CPD1B17 Notes1 - Fundamental Principles & Methods

download CPD1B17 Notes1 - Fundamental Principles & Methods

of 253

Transcript of CPD1B17 Notes1 - Fundamental Principles & Methods

  • 7/26/2019 CPD1B17 Notes1 - Fundamental Principles & Methods

    1/253

    NATIONAL ELECTRIFICATION ADMINISTRATION

    U. P. NATIONAL ENGINEERING CENTERU. P. NATIONAL ENGINEERING CENTERU. P. NATIONAL ENGINEERING CENTER

    Distr ibution System Modeling and Analysis

    Competency Train ing and Certif ication Program in Electri c Power System Engineer ing

    Fundamental Principles andMethods in Power System Analysis

  • 7/26/2019 CPD1B17 Notes1 - Fundamental Principles & Methods

    2/253

    Competency Training & Cert i f icat ion Program

    in Electr ic Power System Engineering

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    Fundamental Principles and Methods in Power System Analysis

    Course Outline

    1. Circuit Conventions and Notations

    2. Power System Representation

    3. Per Unit Quantities4. Symmetrical Components

    5. Network Equations and Methods of Solution

  • 7/26/2019 CPD1B17 Notes1 - Fundamental Principles & Methods

    3/253

    Competency Training & Cert i f icat ion Program

    in Electr ic Power System Engineering

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    Fundamental Principles and Methods in Power System Analysis

    Voltage and Current Directions

    Double Subscript Notation

    Voltage, Current and Phasor Notation

    Complex Impedance and Phasor Notation

    Circuit Conventions & Notations

  • 7/26/2019 CPD1B17 Notes1 - Fundamental Principles & Methods

    4/253

    Competency Training & Cert i f icat ion Program

    in Electr ic Power System Engineering

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    Fundamental Principles and Methods in Power System Analysis

    Polarity Marking of Voltage SourceTerminals:

    Plus sign (+) for the terminal wherepositive current comes out

    Specification of Load Terminals:Plus sign (+) for the terminal wherepositive current enters

    Specification of Current Direction:

    Arrows for the positive current (i.e.,from the source towards the load)

    Vs ZB

    +

    -

    ++

    -

    -

    VA

    ZA

    VB

    a b

    o n

    I

    I

    I

    I

    Voltage and Current Directions

    Circuit Conventions & Notations

  • 7/26/2019 CPD1B17 Notes1 - Fundamental Principles & Methods

    5/253

    Competency Training & Cert i f icat ion Program

    in Electr ic Power System Engineering

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    Fundamental Principles and Methods in Power System Analysis

    The letter subscripts on a voltage indicate the nodes of the circuit

    between which the voltage exists. The first subscript denotes the

    voltage of that node with respect to the node identified by the second

    subscript.

    +

    -

    + -VA

    ZAa b

    o n

    VS= Vao Vb = VbnI= Iab Zb

    +

    -

    Double Subscript Notation

    Circuit Conventions & Notations

    The current direction

    is from first subscript

    to the second

    subscript .

    Vao- IabZA - Vbn= 0

    Iab =Vao - Vbn

    ZA

    F d l P i i l d M h d i P S A l i

  • 7/26/2019 CPD1B17 Notes1 - Fundamental Principles & Methods

    6/253

    Competency Training & Cert i f icat ion Program

    in Electr ic Power System Engineering

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    Fundamental Principles and Methods in Power System Analysis

    Voltage, Current and Phasor Notation

    Circuit Conventions & Notations

    tjmVv tsinjtcos

    tj

    voltsV

    V m 0

    2

    -1

    -0.5

    0

    0.5

    1

    -4 -2 0 2 4

    v

    i

    1j

    V

    I tjmIi

    amperes

    I

    Im

    2

    F d t l P i i l d M th d i P S t A l i

    http://www.upscale.utoronto.ca/GeneralInterest/Harrison/Vibrations/Animations/string2.gif
  • 7/26/2019 CPD1B17 Notes1 - Fundamental Principles & Methods

    7/253

    Competency Training & Cert i f icat ion Program

    in Electr ic Power System Engineering

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    Fundamental Principles and Methods in Power System Analysis

    Complex Impedance and Phasor Notation

    +

    -

    +

    -

    VLi(t)

    R (Resistance)

    L (Inductance)

    tjmS VV

    The first order linear differential equation has a particular

    solution of the form . tjK)t(i

    tj

    mVdt

    )t(diL)t(Ri Applying Kirchoffs voltage law,

    tj

    m

    tjtj VLKjRK Hence,

    Circuit Conventions & Notations

    F d t l P i i l d M th d i P S t A l i

  • 7/26/2019 CPD1B17 Notes1 - Fundamental Principles & Methods

    8/253

    Competency Training & Cert i f icat ion Program

    in Electr ic Power System Engineering

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    Fundamental Principles and Methods in Power System Analysis

    Complex Impedance and Phasor NotationSolving for the current

    Dividing voltage by current to get the impedance,

    tjm

    LjR

    V)t(i

    LjR

    LjR

    V

    V

    )t(i

    )t(vZ

    tjm

    tj

    m

    Therefore, the impedance Z is a complexquantity with real part Rand an imaginary (j)

    part L

    L

    R

    Circuit Conventions & Notations

    Fundamental Principles and Methods in Power System Analysis

  • 7/26/2019 CPD1B17 Notes1 - Fundamental Principles & Methods

    9/253

    Competency Training & Cert i f icat ion Program

    in Electr ic Power System Engineering

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    Fundamental Principles and Methods in Power System Analysis

    +

    -

    +

    -

    VLi(t)

    R (Resistance)

    C (Capacitance)

    tjmS VV

    For Capacitive Circuit, .

    )

    C

    1(jRZ

    Complex Impedance and Phasor Notation

    Z= |Z|ej or Z = |Z|(cos + jsin) or Z = |Z|

    R

    Z

    1

    C

    Circuit Conventions & Notations

    1Fundamental Principles and Methods in Power System Analysis

  • 7/26/2019 CPD1B17 Notes1 - Fundamental Principles & Methods

    10/253

    1

    Competency Training & Cert i f icat ion Program

    in Electr ic Power System Engineering

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    Fundamental Principles and Methods in Power System Analysis

    v = 141.4 cos(t + 30 ) volts

    i = 7.07 cos(t) amperesVmax = 141.4 |V| = 100 V = 10030

    Imax = 7.07 |I| = 5 I = 50

    Complex Impedance and Phasor NotationZ= |Z|ej or Z = |Z|(cos

    + jsin

    ) or Z = |Z|

    10

    17.32

    30

    3020

    05

    30100Z

    1032.17)30sin30(cos20 jjZ

    Circuit Conventions & Notations

    1Fundamental Principles and Methods in Power System Analysis

  • 7/26/2019 CPD1B17 Notes1 - Fundamental Principles & Methods

    11/253

    1

    Competency Training & Cert i f icat ion Program

    in Electr ic Power System Engineering

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    Fundamental Principles and Methods in Power System Analysis

    Electrical Symbols

    Three-Line and Single-Line Diagram

    Equivalent Circuit of Power System

    Components

    Impedance and Admittance Diagram

    Bus Admittance Matrix

    Power System Representation

    1Fundamental Principles and Methods in Power System Analysis

  • 7/26/2019 CPD1B17 Notes1 - Fundamental Principles & Methods

    12/253

    1

    Competency Training & Cert i f icat ion Program

    in Electr ic Power System Engineering

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    Fundamental Principles and Methods in Power System Analysis

    Generator

    Transformer

    Circuit B reaker

    Transmission o r

    Dist r ibut ion Line

    Bus

    or

    G Switch

    Node

    Fuse

    Electrical Symbols

    Power System representation

    1Fundamental Principles and Methods in Power System Analysis

  • 7/26/2019 CPD1B17 Notes1 - Fundamental Principles & Methods

    13/253

    1

    Competency Training & Cert i f icat ion Program

    in Electr ic Power System Engineering

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    Fundamental Principles and Methods in Power System Analysis

    3-phase wye neutral grounded

    3-phase delta connection

    Ammeter

    Voltmeter

    3-phase wye neutral ungrounded

    Protective Relay

    V

    A

    R

    Current Transformer

    Potential Transformer

    Power System representation

    1Fundamental Principles and Methods in Power System Analysis

  • 7/26/2019 CPD1B17 Notes1 - Fundamental Principles & Methods

    14/253

    Competency Training & Cert i f icat ion Program

    in Electr ic Power System Engineering

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    Fundamental Principles and Methods in Power System Analysis

    Three Line DiagramThe three-line diagram is used to represent each phase of a three-phase power system.

    Relays

    Circui

    tBrea

    ker

    Ma

    inBus

    R

    R

    R

    R

    CTs Distri bution Lines

    Transformer

    A B C

    Power System Representation

    CircuitR

    ec

    loser

    1Fundamental Principles and Methods in Power System Analysis

  • 7/26/2019 CPD1B17 Notes1 - Fundamental Principles & Methods

    15/253

    Competency Training & Cert i f icat ion Program

    in Electr ic Power System Engineering

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    p y y

    The three-line diagram becomes rather cluttered for large powersystems. A shorthand version of the three-line diagram is referredto as the Single Line Diagram.

    Single Line Diagram

    R

    BusCB Transformer Distribution L ine

    CT and Relay

    Recloser

    Power System Representation

    1Fundamental Principles and Methods in Power System Analysis

  • 7/26/2019 CPD1B17 Notes1 - Fundamental Principles & Methods

    16/253

    Competency Training & Cert i f icat ion Program

    in Electr ic Power System Engineering

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    p y y

    Equivalent Circuit of Power SystemComponents: Generator

    Ec

    Eb

    Ea

    Ic

    Ib

    Ia

    b

    a

    c

    sa jXR

    aI+

    -

    aV

    +

    -

    gE

    Za

    Zb Zc

    Three-Phase Equivalent Single-Phase Equivalent

    Power System Representation

  • 7/26/2019 CPD1B17 Notes1 - Fundamental Principles & Methods

    17/253

    1Fundamental Principles and Methods in Power System Analysis

  • 7/26/2019 CPD1B17 Notes1 - Fundamental Principles & Methods

    18/253

    Competency Training & Cert i f icat ion Program

    in Electr ic Power System Engineering

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    X

    2

    HT RaRR

    X

    2

    HT XaXX

    Equivalent Circuit of Power System

    Components: Transformer

    +

    -

    +

    -

    TZ

    Single-Phase Equivalent

    Power System Representation

    HI

    +

    -

    HV

    +

    -

    XVa mjXcR

    exI

    XX XjaRa22 HH jXR

    1Fundamental Principles and Methods in Power System Analysis

  • 7/26/2019 CPD1B17 Notes1 - Fundamental Principles & Methods

    19/253

    Competency Training & Cert i f icat ion Program

    in Electr ic Power System Engineering

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    Equivalent Circuit of Power SystemComponents: Transmission & DistributionLines

    T&D Lines can be represented by an infinite series of

    resistance and inductance and shunt capacitance.

    l

    Power System Representation

    2Fundamental Principles and Methods in Power System Analysis

  • 7/26/2019 CPD1B17 Notes1 - Fundamental Principles & Methods

    20/253

    Competency Training & Cert i f icat ion Program

    in Electr ic Power System Engineering

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    Equivalent Circuit of Power SystemComponents: Distribution Lines

    ZccZcbZca

    ZbcZbbZba

    ZacZabZaa

    Equivalent-Network

    A

    B

    C

    a

    b

    c

    YccYcbYca

    YbcYbbYba

    YacYabYaa

    1/2

    YccYcbYca

    YbcYbbYba

    YacYabYaa

    1/2

    CaptureUnbalanced

    Characteristics Three-Phase Equivalent

    Power System Representation

    2Fundamental Principles and Methods in Power System Analysis

  • 7/26/2019 CPD1B17 Notes1 - Fundamental Principles & Methods

    21/253

    Competency Training & Cert i f icat ion Program

    in Electr ic Power System Engineering

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    Equivalent Circuit of Power SystemComponents: Long Transmission Lines

    +

    -

    Vs VR

    +

    -

    IS IR

    Length = Longer than 240 km. (150 mi.)

    lsinhZ'Z c

    y

    zZC

    Characteristic ImpedancezyPropagation Constant

    2

    ltanh

    Z

    1

    2

    'Y

    c

    2

    'Y

    Single-Phase Equivalent

    Power System Representation

    2Fundamental Principles and Methods in Power System Analysis

  • 7/26/2019 CPD1B17 Notes1 - Fundamental Principles & Methods

    22/253

    Competency Training & Cert i f icat ion Program

    in Electr ic Power System Engineering

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    Equivalent Circuit of Power SystemComponents: Medium-Length

    Transmission LinesLength = 80 240 km. (50 - 150 mi.)

    +

    -

    +

    -

    VsIS IR

    ljxrZL

    2

    c/1

    2

    Y

    2

    YVR

    Single-Phase Equivalent

    Power System Representation

    2Fundamental Principles and Methods in Power System Analysis

  • 7/26/2019 CPD1B17 Notes1 - Fundamental Principles & Methods

    23/253

    Competency Training & Cert i f icat ion Program

    in Electr ic Power System Engineering

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    Equivalent Circuit of Power SystemComponents: Short Transmission Lines

    Length = up to 80 km. (50 mi.)

    +

    -

    Vs VR

    +

    -

    Is = IR

    Single-Phase Equivalent

    ljxrZ L

    Power System Representation

    2Fundamental Principles and Methods in Power System Analysis

  • 7/26/2019 CPD1B17 Notes1 - Fundamental Principles & Methods

    24/253

    Competency Training & Cert i f icat ion Program

    in Electr ic Power System Engineering

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    Single Phase Equivalent ofBalanced Three-Phase System

    ZR

    ZR

    ZR

    n

    Eao = |E|0 V

    Ebo= |E|

    240 V

    Eco= |E| 120 V

    a

    b

    c

    o

    Ic

    b

    c

    Iaa

    Ib

    Power System Representation

    2Fundamental Principles and Methods in Power System Analysis

  • 7/26/2019 CPD1B17 Notes1 - Fundamental Principles & Methods

    25/253

    Competency Training & Cert i f icat ion Program

    in Electr ic Power System Engineering

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    ZR

    n

    Eao = |E|0 V

    ao

    ZRZR

    n

    Ebo= |E|

    240 V b

    o

    ZR

    ZR

    n

    Eco= |E| 120 Vc

    o

    c

    b

    a

    Ic

    Ib

    Ia

    IZ0E

    IR

    a

    )240(IZ

    240EI

    R

    b

    )120(IZ

    120EI

    R

    c

    Note:Currents are Balanced

    Power System Representation

    2Fundamental Principles and Methods in Power System Analysis

  • 7/26/2019 CPD1B17 Notes1 - Fundamental Principles & Methods

    26/253

    Competency Training & Cert i f icat ion Program

    in Electr ic Power System Engineering

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    Single PhaseRepresentationof a BalancedThree-PhaseSystem

    Eao = |E|0 V

    n

    a

    o

    a

    Ia

    ZR

    ZR

    ZR

    n

    Eao = |E|0 V

    Ebo= |E| 240 V

    Eco= |E|

    120 V

    a

    b

    c

    o

    Ic

    b

    c

    Iaa

    Ia

    ZR

    Power System Representation

    2Fundamental Principles and Methods in Power System Analysis

  • 7/26/2019 CPD1B17 Notes1 - Fundamental Principles & Methods

    27/253

    Competency Training & Cert i f icat ion Program

    in Electr ic Power System Engineering

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    Power System Representation

    Impedance and Admittance Diagrams

    21 3

    4

    bca

    Bus

    1

    23

    4

    Gen

    a

    bc

    Line

    1 - 3

    2 - 31 - 4

    2 - 4

    3 - 4

    Single Line Diagram

    2Fundamental Principles and Methods in Power System Analysis

  • 7/26/2019 CPD1B17 Notes1 - Fundamental Principles & Methods

    28/253

    Competency Training & Cert i f icat ion Program

    in Electr ic Power System Engineering

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    Power System Representation

    Impedance and Admittance Diagrams

    21 3

    4

    Impedance Diagram

    0

    0

    0

    1

    31

    Ea za

    z13

    zd

    zcza

    ze

    zf zg

    zb

    Ea Ec Eb

    Generator

    Line

    zh

    2Fundamental Principles and Methods in Power System Analysis

  • 7/26/2019 CPD1B17 Notes1 - Fundamental Principles & Methods

    29/253

    Competency Training & Cert i f icat ion Program

    in Electr ic Power System Engineering

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    Power System Representation

    Impedance and Admittance Diagrams

    VL

    ILZpIs

    Zg

    +

    -

    Eg

    VL

    IL

    The two sou rces w i l l be equ ivalent i f VL

    and ILare the same for both circu i ts.

    Eg = ISZPZg = Zp

    3Fundamental Principles and Methods in Power System Analysis

  • 7/26/2019 CPD1B17 Notes1 - Fundamental Principles & Methods

    30/253

    Competency Training & Cert i f icat ion Program

    in Electr ic Power System Engineering

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    21 3

    4

    bca

    Bus

    1

    23

    4

    Gen

    a

    bc

    Line

    1 - 3

    2 - 31 - 4

    2 - 4

    3 - 4

    Single Line Diagram

    Impedance and Admittance Diagrams

    3Fundamental Principles and Methods in Power System Analysis

  • 7/26/2019 CPD1B17 Notes1 - Fundamental Principles & Methods

    31/253

    Competency Training & Cert i f icat ion Program

    in Electr ic Power System Engineering

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    21 3

    4

    Impedance Diagram

    0

    0

    0

    1

    31

    Ea za

    z13

    zd

    zcza

    ze

    zf zg

    zb

    Ea Ec Eb

    Generator

    Line

    zh

    Impedance and Admittance Diagrams

    3Fundamental Principles and Methods in Power System Analysis

  • 7/26/2019 CPD1B17 Notes1 - Fundamental Principles & Methods

    32/253

    Competency Training & Cert i f icat ion Program

    in Electr ic Power System Engineering

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    Equivalent Sources

    VL

    ILZpIs

    Zg

    +

    -

    Eg

    VL

    IL

    The two sou rces w i l l be equ ivalent i f VL

    and ILare the same for both circu i ts.

    Eg = ISZPZg = Zp

    Impedance and Admittance Diagrams

    3Fundamental Principles and Methods in Power System Analysis

  • 7/26/2019 CPD1B17 Notes1 - Fundamental Principles & Methods

    33/253

    Competency Training & Cert i f icat ion Program

    in Electr ic Power System Engineering

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    21

    3

    4

    Admittance Diagram

    0

    y13

    y03y01

    y23

    y14 y24

    y02

    I1 I3 I2I1= Ea/zay01 = 1/za

    I2= Eb/zb

    y02 = 1/zbI3= Ec/zcy03 = 1/zc

    y13 = 1/zd

    y23 = 1/ze

    y14 = 1/zf

    y24 = 1/zg

    y34 = 1/zh

    Impedance and Admittance Diagrams

    y34

    3Fundamental Principles and Methods in Power System Analysis

  • 7/26/2019 CPD1B17 Notes1 - Fundamental Principles & Methods

    34/253

    Competency Training & Cert i f icat ion Program

    in Electr ic Power System Engineering

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    at node 1:

    144113310111 yVVyVVyVI

    at node 4:

    343424241414 yVVyVVyVV0

    at node 2:

    244223320222 yVVyVVyVI at node 3:

    1313344323230333 yVVyVVyVVYVI

    Applying Kirchoffs Current Law

    Nodal Voltage Equations

    3Fundamental Principles and Methods in Power System Analysis

  • 7/26/2019 CPD1B17 Notes1 - Fundamental Principles & Methods

    35/253

    Competency Training & Cert i f icat ion Program

    in Electr ic Power System Engineering

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    Rearranging the equations,

    In matrix form,

    4

    3

    2

    1

    342414342414

    34133423032313

    2423242302

    1413141301

    3

    2

    1

    VV

    V

    V

    yyyyyyy-yyyyy-y-

    y-y-yyy0

    y-y-0yyy

    0I

    I

    I

    Nodal Voltage Equations

    4342414334224114

    4343342313032231133

    42432322423022

    41431311413011

    0 VyyyVyVyVy

    VyVyyyyVyVyI

    VyVyVyyyIVyVyVyyyI

    3Fundamental Principles and Methods in Power System Analysis

  • 7/26/2019 CPD1B17 Notes1 - Fundamental Principles & Methods

    36/253

    Competency Training & Cert i f icat ion Program

    in Electr ic Power System Engineering

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    n

    3

    2

    1

    I

    I

    I

    I

    nn3n2n1n

    n3333231

    n2232221

    n1131211

    YYYY

    YYYY

    YYYY

    YYYY

    n

    3

    2

    1

    V

    V

    V

    V

    [ I ] = [Ybus][V]

    Nodal Voltage Equations

    Yii= self-admittance, the sum of all admittances terminating on thenode (diagonal elements)

    Yij = mutual admittance, the negative of the admittances connecteddirectly between the nodes identifed by the double subscripts

    3Fundamental Principles and Methods in Power System Analysis

  • 7/26/2019 CPD1B17 Notes1 - Fundamental Principles & Methods

    37/253

    Competency Training & Cert i f icat ion Program

    in Electr ic Power System Engineering

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    nn3n2n1n

    n3333231

    n2232221

    n1131211

    YYYY

    YYYY

    YYYY

    YYYY

    [YBUS] =

    Power System Representation

    Ybusis also called Bus Admittance Matrix

    3Fundamental Principles and Methods in Power System Analysis

  • 7/26/2019 CPD1B17 Notes1 - Fundamental Principles & Methods

    38/253

    Competency Training & Cert i f icat ion Program

    in Electr ic Power System Engineering

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    The Per Unit System

    Per Unit Impedance

    Changing Per Unit Values

    Consistent Per Unit Quantities of PowerSystem

    Advantages of Per Unit Quantities

    Per Unit Quantities

    3Fundamental Principles and Methods in Power System Analysis

  • 7/26/2019 CPD1B17 Notes1 - Fundamental Principles & Methods

    39/253

    Competency Training & Cert i f icat ion Program

    in Electr ic Power System Engineering

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    Base Value

    Actual ValuePer Unit Value

    Per-unit Value is a dimensionless quantity

    Per-unit value is expressed as decimal

    100

    Actual ValuePercent

    Per Unit Value

    The Per Unit System

  • 7/26/2019 CPD1B17 Notes1 - Fundamental Principles & Methods

    40/253

    4Fundamental Principles and Methods in Power System Analysis

  • 7/26/2019 CPD1B17 Notes1 - Fundamental Principles & Methods

    41/253

    Competency Training & Cert i f icat ion Program

    in Electr ic Power System Engineering

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    PU Voltage

    PU Current =

    PU Impedance

    PU Power = PU Voltage x PU Current

    Per Unit Calculations

    The Per Unit System

    4Fundamental Principles and Methods in Power System Analysis

  • 7/26/2019 CPD1B17 Notes1 - Fundamental Principles & Methods

    42/253

    Competency Training & Cert i f icat ion Program

    in Electr ic Power System Engineering

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    I

    Zline= 1.4 75

    Zload= 20 302540 0 V

    +

    -

    +

    -

    Example:

    Vs= ?

    Determine Vs

    Per Unit Calculations

    The Per Unit System

    4Fundamental Principles and Methods in Power System Analysis

    h i

  • 7/26/2019 CPD1B17 Notes1 - Fundamental Principles & Methods

    43/253

    Competency Training & Cert i f icat ion Program

    in Electr ic Power System Engineering

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    Choose: Base Impedance = 20 ohms (single phase)

    Base Voltage = 2540 volts (single phase)

    PU Impedance of the load = 2030 /20 = ______ p.u.

    PU Impedance of the line = 1.475 /20 = ______ p.u.

    PU Voltage at the load = 2540

    0 /2540 = ______ p.u.

    Line Current in PU = PU voltage / PU impedance of the load

    = ______ / ______ = ______ p.u.

    PU Voltage at the Substation = Vload(pu) + IpuZLine(pu)

    = ________ + _______ x _______ = _______ p.u.

    The Per Unit System

    Per Unit Calculations

    4Fundamental Principles and Methods in Power System Analysis

    Th P U i S

  • 7/26/2019 CPD1B17 Notes1 - Fundamental Principles & Methods

    44/253

    Competency Training & Cert i f icat ion Program

    in Electr ic Power System Engineering

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    The magnitude of the voltage at the substation is

    1.05 p.u. x 2540 Volts = _______ Volts

    1.0

    -30 p.u.

    1.05

    2.70

    0.07 75 p.u.

    1.0

    30 p.u. 1.0

    0 p.u.

    +

    -

    +

    -

    The Per Unit System

    Per Unit Calculations

    4Fundamental Principles and Methods in Power System Analysis

    Th P U it S t

  • 7/26/2019 CPD1B17 Notes1 - Fundamental Principles & Methods

    45/253

    Competency Training & Cert i f icat ion Program

    in Electr ic Power System Engineering

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    1. Base values must satisfy fundamental electricallaws (Ohms Law and Kirchoffs Laws)

    2. Choose any two electrical parameters

    Normally, Base Power and Base Voltage are chosen

    3. Calculate the other parameters

    Base Impedance and Base Current

    The Per Unit System

    Establishing Base Values

    4Fundamental Principles and Methods in Power System Analysis

    Th P U it S t

  • 7/26/2019 CPD1B17 Notes1 - Fundamental Principles & Methods

    46/253

    Competency Training & Cert i f icat ion Program

    in Electr ic Power System Engineering

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    Base Power

    Base Current = Base Voltage

    Base Voltage (Base Voltage)2

    Base Impedance = =Base Current Base Power

    For a Given Base Power and Base Voltage,

    The Per Unit System

    Establishing Base Values

    4Fundamental Principles and Methods in Power System Analysis

    Th P U it S t

  • 7/26/2019 CPD1B17 Notes1 - Fundamental Principles & Methods

    47/253

    Competency Training & Cert i f icat ion Program

    in Electr ic Power System Engineering

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    For Single Phase System,

    Pbase(1)------------Vbase(1

    )

    Ibase=

    Vbase(1)------------Ibase(1)

    Zbase=

    [Vbase(1)]= ------------Pbase(1)

    For Three Phase System,

    Pbase(3)------------3Vbase(LL)

    Ibase=

    Vbase(LN)------------Ibase(L)

    Zbase=

    [Vbase(LL)]= ------------Pbase(3)

    The Per Unit System

    Establishing Base Values

    4Fundamental Principles and Methods in Power System Analysis

    The Pe U it S te

  • 7/26/2019 CPD1B17 Notes1 - Fundamental Principles & Methods

    48/253

    Competency Training & Cert i f icat ion Program

    in Electr ic Power System Engineering

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    3

    kVBasekVBase

    MVABase3

    1MVABase

    LL1

    31

    Base MVA is the same base value for Apparent, Active and

    Reactive Power

    Base Z is the same base value for Impedance, Resistance and

    Reactance

    Base Values can be established from Single Phase or Three

    Phase Quantities

    The Per Unit System

    Establishing Base Values

    4Fundamental Principles and Methods in Power System Analysis

    The Per Unit System

  • 7/26/2019 CPD1B17 Notes1 - Fundamental Principles & Methods

    49/253

    Competency Training & Cert i f icat ion Program

    in Electr ic Power System Engineering

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    Base kVA1 = 10,000 kVA

    = 10 MVA

    Base kVLN = 69.282 kVBase Z = (69.282)2/10

    = 480 ohms

    Base kVA3 = 30,000 kVA

    = 30 MVA

    Base kVLL = 120 kVBase Z = (120)2/30

    = 480 ohms

    Amps144.34

    )120(3

    1000x30CurrentBase

    Amps144.34282.69

    1000x10CurrentBase

    Example:

    The Per Unit System

    Establishing Base Values

    5Fundamental Principles and Methods in Power System Analysis

    Per Unit Impedance

  • 7/26/2019 CPD1B17 Notes1 - Fundamental Principles & Methods

    50/253

    Competency Training & Cert i f icat ion Program

    in Electr ic Power System Engineering

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    Manufacturers provide the following impedance in per unit:

    1. Armature Resistance, Ra

    2. Direct-axis Reactances, Xd, Xd and Xd

    3. Quadrature-axis Reactances, Xq, Xq and Xq

    4. Negative Sequence Reactance, X2

    5. Zero Sequence Reactance, X0

    The Base Values used by manufacturers are:

    1. Rated Capacity (MVA, KVA or VA)

    2. Rated Voltage (kV or V)

    } PositiveSequenceImpedances

    Per Unit Impedance

    Generators

    5Fundamental Principles and Methods in Power System Analysis

    Per Unit Impedance

  • 7/26/2019 CPD1B17 Notes1 - Fundamental Principles & Methods

    51/253

    Competency Training & Cert i f icat ion Program

    in Electr ic Power System Engineering

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    base

    )(L)pu(L

    Z

    XX

    base

    )(

    )pu(Z

    RR

    base

    )(C

    )pu(C

    Z

    XX

    Per Unit Impedance

    Transmission and Distribution Lines

  • 7/26/2019 CPD1B17 Notes1 - Fundamental Principles & Methods

    52/253

    5Fundamental Principles and Methods in Power System Analysis

    Per Unit Impedance

  • 7/26/2019 CPD1B17 Notes1 - Fundamental Principles & Methods

    53/253

    Competency Training & Cert i f icat ion Program

    in Electr ic Power System Engineering

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    Example

    A single-phase transformer is rated 110/440 V, 2.5 kVA.The impedance of the transformer measured from the low-

    voltage side is 0.06 ohms. Determine the impedance in per unit

    (a) when referred to low-voltage side and (b) when referred to

    high-voltage sideSolution

    Low-voltage Zbase= = ______ ohms1000/5.2

    110.02

    PU Impedance, Zpu = = ______ p.u.

    Per Unit Impedance

    5Fundamental Principles and Methods in Power System Analysis

    Per Unit Impedance

  • 7/26/2019 CPD1B17 Notes1 - Fundamental Principles & Methods

    54/253

    Competency Training & Cert i f icat ion Program

    in Electr ic Power System Engineering

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    High Voltage, Zbase = = _______ ohms

    PU Impedance, Zpu = = _______ p.u.

    If impedance had been measured on the high-voltageside, the ohmic value would be

    ohmsZ _______

    110

    44006.0

    2

    Note: PU value of impedance referred to any side of the

    transformer is the same

    Per Unit Impedance

    5

    Fundamental Principles and Methods in Power System Analysis

    Changing Per-Unit Values

  • 7/26/2019 CPD1B17 Notes1 - Fundamental Principles & Methods

    55/253

    Competency Training & Cert i f icat ion Program

    in Electr ic Power System Engineering

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    Example:Consider a three-phase transformer rated 20

    MVA, 67 kV/13.2 kV voltage ratio and a reactance

    of 7%. The resistance is negligible.

    a) What is the equivalent reactance in ohms referred to the

    high voltage side?

    b) What is the equivalent reactance in ohms referred to the low

    voltage side?

    c) Calculate the per unit values both in the high voltage andlow voltage side at 100 MVA.

    Changing Per Unit Values

    5

    Fundamental Principles and Methods in Power System Analysis

    Changing Per-Unit Values

  • 7/26/2019 CPD1B17 Notes1 - Fundamental Principles & Methods

    56/253

    Competency Training & Cert i f icat ion Program

    in Electr ic Power System Engineering

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    SOLUTION:

    a) Pbase = 20 MVA

    Vbase = 67 kV (high voltage)

    ( kV)

    = ________ ohms( MVA)

    Zbase =

    Xhigh = Xp.u. x Zbase = _______ x _______= _______ ohms

    Changing Per Unit Values

    5

    Fundamental Principles and Methods in Power System Analysis

    Changing Per-Unit Values

  • 7/26/2019 CPD1B17 Notes1 - Fundamental Principles & Methods

    57/253

    Competency Training & Cert i f icat ion Program

    in Electr ic Power System Engineering

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    b) Pbase = 20 MVA

    Vbase = 13.2 kV (low voltage)

    = ________ ohmsZbase =

    Xlow = Xp.u. x Zbase = _______ x _______= _______ ohms

    ( kV)( MVA)

    SOLUTION:

    Changing Per Unit Values

    5

    Fundamental Principles and Methods in Power System Analysis

    Changing Per-Unit Values

  • 7/26/2019 CPD1B17 Notes1 - Fundamental Principles & Methods

    58/253

    Competency Training & Cert i f icat ion Program

    in Electr ic Power System Engineering

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    c) Pbase = 100 MVA

    Vbase,H = 67 kV(67)

    = ________ ohms100

    Zbase,H =

    ohms= ______ p.u.Xp.u.,H=

    Vbase,L = 13.2 kV

    (13.2)= _______ ohms

    100Zbase,L =

    = ______ p.u.Xp.u.,L=

    Note that the per unit quantities are the same regardless of the voltage level.

    ohms

    ohms

    ohms

    Changing Per Unit Values

    5

    Fundamental Principles and Methods in Power System Analysis

    Changing Per-Unit Values

  • 7/26/2019 CPD1B17 Notes1 - Fundamental Principles & Methods

    59/253

    Competency Training & Cert i f icat ion Program

    in Electr ic Power System Engineering

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    Three parts of an electric system are designated A, B

    and C and are connected to each other through transformers,as shown in the figure. The transformer are rated as follows:

    A-B 10 MVA, 3, 13.8/138 kV, leakage reactance 10%

    B-C 10 MVA, 3

    , 138/69 kV, leakage reactance 8%

    Determine the voltage regulation if the voltage at the load is 66 kV.

    SOURCEA B C

    300 /

    PF=100 %A-B B-C

    Changing Per Unit Values

    LOAD

  • 7/26/2019 CPD1B17 Notes1 - Fundamental Principles & Methods

    60/253

    6

    Fundamental Principles and Methods in Power System Analysis

    Changing Per-Unit Values

  • 7/26/2019 CPD1B17 Notes1 - Fundamental Principles & Methods

    61/253

    Competency Training & Cert i f icat ion Program

    in Electr ic Power System Engineering

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    SOLUTION USING PER UNIT METHOD:

    Pbase = 10 MVA

    VA,base = 13.8 kV

    VB,base = 138 kV

    VC,base = 69 kV(69)

    -------- = _____ ohms

    10

    ZC,base =

    ---------- = ______ + j _____ p.u.ZLOAD,p.u. =

    -------------- = _______ p.u.VC,p.u. =

    ---------------- = _______ p.u.Ip.u. =

    Changing Per Unit Values

    6

    Fundamental Principles and Methods in Power System Analysis

    Changing Per-Unit Values

  • 7/26/2019 CPD1B17 Notes1 - Fundamental Principles & Methods

    62/253

    Competency Training & Cert i f icat ion Program

    in Electr ic Power System Engineering

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    VA = _______ + ( ________ ) x ( ________ + ________ )

    = ________ + j ________ p.u.

    = _________ p.u.

    VNL- VL---------------- x 100%

    VL

    V.R.=

    ------------------------ x 100%V.R.=

    =

    a g g e a ues

    6

    Fundamental Principles and Methods in Power System Analysis

    Changing Per-Unit Values

  • 7/26/2019 CPD1B17 Notes1 - Fundamental Principles & Methods

    63/253

    Competency Training & Cert i f icat ion Program

    in Electr ic Power System Engineering

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    Consider the previous example, What if transformer A-B is20 MVA instead of 10 MVA. The transformer nameplate

    impedances are specified in percent or per-unit using a

    base values equal to the transformer nameplate rating.

    The PU impedance of the 20 MVA transformer cannot beadded to the PU impedance of the 10 MVA transformer

    because they have different base values

    The per unit impedance of the 20 MVA can be referred to 10

    MVA base power

    g g

    6

    Fundamental Principles and Methods in Power System Analysis

    Changing Per-Unit Values

  • 7/26/2019 CPD1B17 Notes1 - Fundamental Principles & Methods

    64/253

    Competency Training & Cert i f icat ion Program

    in Electr ic Power System Engineering

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    Convert per unit value of 20 MVA transformer,

    Pbase = 20 MVA (Power Rating)

    Vbase,H = 138 kV (Voltage Rating)(138)

    ---------- = _______ ohms20

    Zbase,H =

    0.10 p.u. x _______ ohms = _______ ohmsXactual,H =

    At Pbase = 10 MVA (new base)(138)

    ---------- = 1904.4 ohms10

    Zbase,H =

    95.22---------- = 0.05 p.u.1904.4

    Xp.u.(new) =

    The per unit impedance of

    the 20MVA and 10 MVA

    transformer can now beadded.

    g g

    6Fundamental Principles and Methods in Power System Analysis

    Changing Per-Unit Values

  • 7/26/2019 CPD1B17 Notes1 - Fundamental Principles & Methods

    65/253

    Competency Training & Cert i f icat ion Program

    in Electr ic Power System Engineering

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    Zactual= Zpu1 Zbase1 Zactual= Zpu2 Zbase2

    2base2pu1base1pu ZZZZ

    2base

    1base1pu2puZ

    ZZZ

    Note that the transformer can have different per unitimpedance for different base values (i.e., the actual ohmic

    impedances of the equipment is independent of the selected

    base values), then

    g g

    6Fundamental Principles and Methods in Power System Analysis

    Changing Per-Unit Values

  • 7/26/2019 CPD1B17 Notes1 - Fundamental Principles & Methods

    66/253

    Competency Training & Cert i f icat ion Program

    in Electr ic Power System Engineering

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    Recall:

    Powerbase

    voltagebase

    Z

    2

    base

    2,3

    2

    2,

    1,3

    2

    1,

    12

    base

    baseLL

    base

    baseLL

    pupu

    MVA

    kV

    MVA

    kV

    ZZ

    Then,

    or,

    1base,3

    2base,3

    2

    2base,LL

    1base,LL

    1pu2pu MVA

    MVA

    kV

    kV

    ZZ

    g g

    6Fundamental Principles and Methods in Power System Analysis

    Changing Per-Unit Values

  • 7/26/2019 CPD1B17 Notes1 - Fundamental Principles & Methods

    67/253

    Competency Training & Cert i f icat ion Program

    in Electr ic Power System Engineering

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    A three-phase transformer is rated 400 MVA, 220Y/22 kV. The

    impedance measured on the low-voltage side of the transformer

    is 0.121 ohms (approx. equal to the leakage reactance).

    Determine the per-unit reactance of the transformer for 100

    MVA, 230 kV base values at the high voltage side of thetransformer.

    Example

    g g

    )given(base

    )new(base

    2

    )new(base

    2

    )given(base

    )given.(u.p)new.(u.pP

    P

    x]V[

    ]V[

    xZZ

    6Fundamental Principles and Methods in Power System Analysis

    Changing Per-Unit Values

  • 7/26/2019 CPD1B17 Notes1 - Fundamental Principles & Methods

    68/253

    Competency Training & Cert i f icat ion Program

    in Electr ic Power System Engineering

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    Solution

    On its own base the transformer reactance is

    On the chosen base the reactance becomes

    = ________ puX =( )

    ( )2

    ( )

    X = ( ) x x = ________ pu( )2

    ( )2( )

    6Fundamental Principles and Methods in Power System Analysis

    Consistent Per Unit Quantitiesf P S t

  • 7/26/2019 CPD1B17 Notes1 - Fundamental Principles & Methods

    69/253

    Competency Training & Cert i f icat ion Program

    in Electr ic Power System Engineering

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    of Power System

    Procedure:a) Establish Base Power and Base Voltages

    Declare Base Power for the whole PowerSystem

    Declare Base Voltage for any one of the PowerSystem components

    Compute the Base Voltages for the rest of thePower System Components using the voltageratio of the transformers

    Note: Def ine each subsystem wi th uni que Base Voltage based on separation due to

    magnetic coupl ing

    7Fundamental Principles and Methods in Power System Analysis

    Consistent Per Unit Quantitiesf P S t

  • 7/26/2019 CPD1B17 Notes1 - Fundamental Principles & Methods

    70/253

    Competency Training & Cert i f icat ion Program

    in Electr ic Power System Engineering

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    b) Compute Base Impedance and Base Current

    Using the Declared Base Power and BaseVoltages, compute the Base Impedances andBase Currents for each Subsystem

    c) Compute Per Unit Impedance Using the declared and computed Base Values,

    compute the Per Unit values of the impedanceby:

    Dividing Actual Values by Base Values

    Changing Per Uni t I mpedance with change in BaseValues

    of Power System

    7Fundamental Principles and Methods in Power System Analysis

    Consistent Per Unit Quantitiesf P S t

  • 7/26/2019 CPD1B17 Notes1 - Fundamental Principles & Methods

    71/253

    Competency Training & Cert i f icat ion Program

    in Electr ic Power System Engineering

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    Generator 1 (G1): 300 MVA; 20 kV; 3; Xd = 20 %Transmission Line(L1): 64 km; XL= 0.5 / km

    Transformer 1 (T1):3; 350 MVA; 230 / 20 kV; XT1= 10 %

    Transformer 2 (T2):3-1; 100 MVA; 127 / 13.2 kV; XT2= 10 %

    Generator 2 (G2): 200 MVA; 13.8kV, Xd = 20 %

    Generator 3 (G3): 100 MVA; 13.8kV, Xd = 20 %

    T1

    L1

    T2

    G1

    G2

    G3

    of Power System

    Use Base Power = 100 MVA

    7Fundamental Principles and Methods in Power System Analysis

    Consistent Per Unit Quantitiesf P S t

  • 7/26/2019 CPD1B17 Notes1 - Fundamental Principles & Methods

    72/253

    Competency Training & Cert i f icat ion Program

    in Electr ic Power System Engineering

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    E1

    XT1

    E2 E3

    T1

    Transmission Line

    T2

    G1

    G2

    G3

    XLINE XT2

    XG1 XG2 XG3

    of Power System

    1 2 3

    4

  • 7/26/2019 CPD1B17 Notes1 - Fundamental Principles & Methods

    73/253

    7Fundamental Principles and Methods in Power System Analysis

    Consistent Per Unit Quantitiesof Po e S stem

  • 7/26/2019 CPD1B17 Notes1 - Fundamental Principles & Methods

    74/253

    Competency Training & Cert i f icat ion Program

    in Electr ic Power System Engineering

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    c) Compute Per Unit Impedance

    of Power System

    G2:

    T1:

    G1:

    G3:

    L1:

    T2:

    7Fundamental Principles and Methods in Power System Analysis

    Advantages ofPer-Unit Quantities

  • 7/26/2019 CPD1B17 Notes1 - Fundamental Principles & Methods

    75/253

    Competency Training & Cert i f icat ion Program

    in Electr ic Power System Engineering

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    Per Unit Quantities

    The computation for electric systems in per-unit

    simplifies the work greatly. The advantages of Per Unit

    Quantities are:

    1. Manufacturers usually specify the impedances of

    equipments in percent or per-unit on the base of the

    nameplate rating.

    2. The per-unit impedances of machines of the same type and

    widely different rating usually lie within a narrow range.

    When the impedance is not known definitely, it is generally

    possible to select from tabulated average values.

    7Fundamental Principles and Methods in Power System Analysis

    Advantages ofPer-Unit Quantities

  • 7/26/2019 CPD1B17 Notes1 - Fundamental Principles & Methods

    76/253

    Competency Training & Cert i f icat ion Program

    in Electr ic Power System Engineering

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    3. When working in the per-unit system, base voltages can beselected such that the per-unit turns ratio of most

    transformers in the system is equal to 1:1.

    4. The way in which transformers are connected in three-

    phase circuits does not affect the per-unit impedances ofthe equivalent circuit, although the transformer connection

    does determine the relation between the voltage bases on

    the two sides of the transformer.

    5. Per unit representation yields more meaningful and easily

    correlated data.

    Per Unit Quantities

    7Fundamental Principles and Methods in Power System Analysis

    Advantages ofPer-Unit Quantities

  • 7/26/2019 CPD1B17 Notes1 - Fundamental Principles & Methods

    77/253

    Competency Training & Cert i f icat ion Program

    in Electr ic Power System Engineering

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    6. Network calculations are done in a much more handierfashion with less chance of mix-up

    between phase and line voltages

    between single-phase and three-phase powers, and

    between primary and secondary voltages.

    Per Unit Quantities

    7Fundamental Principles and Methods in Power System Analysis

    Symmetrical Components

  • 7/26/2019 CPD1B17 Notes1 - Fundamental Principles & Methods

    78/253

    Competency Training & Cert i f icat ion Program

    in Electr ic Power System Engineering

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    Sequence Components of Unbalanced Phasor

    Sequence Impedance of Power SystemComponents

    Practical Implications of SequenceComponents of Electric Currents

    7Fundamental Principles and Methods in Power System Analysis

    Sequence Components ofUnbalanced Phasor

  • 7/26/2019 CPD1B17 Notes1 - Fundamental Principles & Methods

    79/253

    Competency Training & Cert i f icat ion Program

    in Electr ic Power System Engineering

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    U a a ced aso

    In a balanced Power System, Generator Voltages are three-phase balanced

    Line and transformer impedances are balanced

    Loads are three-phased balanced

    Single-Phase Representation and Analysis canbe used for the Balanced Three-Phase PowerSystem

    8Fundamental Principles and Methods in Power System Analysis

    Sequence Components ofUnbalanced Phasor

  • 7/26/2019 CPD1B17 Notes1 - Fundamental Principles & Methods

    80/253

    Competency Training & Cert i f icat ion Program

    in Electr ic Power System Engineering

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    In a practical Power Systems, Lines are not transposed. Single-phase transformers used to form three-phase

    banks are not identical.

    Loads are not balanced.

    Presence of vee-phase and single phase lines.

    Faults

    Single-phase Representation and Analysiscannot be used for an unbalanced three-phase

    power system.

    8Fundamental Principles and Methods in Power System Analysis

    Sequence Components ofUnbalanced Phasor

  • 7/26/2019 CPD1B17 Notes1 - Fundamental Principles & Methods

    81/253

    Competency Training & Cert i f icat ion Program

    in Electr ic Power System Engineering

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    Any unbalanced three-phase system of phasorsmay be resolved into three balanced systems ofphasors which are referred to as the symmetricalcomponents of the original unbalanced phasors,namely:

    a) POSITIVE-SEQUENCE PHASOR

    b) NEGATIVE-SEQUENCE PHASOR

    c) ZERO-SEQUENCE PHASOR

    8Fundamental Principles and Methods in Power System Analysis

    Sequence Components ofUnbalanced Phasor

  • 7/26/2019 CPD1B17 Notes1 - Fundamental Principles & Methods

    82/253

    Competency Training & Cert i f icat ion Program

    in Electr ic Power System Engineering

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    Phase a

    Phase b

    Phase c

    120

    120

    120

    REFERENCE PHASE SEQUENCE: abc

    Zero Sequence Phaso rs are sing le-ph ase, equal

    in magnitude and in the same direct ion.

    Posit ive Sequence Phasors are

    three-phase, balanced and have

    the phase sequence as the

    origin al set of unbalanced

    phasors.

    Negative Sequence Phasors are three-phase, balanced but with a

    phase sequence opposite to that original set of unbalnced

    phasors.

    8Fundamental Principles and Methods in Power System Analysis

    Sequence Components ofUnbalanced Phasor

  • 7/26/2019 CPD1B17 Notes1 - Fundamental Principles & Methods

    83/253

    Competency Training & Cert i f icat ion Program

    in Electr ic Power System Engineering

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    Va = Va1 + Va2 + Va0

    Vb = Vb1 + Vb2 + Vb0

    Vc= Vc1 + Vc2 + Vc0

    Each of the original unbalanced phasor is the sum

    of its sequence components. Thus,

    Where,

    Va1Positive Sequence component of VoltageVa

    Va2

    Negative Sequence component of VoltageVaVa0Zero Sequence component of VoltageVa

    8Fundamental Principles and Methods in Power System Analysis

    Sequence Components ofUnbalanced Phasor

  • 7/26/2019 CPD1B17 Notes1 - Fundamental Principles & Methods

    84/253

    Competency Training & Cert i f icat ion Program

    in Electr ic Power System Engineering

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    a = 1

    120

    OPERATORa

    An operator a causes a rotation of 120 in the

    counter clockwise direction of any phasor.

    V

    120

    aV

    Operating V by a

    a = 1 240

    a = 1 0

    8Fundamental Principles and Methods in Power System Analysis

    Sequence Components ofUnbalanced Phasor

  • 7/26/2019 CPD1B17 Notes1 - Fundamental Principles & Methods

    85/253

    Competency Training & Cert i f icat ion Program

    in Electr ic Power System Engineering

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    Vb in terms of Va

    Vb = a VaVb1 = a Va1

    Vc in terms of Va

    Vc = a VaVc1 = a Va1

    Va

    Vc= aVa

    120

    120

    120

    Vb= a2Va

    The original Phasor and Positive Sequencecomponents in terms of phase a

  • 7/26/2019 CPD1B17 Notes1 - Fundamental Principles & Methods

    86/253

    8Fundamental Principles and Methods in Power System Analysis

    Sequence Components ofUnbalanced Phasor

  • 7/26/2019 CPD1B17 Notes1 - Fundamental Principles & Methods

    87/253

    Competency Training & Cert i f icat ion Program

    in Electr ic Power System Engineering

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    Vb in terms of Va

    Vb0

    = Va0

    Vc in terms of Va

    Vc0 = Va0

    Va0= Vb0= Vc0

    The Zero Sequence components interms of phase a

    8Fundamental Principles and Methods in Power System Analysis

    Sequence Components ofUnbalanced Phasor

  • 7/26/2019 CPD1B17 Notes1 - Fundamental Principles & Methods

    88/253

    Competency Training & Cert i f icat ion Program

    in Electr ic Power System Engineering

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    Writing again the phasors in terms of phasor Va

    and operator a,

    Va = Va0 + Va1 + Va2Vb = Va0 +aVa1 + aVa2Vc= Va0 + aVa1 + aVa2

    Computing for Va0, Va1& Va2

    c2ba1acba0a VaaVV3

    1VVVV

    3

    1V

    cb2

    a2a aVVaV31V

    8Fundamental Principles and Methods in Power System Analysis

    Sequence Components ofUnbalanced Phasor

  • 7/26/2019 CPD1B17 Notes1 - Fundamental Principles & Methods

    89/253

    Competency Training & Cert i f icat ion Program

    in Electr ic Power System Engineering

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    EXAMPLE:Determine the symmetricalcomponents of the followingunbalanced voltages.

    Vc= 8 143.1

    Vb = 3 -90

    Va= 4 0

  • 7/26/2019 CPD1B17 Notes1 - Fundamental Principles & Methods

    90/253

    9Fundamental Principles and Methods in Power System Analysis

    Sequence Components ofUnbalanced Phasor

  • 7/26/2019 CPD1B17 Notes1 - Fundamental Principles & Methods

    91/253

    Competency Training & Cert i f icat ion Program

    in Electr ic Power System Engineering

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    For Phasor Va:

    86.082.15

    143.1)120)(8(190)-240)(3(10431

    )aVVaV(3

    1V cb

    2

    a2a

    9Fundamental Principles and Methods in Power System Analysis

    C t f V b bt i d b ti th

    Sequence Components ofUnbalanced Phasor

  • 7/26/2019 CPD1B17 Notes1 - Fundamental Principles & Methods

    92/253

    Competency Training & Cert i f icat ion Program

    in Electr ic Power System Engineering

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    Components of Vbcan be obtained by operating thesequence components of phasor Va.

    33.922.1586.08)-120)(2.15(1

    aVV

    101.62-4.9

    258.384.918.38)240)(4.9(1

    VaV

    143.051143.051

    VV

    a2b2

    1a

    2

    b1

    a0b0

    9Fundamental Principles and Methods in Power System Analysis

    Si il l t f h V b bt i d b

    Sequence Components ofUnbalanced Phasor

  • 7/26/2019 CPD1B17 Notes1 - Fundamental Principles & Methods

    93/253

    Competency Training & Cert i f icat ion Program

    in Electr ic Power System Engineering

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    Similarly, components of phasor Vccan be obtained byoperating Va.

    3.92512.15

    86.08)-0)(2.1542(1

    VaV

    8.38314.9

    18.38)0)(4.921(1

    VaV

    143.051143.051

    VV

    a2

    2

    c2

    1ac1

    a0c0

  • 7/26/2019 CPD1B17 Notes1 - Fundamental Principles & Methods

    94/253

    9Fundamental Principles and Methods in Power System Analysis

    Sequence Components ofUnbalanced Phasor

  • 7/26/2019 CPD1B17 Notes1 - Fundamental Principles & Methods

    95/253

    Competency Training & Cert i f icat ion Program

    in Electr ic Power System Engineering

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    Components of Vc

    Components of Va

    Components of Vb

    Add Sequence Components Graphically

    Va0

    Vb0

    Vc0

    Vc1

    Va1

    Vb1

    Va2

    Vb2

    Vc2

    Vc= 8 143.1

    Vb = 3 -90

    Va= 4 0

    9Fundamental Principles and Methods in Power System Analysis

    h l b h k d i h h i ll

    Sequence Components ofUnbalanced Phasor

  • 7/26/2019 CPD1B17 Notes1 - Fundamental Principles & Methods

    96/253

    Competency Training & Cert i f icat ion Program

    in Electr ic Power System Engineering

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    The results can be checked either mathematically or

    graphically.

    143.18153.922.15138.384.905.1431

    VVVV

    90-3

    33.922.15101.62-4.9143.051VVVV

    04

    86.08-2.1518.384.905.1431

    VVVV

    c2c1c0c

    b2b1b0b

    a2a1a0a

    9Fundamental Principles and Methods in Power System Analysis

    Sequence Components ofUnbalanced Phasor

  • 7/26/2019 CPD1B17 Notes1 - Fundamental Principles & Methods

    97/253

    Competency Training & Cert i f icat ion Program

    in Electr ic Power System Engineering

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    Ia

    b

    a

    c

    b

    a

    c

    Ib

    Ic

    Ia1 + Ia2+ Ia0

    Ib1 + Ib2+ Ib0

    Ic1

    + Ic2

    + Ic0

  • 7/26/2019 CPD1B17 Notes1 - Fundamental Principles & Methods

    98/253

    9Fundamental Principles and Methods in Power System Analysis

    Sequence Impedance ofPower System Components

  • 7/26/2019 CPD1B17 Notes1 - Fundamental Principles & Methods

    99/253

    Competency Training & Cert i f icat ion Program

    in Electr ic Power System Engineering

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    In general,

    Z1 Z2 Z0 for generators

    Z1 = Z2 = Z0 for transformers

    Z1 = Z2 Z0 for l ines

  • 7/26/2019 CPD1B17 Notes1 - Fundamental Principles & Methods

    100/253

    10Fundamental Principles and Methods in Power System Analysis

    Practical Implications of SequenceComponents of Electric Currents

    ZERO-SEQUENCE CURRENTS:

  • 7/26/2019 CPD1B17 Notes1 - Fundamental Principles & Methods

    101/253

    Competency Training & Cert i f icat ion Program

    in Electr ic Power System Engineering

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    ZERO-SEQUENCE CURRENTS:

    Ia0

    3Io

    Ic0

    Ib0

    b

    a

    c

    The neutral return (ground )

    carries the in-phase zero-

    sequence currents.

    In-phase zero-sequence cu rrents

    circu lates in the delta-con nected

    transform er windings .

    There is balancing ampere-turns

    for the zero-sequence currents .

    IA0

    IC0

    IB0

    B

    A

    C

    I0 = 0

    I0 = 0

    I0 = 0

    10Fundamental Principles and Methods in Power System Analysis

    Practical Implications of SequenceComponents of Electric Currents

    NEGATI VE SEQUENCE CURRENTS

  • 7/26/2019 CPD1B17 Notes1 - Fundamental Principles & Methods

    102/253

    Competency Training & Cert i f icat ion Program

    in Electr ic Power System Engineering

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    NEGATI VE-SEQUENCE CURRENTS:

    A three-phase unbalanced load produces a reaction field which

    rotates synchronously with the rotor-field system of generators.

    Any unbalanced condition will have negative sequence components.

    This negative sequence currents rotates counter to the

    synchronously revolving field of the generator.

    The flux produced by sequence currents cuts the rotor field at twice

    the rotational velocity, thereby inducing double frequency currents

    in the field system and in the rotor body.

    The resulting eddy-currents are very large and cause severe heating

    of the rotor.

    10Fundamental Principles and Methods in Power System Analysis

    Network Equations and Methods ofSolution

  • 7/26/2019 CPD1B17 Notes1 - Fundamental Principles & Methods

    103/253

    Competency Training & Cert i f icat ion Program

    in Electr ic Power System Engineering

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    Network Equations Matrix Representation of System of Equations

    Type of Matrices

    Matrix Operations Direct Solutions of System of Equations

    Iterative Solutions of System of Equations

    10Fundamental Principles and Methods in Power System Analysis

    The standard form of n independent equations:

    Network Equations

  • 7/26/2019 CPD1B17 Notes1 - Fundamental Principles & Methods

    104/253

    Competency Training & Cert i f icat ion Program

    in Electr ic Power System Engineering

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    p q

    n

    3

    2

    1

    I

    I

    II

    nn3n2n1n

    n3333231

    n2232221

    n1131211

    YYYY

    YYYY

    YYYY

    YYYY

    n

    3

    2

    1

    V

    V

    VV

    [ I ] = [Ybus][V]Ypp= self-admittance, the sum of all admittances terminating on the

    node (diagonal elements)

    Ypq = mutual admittance, the negative of the admittances connecteddirectly between the nodes identifed by the double subscripts

  • 7/26/2019 CPD1B17 Notes1 - Fundamental Principles & Methods

    105/253

  • 7/26/2019 CPD1B17 Notes1 - Fundamental Principles & Methods

    106/253

    10Fundamental Principles and Methods in Power System Analysis

    Network Equations

  • 7/26/2019 CPD1B17 Notes1 - Fundamental Principles & Methods

    107/253

    Competency Training & Cert i f icat ion Program

    in Electr ic Power System Engineering

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    21 3

    4

    Admittance Diagram

    0

    y13

    y03y01

    y23

    y14 y24

    y02

    I1 I3 I2I1= Ea/zay01 = 1/za

    I2= Eb/zby02 = 1/zb

    I3= Ec/zcy03 = 1/zc

    y13 = 1/zd

    y23 = 1/ze

    y14 = 1/zf

    y24 = 1/zg

    y34 = 1/zh

  • 7/26/2019 CPD1B17 Notes1 - Fundamental Principles & Methods

    108/253

  • 7/26/2019 CPD1B17 Notes1 - Fundamental Principles & Methods

    109/253

  • 7/26/2019 CPD1B17 Notes1 - Fundamental Principles & Methods

    110/253

  • 7/26/2019 CPD1B17 Notes1 - Fundamental Principles & Methods

    111/253

  • 7/26/2019 CPD1B17 Notes1 - Fundamental Principles & Methods

    112/253

    11Fundamental Principles and Methods in Power System Analysis

    Matrix Representations ofSystem of Equations

  • 7/26/2019 CPD1B17 Notes1 - Fundamental Principles & Methods

    113/253

    Competency Training & Cert i f icat ion Program

    in Electr ic Power System Engineering

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    Va = Va0 + Va1 + Va2Vb = Va0 +aVa1 + aVa2Vc= Va0 + aVa1 + aVa2

    Rearranging and writing in matrix form

    2a

    1a

    0a

    2

    2

    c

    b

    a

    V

    V

    V

    aa1

    aa1

    111

    V

    V

    V

    Sequence Components of Unbalanced Phasor

    11Fundamental Principles and Methods in Power System Analysis

    Matrix Representations ofSystem of Equations

    2b1b0 VaaVV1VVVV1V

  • 7/26/2019 CPD1B17 Notes1 - Fundamental Principles & Methods

    114/253

    Competency Training & Cert i f icat ion Program

    in Electr ic Power System Engineering

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    c

    b

    a

    2

    2

    2a

    1a

    0a

    V

    V

    V

    aa1

    aa1

    111

    3

    1

    V

    V

    V

    cba1acba0a VaaVV3

    VVVV

    3

    V

    cb2a2a aVVaV3

    1V

    In matrix form

  • 7/26/2019 CPD1B17 Notes1 - Fundamental Principles & Methods

    115/253

    11Fundamental Principles and Methods in Power System Analysis

    Definition of a MATRIX

    1n131211 aaaa

  • 7/26/2019 CPD1B17 Notes1 - Fundamental Principles & Methods

    116/253

    Competency Training & Cert i f icat ion Program

    in Electr ic Power System Engineering

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    mnm3m2m1

    3n333231

    2n232221

    1n131211

    ij

    aaaa

    aaaa

    aaaa

    aA

    The matrix has m rows and n columns and is said tohave a dimension of m by n (or m x n).

    [ai j]mxn

    11Fundamental Principles and Methods in Power System Analysis

    Definition of a Vector

    A vector Xis defined as an ordered set of elements. The

    components x X X may be real or complex

  • 7/26/2019 CPD1B17 Notes1 - Fundamental Principles & Methods

    117/253

    Competency Training & Cert i f icat ion Program

    in Electr ic Power System Engineering

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    components x1, X

    2, X

    nmay be real or complex

    numbers or functions of some dependent variable.

    n

    2

    1

    x

    x

    x

    X

    ndefines the dimensionality or size of the vector.

  • 7/26/2019 CPD1B17 Notes1 - Fundamental Principles & Methods

    118/253

  • 7/26/2019 CPD1B17 Notes1 - Fundamental Principles & Methods

    119/253

  • 7/26/2019 CPD1B17 Notes1 - Fundamental Principles & Methods

    120/253

    12Fundamental Principles and Methods in Power System Analysis

    An upper triangular matrix is one where all the

    Type of Matrices

  • 7/26/2019 CPD1B17 Notes1 - Fundamental Principles & Methods

    121/253

    Competency Training & Cert i f icat ion Program

    in Electr ic Power System Engineering

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    33

    2322

    131211

    u00

    uu0

    uuu

    U

    An upper triangular matrix is one where all the

    elements below the main diagonal are zero.

  • 7/26/2019 CPD1B17 Notes1 - Fundamental Principles & Methods

    122/253

  • 7/26/2019 CPD1B17 Notes1 - Fundamental Principles & Methods

    123/253

    12Fundamental Principles and Methods in Power System Analysis

    An identity or unit matrix is a diagonal matrix where

    Type of Matrices

  • 7/26/2019 CPD1B17 Notes1 - Fundamental Principles & Methods

    124/253

    Competency Training & Cert i f icat ion Program

    in Electr ic Power System Engineering

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    100

    010

    001

    I

    all elements on the main diagonal are equal to one.

    12Fundamental Principles and Methods in Power System Analysis

    Type of Matrices

  • 7/26/2019 CPD1B17 Notes1 - Fundamental Principles & Methods

    125/253

    Competency Training & Cert i f icat ion Program

    in Electr ic Power System Engineering

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    The null matrixis matrix whose elements areequal to zero.

    000

    000

    000

    N

    12Fundamental Principles and Methods in Power System Analysis

    Type of Matrices

    A symmetric matrixis one where ai j = aj ifor all isandjs.

  • 7/26/2019 CPD1B17 Notes1 - Fundamental Principles & Methods

    126/253

    Competency Training & Cert i f icat ion Program

    in Electr ic Power System Engineering

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    872

    731

    215

    S

    j j

    7aa

    2aa

    1aa

    3223

    3113

    2112

  • 7/26/2019 CPD1B17 Notes1 - Fundamental Principles & Methods

    127/253

    12Fundamental Principles and Methods in Power System Analysis

    Addition of Matrices

    Matrix Operations

  • 7/26/2019 CPD1B17 Notes1 - Fundamental Principles & Methods

    128/253

    Competency Training & Cert i f icat ion Program

    in Electr ic Power System Engineering

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    dd t o o at ces

    Product of a Matrix with a Scalar

    Multiplication of Matrices

    Transpose of a Matrix

    Kron Reduction Method

    Determinant of a Matrix

    Minors and Cofactors of a Matrix

    Inverse of a Matrix

    12Fundamental Principles and Methods in Power System Analysis

    Addition of Matrices

    Two matrices A = [aij] and B = [bi j] can be added

  • 7/26/2019 CPD1B17 Notes1 - Fundamental Principles & Methods

    129/253

    Competency Training & Cert i f icat ion Program

    in Electr ic Power System Engineering

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    together if they are of the same order (mxn). The sumC = A + B is obtained by adding the corresponding

    elements.

    C= [ci j] = [ai j+ bi j]

    13Fundamental Principles and Methods in Power System Analysis

    Example:

    Addition of Matrices

  • 7/26/2019 CPD1B17 Notes1 - Fundamental Principles & Methods

    130/253

    Competency Training & Cert i f icat ion Program

    in Electr ic Power System Engineering

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    110625B

    372041A

    482666

    1)(31)(70)(26)(02)(45)(1BA

    then,

    262

    624

    1)(31)(70)(2

    6)(02)(45)(1BA

    13Fundamental Principles and Methods in Power System Analysis

    5j71j22j33j61j42j1

    Example:

    Addition of Matrices

  • 7/26/2019 CPD1B17 Notes1 - Fundamental Principles & Methods

    131/253

    Competency Training & Cert i f icat ion Program

    in Electr ic Power System Engineering

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    5j64j55j7

    4j56j41j2B

    9j81j13j6

    1j13j51j4A

    5j69j84j51j15j73j6

    4j51j16j43j51j21j4

    5j73j61j21j42j32j1

    BA

    then,

    13Fundamental Principles and Methods in Power System Analysis

    2j132j64j4

    Addition of Matrices

  • 7/26/2019 CPD1B17 Notes1 - Fundamental Principles & Methods

    132/253

    Competency Training & Cert i f icat ion Program

    in Electr ic Power System Engineering

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    14j145j62j13

    5j69j92j6BA

    4j23j48j1

    3j43j10j28j10j20j2

    BA

    13Fundamental Principles and Methods in Power System Analysis

    Product of a Matrix with a Scalar

    A matrix is multiplied by a scalar k by multiplyingall elements mn by k, that is,

  • 7/26/2019 CPD1B17 Notes1 - Fundamental Principles & Methods

    133/253

    Competency Training & Cert i f icat ion Program

    in Electr ic Power System Engineering

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    mn2m1m

    n22221

    n11211

    kakaka

    kakaka

    kakaka

    AkkA

    13Fundamental Principles and Methods in Power System Analysis

    Example: 34

    Product of a Matrix with a Scalar

  • 7/26/2019 CPD1B17 Notes1 - Fundamental Principles & Methods

    134/253

    Competency Training & Cert i f icat ion Program

    in Electr ic Power System Engineering

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    3kand

    16

    25A

    318

    615912

    B

    16

    2534

    3AkB

    13Fundamental Principles and Methods in Power System Analysis

    Example:6j3j14

    Product of a Matrix with a Scalar

  • 7/26/2019 CPD1B17 Notes1 - Fundamental Principles & Methods

    135/253

    Competency Training & Cert i f icat ion Program

    in Electr ic Power System Engineering

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    3kand

    4j1j36

    5j2j2-5A

    12j39j18

    15j66j15

    18j93j12

    B

    j4-1j36

    j52j2-5

    j6-3j14

    3AkB

    13Fundamental Principles and Methods in Power System Analysis

    Multiplication of Matrices

    Two matrices A= [ai j] and B = [bi j]can be multiplied in

  • 7/26/2019 CPD1B17 Notes1 - Fundamental Principles & Methods

    136/253

    Competency Training & Cert i f icat ion Program

    in Electr ic Power System Engineering

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    U. P. National Eng ineering Center

    National Electr i f icat ion Adminis trat ion

    the order ABif and only if the number of columns of Aisequal to the number of rows ofB.

    That is, if A is of order of (m x l), then B should be oforder (l x n).

    If the product matrix is denoted b