π‘šπ‘ βˆ’1 . Energy conservation law, check it yourself!

Page 18: Curved motion

Force in circular motion – Example III

Curved motion 18

Short track skatingRadius π‘Ÿ = 8.0π‘šVelocity 𝑣 = 10π‘šπ‘ βˆ’1

Mass π‘š = 65π‘˜π‘”

π‘Žπ‘π‘π‘‘ =𝑣2

π‘Ÿ=

102

8.0= 12.5π‘šπ‘ βˆ’2

𝐹𝑐𝑝𝑑 = π‘šπ‘Žπ‘π‘π‘‘ = 813𝑁

Weight πΉπ‘Š = 638𝑁 works downwards!

Construct a free body diagram to find the contact force by the ice on the skates.

With 1cm β‰œ 200𝑁 this yields 𝐹𝑖𝑐𝑒 = 1.0 βˆ™ 103𝑁Or calculate it algebraically with Pythagoras.

π‘‘π‘Žπ‘› πœƒ =πΉπ‘Š

𝐹𝑐𝑝𝑑=

π‘šπ‘”

π‘šπ‘£2 π‘Ÿ=

π‘”π‘Ÿ

𝑣2 = 0.785 β‡’ πœƒ = 38Β°

Or measure it in the free body diagram

Vectors must beon scale! πΉπ‘Š

𝐹𝑐𝑝𝑑

𝐹𝑖𝑐𝑒

πœƒ

Page 19: Curved motion

Satellite orbits

Curved motion 19

In case of satellites orbiting a planet (Earth), the 𝐹𝑐𝑝𝑑

Is provided by the gravitational force between to masses:

𝐹𝑔 = 𝐺𝑀 βˆ™ π‘š

π‘Ÿ2

Newton’s law of gravitation

𝑀Typically large

π‘šTypically small

𝐹

𝑣

π‘Ÿ

Gravitational constant 𝐺 = 6.67384 βˆ™ 10βˆ’11π‘š3π‘˜π‘”βˆ’1π‘ βˆ’2

Inverse square law

Page 20: Curved motion

Kepler’s 3rd law

Curved motion 20

𝐹𝑔 = 𝐹𝑐𝑝𝑑 β‡’ 𝐺𝑀 βˆ™ π‘š

π‘Ÿ2=

π‘š βˆ™ 𝑣2

π‘Ÿβ‡’ 𝐺 βˆ™ 𝑀 = π‘Ÿ βˆ™ 𝑣2

β„Ž

𝑅𝑝

π‘Ÿ

Substitute: 𝑣 =2πœ‹π‘Ÿ

𝑇

𝐺 βˆ™ 𝑀 = π‘Ÿ βˆ™2πœ‹π‘Ÿ

𝑇

2

= 4πœ‹2π‘Ÿ3

𝑇2 β‡’π‘Ÿ3

𝑇2 =𝐺𝑀

4πœ‹2 = π‘π‘œπ‘›π‘ π‘‘π‘Žπ‘›π‘‘

𝑇

Attention: π‘Ÿ = 𝑅𝑝 + β„Ž. Always add the planet’s radius to the orbiting altitude to get the correct radius

Page 21: Curved motion

Kepler’s 3rd law - Example

Curved motion 21

π‘Ÿ3

𝑇2 =𝐺𝑀

4πœ‹2 =6.67384 βˆ™ 10βˆ’11 βˆ™ 5.976 βˆ™ 1024π‘˜π‘”

4πœ‹2 = 1.010 βˆ™ 1013π‘š3π‘ βˆ’2

Calculate the altitude above the Earth’s surface of geostationary satellites

π‘Ÿ3 = 1010 βˆ™ 1013 βˆ™ 23.93 βˆ™ 3600 2 = 7.4975 βˆ™ 1022

π‘Ÿ =32.355 βˆ™ 1023 = 42.167 βˆ™ 106π‘š

β„Ž = π‘Ÿ βˆ’ 𝑅𝑝 = 42.167 βˆ™ 106 βˆ’ 6.378 βˆ™ 106 = 35.79 βˆ™ 106 π‘šwikimedia

Earth

Mass 𝑀 = 5.976 βˆ™ 1024π‘˜π‘”

Radius 𝑅𝑝 = 6.378 βˆ™ 106

Siderial rotation period

𝑇 = 23.93β„Ž

Page 22: Curved motion

END

Curved motion 22

DisclaimerThis document is meant to be apprehended through professional teacher mediation (β€˜live in class’) together with a physics text book, preferably on IB level.