Cours gestion de la production Pr Falloul

124
Gestion de production FALLOUL Moulay El Mehdi 0 UNIVERSITE SULTAN MOULAY SLIMANE BENI MELLLAL Gestion de la production Licence professionnelle Agroalimentaire 2016/2017 Pr. FALLOUL Moulay EL Mehdi

Transcript of Cours gestion de la production Pr Falloul

Page 1: Cours gestion de la production Pr Falloul

Gestion de production FALLOUL Moulay El Mehdi

0

UNIVERSITE SULTAN MOULAY SLIMANE BENI MELLLAL

Gestion de la production

Licence professionnelle Agroalimentaire 2016/2017

Pr. FALLOUL Moulay EL Mehdi

Page 2: Cours gestion de la production Pr Falloul

Gestion de production FALLOUL Moulay El Mehdi

1

Sommaire

Introduction générale 2

Chapitre 1 : Prévision des commandes 3

Chapitre 2 : Recherche opérationnelle appliquée à la production 28

Chapitre 3 : Planification de la production 55

Chapitre 4 : Gestion des approvisionnements et des stocks 80

Chapitre 5 : Contrôle statistique de la qualité 98

Annexes 119

Page 3: Cours gestion de la production Pr Falloul

Gestion de production FALLOUL Moulay El Mehdi

2

Introduction générale

La notion de production est fondée sur la notion de transformation de ressources afin de créer

des biens et des services. La combinaison doit s’effectuer de manière optimale :

- Capital (machine)

- Travail (ressources)

Cette combinaison évolue actuellement dans le sens ‘plus de machine’. Ces biens et services

sont destinés à la vente. Ainsi, la gestion de la production consiste à choisir des objectifs,

prendre en compte les contraintes pour s’approcher d’une maximisation.

Ce support a pour objectif d'introduire aux techniques quantitatives et méthodes de gestion de

production dont la "maîtrise" est indispensable aux étudiant susceptibles de participer dans la

gestion de production dans de différentes types de firmes.

Ce support a l'intérêt majeur aussi de présenter des boîtes à outils opérationnelles non

exhaustifs, traitant d'aspects méthodologiques dans lesquelles les différents professionnels

peuvent piocher afin d’assimiler le domaine de management de production.

Selon la méthodologie PODC d’Henri FAYOL, Ce support de cours est divisé en 5 chapitres

parties ; la premier chapitre traite les prévisions des commandes, le deuxième chapitre porte

sur la recherche opérationnelle appliquée à la gestion de production, le troisième chapitre traite

la planification de la production, le quatrième chapitre traite l’organisation et la gestion des

stocks et le cinquième chapitre porte sur le contrôle de la qualité.

Page 4: Cours gestion de la production Pr Falloul

Gestion de production FALLOUL Moulay El Mehdi

3

Chapitre 1 : La prévision des ventes

La prévision de la demande est à la base de l’optimisation de la chaîne logistique. Quel que soit

le type d’organisation d’une entreprise (flexibilité et réactivité) et son degré d’intégration dans

le pilotage des flux, deux éléments sont essentiels pour déterminer le calcul d'un

approvisionnement optimal :

- la prévision de consommation,

- la fiabilité attendue de cette prévision.

La prévision de consommation détermine de manière directe une partie du niveau

d'approvisionnement ; il s'agit de couvrir au minimum le besoin pour un certain délai. La

fiabilité attendue de cette prévision, ou la crédibilité de la prévision, permet de dimensionner

de manière optimale le niveau du stock de sécurité.

Pour optimiser le niveau de stock, l'obligation de prévoir la demande s'impose.

Dans ce qui suit, on va traiter les séries chronologiques

1.1 Régression et corrélation

1.1.1 Définition :

Les courbes de régressions (ajustements) sont un moyen graphique de synthétiser la liaison

existante entre deux variables (ou le nuage de points formé par ces deux variables). (Ex

quelques ajustements.

On distingue les régressions de types linéaires et les régressions de type non linéaire.

Page 5: Cours gestion de la production Pr Falloul

Gestion de production FALLOUL Moulay El Mehdi

4

1.1.2 L’ajustement linéaire La méthode des moindres carrés (ou encore la régression linéaire)

la méthode des moindres carrés résume un nuage de points par deux droites possibles qui lient

y à x, tel que la distance entre le nuage de points et chaque droite est minimale.

Objectif: choix de ^ ^

2 2 2

2

( ) (

) ( i )

iyi y yi y y y

SCregR

SCtot

Variation inexpliquée

Variation totale

(

Objectif: choisir 'ˆ'ˆˆ byax ii

(yxD /

) tel que: 2ˆiii

xx est un

minimum.

Page 6: Cours gestion de la production Pr Falloul

Gestion de production FALLOUL Moulay El Mehdi

5

xyD / ) tel que: 2ˆiii

yy est un

mimimum

Démonstration :

221 1 ˆˆ ,ˆ

i i i i

i i

Min y y y ax b f bn

an

01

2).1()(' baxyndb

dfbf ii

i

(dériver par rapport à b: u^22uu’)

b

n

x

an

y ii

ii

y = xa + b (1)

(résultat ‘en passant’: la droite doit passer par les points moyens)

Dériver /a:

et 1

'( ) ( ).2 0i i i

i

dff a x y ax b

da n (2)

en remplaçant b par son expression (1), dans l’équation (2), on a:

0.1

.2)(' xayaxyxnda

dfaf ii

ii

Arranger les termes:

0)()(.1

.2)(' xxayyxnda

dfaf ii

ii

2

( )

( , )ˆ

( )( )²

i i

i i

ii i

x y y

x yn xyCov x yna

x Var xx x xx

nn

(3)

Page 7: Cours gestion de la production Pr Falloul

Gestion de production FALLOUL Moulay El Mehdi

6

ˆ ˆb y ax

1.1.3 Le coefficient de corrélation

Les pentes a et 'a indication sur la liaison (corrélation) entre x et y. Ainsi, une indication

de la liaison moyenne entre x et y peut s’exprimer par leur moyenne géométrique:

1/2

21/2 ( , ) ( , )

. '( ). ( ) .x y

Cov x y Cov x yr a a

Var x Var y

On peut montrer que: -1 r 1

Définition: Le taux de corrélation r détermine l’intensité de la corrélation (co dépendance) entre

la variable x et la variable y.

1.1.4 Le coefficient de détermination

Le coefficient de détermination (appelé 2R ) est le carré du coefficient de corrélation ‘r’.

Proposition:

2R mesure le part de la variabilité totale de y expliquée par x (ou encore par la droite de

régression).

Plus 2R est grand (tend vers 1) et mieux la droite bxay ˆˆˆ résume le nuage de points

(y). évolution de x décrit bien celle de y.

Qd. 2R est petit (tend vers 0) évolution de x semble être indépendante de celle de y.

Vation expliquée et variation inexpliquée :

(Variation totale de Y) = (Variation expliquée par le modèle) +

(Variation inexpliquée par le modèle)

^ ^

( ) ( i ) ( i)yi y y y yi y

La méthode MCO permet de trouver l’égalité suivante :

^ ^2 2 2( ) ( i ) ( i)yi y y y yi y

Page 8: Cours gestion de la production Pr Falloul

Gestion de production FALLOUL Moulay El Mehdi

7

(Somme des carrées totale (SCtot)) = (Somme des carrées de la régression(SCreg)) +

(Somme des carrées résiduels (SCres))

Calcul du coefficient de détermination

^2

2

2

( i )variation exp

variation ( )

y yliquée SCregR

totale SCtotyi y

Le principal défaut du R2 c’est qu’il croit avec les nombres de variables d’où l’utilité

du R2 ajusté

Calcul du coefficient de détermination ajusté

22 ( 1)

( 1)ajusté

n R pR

n p

Où p est le nombre de variables explicatives dans le modèle

1.1.5 Inférence sur les paramètres du modèle

On peut également calculer les erreurs (écarts ou résidus)

^ ^

( )e y i yi

Hypothèses : si les erreurs sont :

- Indépendants en probabilités ;

-De moyenne nulle ;

-D’écart type constant.

Alors, on peut estimer l’erreur type par

^2

/

( )

2y x

yi yS

n

C’est l’écart type de l’erreur ei pour la prédiction de y sachant x. Dans ce qui suit on utilise la

notation S pour cette statistique.

Inférence pour la pente 1a

On doit tester l’hypothèse nulle contre l’hypothèse alternative

Page 9: Cours gestion de la production Pr Falloul

Gestion de production FALLOUL Moulay El Mehdi

8

0 1

0 1

: 0

: 0

H a

H a

Pour se faire on calcule la statistique tc (en valeur absolue) et on la compare à la valeur

critique ( /2, 2)nt lu dans la table de Loi Student.

^ ^

1 1

^ 2

1

2

( )

(x )

c

a at

ss a

i x

Comme c’est montré dans la figure suivante :

Si

( /2, 2): 043.54c nt t rejette H

Cela veut dire que la relation entre la variable x et y est significative.

Par ailleurs, on a un intervalle de confiance de 1a au niveau de (1 ) 95%

2^ ^ ^

1 ( /2, 2) 1 1 ( /2, 2)2

. ( ) .

(x )n n

sa t s a a t

i x

Inférence sur l’ordonnée à l’origine 0b :

On doit tester l’hypothèse nulle contre l’hypothèse alternative

0 0

0 0

: b 0

: b 0

H

H

Page 10: Cours gestion de la production Pr Falloul

Gestion de production FALLOUL Moulay El Mehdi

9

Pour se faire on calcule la statistique tc (en valeur absolue) et on la compare à la valeur

critique ( /2, 2)nt lu dans la table de Loi Student.

^ ^

0 0

^ 2 2

0

2

( )

(x )

c

i

b bt

s xs b

n i x

Si

( /2, 2) 0

( /2, 2) 0

c n

c n

t t rejette H

t t rejette H

Par ailleurs, on a un intervalle de confiance de 1a au niveau de (1 ) 95%

2 2^ ^ ^

0 ( /2, 2) 0 0 ( /2, 2)2

. ( ) .

(x )

i

n n

s xb t s b b t

n i x

Cela veut dire que la droite de régression ne passe pas par l’origine.

Inférence sur la droite de régression ^

( )y x

La variance de ^

( )y x peur être obtenu par :

2^2 2

2

2^ ^ ^2

( /2, 2) ( /2, 2)2

^

^

1 ( )( ( )) ( )

( )

1 ( )( ) . ( ( )) ( ) . ( )

( )

( ) ( )

( ( ))

n n

y

x xs y x s

n x x

x xy x t s y x y x t s

n x x

y x xtc

s y x

L’intervalle de confiance peut être obtenu par :

2^ ^ ^2

( /2, 2) ( /2, 2)2

1 ( )( ) . ( ( )) ( ) . ( )

( )n n

x xy x t s y x y x t s

n x x

Page 11: Cours gestion de la production Pr Falloul

Gestion de production FALLOUL Moulay El Mehdi

10

L’intervalle de prédiction de ^

( )y x peut être obtenu par :

2^ ^ ^2

( /2, 2) ( /2, 2)2

1 ( )( ) . ( ( )) ( ) . (1 )

( )n n

x xy x t s yf x y x t s

n x x

1.1.6 Analyse de la variance (ANOVA)

Le tableau suivant présente l’analyse de la variance pour un modèle de régression simple :

Source de

variation

Somme des

carées

Degrés

delibertés

Carrées moyens

x SCreg 1 MCreg=SCreg/1

résidus SCresi n-2 MCresi=SCresi/n-2

Total SCT n-1 Fc= MCreg/MCresi

Nous voulons tester lh’ypothèse suivante :

0 1: 0H a

Pour cela on calcule lastatistique Fc et on la compare à ( ,1, 2)nF lu dans la table de Fisher

2

1

SCreg

MCregnFcSCresi MCresi

On rejette l’hypothèse H0 si : ( ,1, 2)nFc F

Application (régression univarié)

On dispose du tableau des données suivants relatifs à la distribution entre la consommation

(Y) et le revenu (X) entre 1992 et 2001.

Page 12: Cours gestion de la production Pr Falloul

Gestion de production FALLOUL Moulay El Mehdi

11

Date Y X

1 7389,99 8000

2 8169,65 9000

3 8831,71 9500

4 8652,84 9500

5 8788,08 9800

6 9616,21 11000

7 10593,45 12000

8 11186,11 13000

9 12758,09 15000

10 13869,62 16000

On vous de mande de :

1) Représenter graphiquement Y en fonction de X

2) Estimer les paramètres Yi= a1X+b0

3) Tester les hypothéses des variables et calculer les intervalles de confiance pour une

probabilité de 95%

4) Calculer l’intervalle de confiance de Y(x)

5) Etablir l’ANOVA et calculer le coefficient de détermination de cette regression

y = 0,781x + 1176,1R² = 0,9958

0

2000

4000

6000

8000

10000

12000

14000

16000

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

Co

nso

mat

ion

Revenu

Evoluion de la consommation et du revenu

Page 13: Cours gestion de la production Pr Falloul

Gestion de production FALLOUL Moulay El Mehdi

12

2)

1

0

(X,Y) 5010472.920.781

( ) 6415600

(9985.575 0.781*11280) 1176.1

0.781 1176.1

Cova

Var X

b Ym axm

Y X

3) Inférence sur la pente

0 1

0 1

: 0

: 0

H a

H a

L’erreur type est comme suit

^2 2

/

( ) 165169.38143.69

2 2 8y x

yi y eiS

n n

La valeur critique est égale à

^ ^

1 1

^ 2

1

2

0.7843.54

20646.17( )64156000

(x )

c

a at

ss a

i x

( /2, 2): 043.54 2.306c nt t rejette H

L’intervalle de confiance est comme suit :

2^ ^ ^

1 ( /2, 2) 1 1 ( /2, 2)2

. ( ) .

(x )n n

sa t s a a t

i x

^ ^

1 ( /2, 2) 1. ( ) 0.78 (2.306*0.0179)na t s a

Il y a une probabilité de 95% que la valeur estimé de a1 se trouve dans l’intervalle

0.740,0.822 avec 5% de chance se trouver à l’extérieur de cet intervalle

Page 14: Cours gestion de la production Pr Falloul

Gestion de production FALLOUL Moulay El Mehdi

13

Inférence sur l’ordonnée à l’origine b0

0 0

0 0

: b 0

: b 0

H

H

La valeur critique est égale à

^ ^

0 0

^ 2 2

0

2

1176.15.671

207.39( )

(x )

c

i

b bt

s xs b

n i x

( /2, 2): 05.671 2.306c nt t rejette H

L’intervalle de confiance est comme suit : 697.843,1654.337

^ ^

0 ( /2, 2) 0. ( ) 1179.1 (207.392*2.306)nb t s b

Inférence sur la droite de régression ^

( )y x

Par exemple pour X = Xm =11280 on a ^

(11280) ym 9985.57y

2^2 2

2

1 ( ) 1( ( )) ( ) 20646.17.( 0) 2064.61

10( )

x xs y x s

n x x

L’intervalle de confiance est comme suit : 9880.79,10090.35

^ ^

( /2, 2)(x) . ( (x)) 9985.57 (45.4835*2.306)ny t s y

Page 15: Cours gestion de la production Pr Falloul

Gestion de production FALLOUL Moulay El Mehdi

14

4) Tableau ANOVA

Source de

variation

Somme des

carées

Degrés

delibertés

Carrées moyens

x 39130928.80 1 391309.80

résidus 165169.38 8 20646.17

Total 3929698.18 9 Fc=

391309.80/20646.17

Nous voulons tester lh’ypothèse suivante :

0 1: 0H a

Pour cela on calcule lastatistique Fc et on la compare à ( ,1, 2)nF lu dans la table de Fisher

On rejette l’hypothèse H0 si : ( ,1, 2)( 1895.31) ( 5.32)nFc F

Remarque : On peut utiliser les logiciels d’analyse de données pour résoudre ce

type de modèle, on peut utiliser l’outil de l’analyse de données d’Excel.

Rapport d’analyse sous Excel

Page 16: Cours gestion de la production Pr Falloul

Gestion de production FALLOUL Moulay El Mehdi

15

1.2 Les séries chronologiques

1.2.1 Définition :

On appelle « série chronologique » toutes suite temporelle d’observations chiffrées, les

observation sont effectuées à des intervalles de temps réguliers (années, mois, jours,…).

Une SC comporte quartes composantes (mouvements):

- Une composante Extra saisonnière : il s’agit d’un mouvement à long terme qualifié par trend

de la série chronologique (Ti)

- Une composante cyclique où l’amplitude d’un mouvement est variable pouvant dépasser

l’année (Ci)

- Une composante saisonnière : des fluctuations périodiques peuvent apparaître à

l’intérieur de l’année et qui peuvent se répéter chaque année à la même période (Si)

- - Une composante aléatoire ou imprévisible où l’intensité de variation est réduite. (

Ai).

Il existe 2 méthode d’une chronique:

Le modèle additif : Yi= Ti + Ci + Si + Ai

Le modèle multiplicatif : Yi= Ti * Ci * Si *Ai (plus fréquent)

Une SC peut être (journalières, mensuelles, trimestrielles…)

Page 17: Cours gestion de la production Pr Falloul

Gestion de production FALLOUL Moulay El Mehdi

16

1.2.2 Détermination par moyens mobiles (MC0):

Page 18: Cours gestion de la production Pr Falloul

Gestion de production FALLOUL Moulay El Mehdi

17

Exemple des deux premiers moyens mobiles d’ordre 2 et 3

(24.66+24.61)/2 = 24.63

(24.66+24.61+24.73)/3 =24.66

1.2.3 Détermination par les MCO

Exemple : on dispose des ventes trimestrielles de 4 années d’un magasin de vente

de pièces mécaniques:

La droite d'ajustement est de la forme Y = 3,22.X + 3265.75

coefficients saisonniers (CS) sont les moyennes arithmétiques des rapport au

trend ( Y /Y') par période (trimestre, mois...)

Page 19: Cours gestion de la production Pr Falloul

Gestion de production FALLOUL Moulay El Mehdi

18

Détermination des coefficients saisonniers et correction de la série des

variables saisonnières.

1.3.3 Le lissage exponentiel

1.3.1 Définition

Les techniques de lissage exponentiel ont été introduites par Holt en 1957 mais surtout par

Brown en 1962. Le lissage regroupe l’ensemble des techniques empiriques qui ont pour

caractéristiques communes d’accorder un poids plus important aux valeurs récentes de la

chronique.

Caractéristiques des méthodes de lissage exponentiel

– Premier principe : la dévalorisation croissante de l'information avec l'âge

– Deuxième principe : la synthétisation des informations

– Troisième principe : la réactualisation permanente des paramètres moyennant des calculs

relativement simples

Page 20: Cours gestion de la production Pr Falloul

Gestion de production FALLOUL Moulay El Mehdi

19

1.3.2 Le lissage simple : le modèle stationnaire

La formule du lissage simple est la suivante :

^ ^

1(1 )t tt tx S x x

Avec

^

1 1x x pour initialiser et la prévision calculée en n à l’horizon de h périodes est

égale à :

^ ^

n h nx x h

et 0,1 coefficient de lissage

Application

Le tableau suivant montre lissage exponentiel des ventes :

0.3

9 8 10 11

^ ^ ^ ^

x x x x

t (mois) Ventes (xt) St et=xt -ST

1 30 30,00 0,00

2 40 33,00 7,00

3 40 35,10 4,90

4 30 33,57 -3,57

5 20 29,50 -9,50

6 20 26,65 -6,65

7 30 27,65 2,35

8 30 28,36 1,64

9 28,36 -28,36

10 28,36 -28,36

11 28,36 -28,36

Page 21: Cours gestion de la production Pr Falloul

Gestion de production FALLOUL Moulay El Mehdi

20

1.3.3 Le lissage exponentiel double : le modèle linéaire

La formule du lissage double est la suivante :

^

1

^

( )

0 1

* 0 1 (après ' )

t t t

t p n t t

x a a

x n a a la dernière période d ajustement

Avec :

1 ( )1

0 2

t t t

t t t

a S SS

a S SS

et 1

1

(1 )

(1 )

t t t

tt t

S x S

SS S SS

Application

Le tableau suivant montre lissage exponentiel double des ventes : avec 0.3

Page 22: Cours gestion de la production Pr Falloul

Gestion de production FALLOUL Moulay El Mehdi

21

1.3.4 Les modèles de Holt et Holt–Winters

1.3.4.1 Le modèle de Holt

Nous pouvons aussi utiliser le lissage de Holt qui comprend deux paramètres : l’un pour la

moyenne lissée a0t et l’autre pour la pente a1t.

Deux lissages distincts sont effectués :

– le lissage de la moyenne a0t avec un coefficient de lissage , [0 ; 1],

– le lissage de la tendance a1t avec un coefficient de lissage , [0 ; 1].

(Dans le cas particulier où = le modèle de Holt se ramène au lissage exponentiel double

de Brown).

Formulation

Lissage de la moyenne :

t–1 –10 . 1 – 0 1.t t ta x a a

(a0t–1 + a1t –1 représente la nouvelle moyenne lissée en t)

0

2000

4000

6000

8000

10000

12000

Prévision des ventes (Méthode LED)

Ventes CVS (xt) Xt(prévisons)

Page 23: Cours gestion de la production Pr Falloul

Gestion de production FALLOUL Moulay El Mehdi

22

Lissage de la tendance :

1 –1 –1 . 0 – 0 1 – 1t t t ta a a a

Prévision calculée en t à un horizon de h périodes :

^

0 1tt h ta h ax

Avec :

xt = valeur observée de la série en t

Initialisation (pour t = 1)

– Initialisation de la moyenne lissée : a01 = x1

– Initialisation de la tendance : a11 = 0

Les formules générales peuvent ensuite être utilisées.

Application

Le tableau suivant montre lissage exponentiel des ventes : avec 0.3 et 0.11

Page 24: Cours gestion de la production Pr Falloul

Gestion de production FALLOUL Moulay El Mehdi

23

1.3.4.2 Le modèle de Holt-Winters

Le modèle de Holt–Winters présente l’avantage d’intégrer une composante saisonnière et donc

de réaliser le calcul de la prévision en un seul traitement. C’est ce modèle qui est employé le

plus couramment dans les progiciels de prévision des ventes.

le lissage de la moyenne avec un coefficient de lissage , avec [0 ; 1],

le lissage de la tendance avec un coefficient de lissage , avec [0 ; 1],

le lissage de la saisonnalité avec un coefficient de lissage , avec [0 ; 1],

Page 25: Cours gestion de la production Pr Falloul

Gestion de production FALLOUL Moulay El Mehdi

24

Formulation

Lissage de la moyenne :

– –1 –10 . / 1 – 0 1.t t t p t ta x S a a

(On utilise St–p car St n’est pas encore connue).

Lissage de la tendance :

1 –1 –1 . 0 – 0 1 – 1t t t ta a a a

Lissage de la saisonnalité :

–. / 0 1 – .t t t t pS x a S

Prévision à un horizon de h périodes :

2

^

^

( 0 1 ). 1

( 0 1 ). 1 2

t h

t

t t t p h

t t th p h

a h a S si h p

a h a S si p p

x

x h

Avec :

a0t = moyenne lissée de la série en t

xt = valeur observée de la série en t

St = coefficient saisonnier en t

p = périodicité des données (p = 12 en mensuel, p = 4 en trimestriel)

a1t = tendance estimée en t.

Initialisation (pour la première année, t = 1, p)

- Initialisation de la saisonnalité

Les coefficients saisonniers pour la première année sont estimés par la valeur observée en t (xt)

divisée par la moyenne x

des p premières observations (celles de la première année).

/St xxt

pour t = 1, p

- Initialisation de la moyenne lissée : 0 pa x

- Initialisation de la tendance : 01pa

Page 26: Cours gestion de la production Pr Falloul

Gestion de production FALLOUL Moulay El Mehdi

25

Application

Le tableau suivant montre lissage exponentiel des ventes de Holt and Winters : 0.3 et

0.11 et γ=0.2

Initialisation :

Initialisation : x

= 571,34 (pour la première année).

La saisonnalité : Savr–Année 1 = 427,60 / 571,34 = 0,70

La moyenne : a0déc–Année 1 = 571,34

La tendance : a1déc–Année 1 = 0

Ici, en régime permanent (l’horizon h est choisi égal à 1) pour la ligne de septembre de

l’année 2

:

a0 sep–Année 2 = 0,3 (522,1 / 0,91) + 0,7 (512,9 – 0,3) = 530,2

Page 27: Cours gestion de la production Pr Falloul

Gestion de production FALLOUL Moulay El Mehdi

26

a1 sep–Année 2 = 0,1 (530,2 – 512,9) + (0,9 *– 0,3) = 1,5

S sep–Année 2 = 0,2 (522,1 / 530,2) + (0,8 *0,91) = 0,93

^

x sep–Année 2 = (512,9 + (– 0,3) * 1) 0,91 = 468,51 (calculée en août 1992, avec h = 1).

La prévision pour septembre de l’année 4 (horizon h = 9), calculée en décembre de l’année 3,

est égale à : ^

x sep–Année 3 = (533,4 + 4.9) 0,93 = 504

1.4. L’ajustement non linéaire

La plupart desphénomènes économiques ne suivent pas une évolution liénaire, d’où l’utilité de

d’étudier quelques ajustements non linéaires spécifiquement en l’occurrence l’ajustement par

une fonction exponentielle et par une fonction puissance.

1.4.1 Linéarisation de modèles non linéaires :

Remarque : il existe des techniques de régressions non linéaires, mathématiquement plus

difficiles et moins générales.

Principe : réaliser une anamorphose, c’est-à-dire produire un modèle linéaire par un

changement de variable(s) adéquat.

La fonction puissance :

, aY Bx B et a étant des constantes. Donc .ln y ln B aln x ln y

Posons ’ , ’ ; ’ ’y ln y b ln B et x ln x donc y b ax y’

(droite avec pente a )

Ici a peut être interprété comme l’élasticité de la fonction (isoélastique) originale.

La fonction exponentielle :

 , . .axY Be B et a étant des constantes Donc ln y ln B ax

Posons ’ y ln y etb ln B ; donc ’ y b ax

La fonction exponentielle est particulièrement utile dans le calcul des taux de croissance .

Page 28: Cours gestion de la production Pr Falloul

Gestion de production FALLOUL Moulay El Mehdi

27

En effet, on ajuste souvent une variable par rapport au temps pour décrire son évolution (pas

expliquer). Dans ce cas, la fonction exponentielle s’écrit :

 atY Be et, après anamorphose : ’ y b at

Avec taux de croissance instantané constant et

0 b ln y , avec 0 y y quand 0t , la valeur d’amorçage.

Page 29: Cours gestion de la production Pr Falloul

Gestion de production FALLOUL Moulay El Mehdi

28

Chapitre 2 : Introduction à la programmation linéaire

La recherche opérationnelle est une méthode d'analyse scientifique d'un problème. Cette

méthodologie est un mélange d'analyse et de méthodes mathématique réunies pour aider un

décideur à prendre une décision. Elle consiste à recevoir un maximum d'information sur le

problème afin de proposer des solutions mais surtout pas de décider laquelle est la meilleure.

La solution choisie dépend surtout des intérêts du décideur. Cette méthode Cette méthode est

très utilisée pour résoudre les problèmes de gestion de production, de transport et de logistique.

Les problèmes de gestion qui seront traités en l’occurrence sont :

1. La programmation linéaire peut être définie comme étant une méthode qui permet

d’allouer de façon optimale des ressources disponibles en quantités limitées à des

activités compétitrices.

2. les techniques de gestion des problèmes de transport, à savoir la méthode du coin

nord-ouest et celle de stepping stone.

3. La méthode de satisfaction d’une demande dépendante et la gestion des différentes

opérations entrainées par cette demande

4. La méthode d’ordonnancement des taches. Réseau PERT et la méthode du chemin

critique, CPM.

2.1. La programmation linéaire

Un programme linéaire est un programme mathématique, i.e. problème consistant à trouver un

extremum (maximum ou minimum) d’une fonction à plusieurs variables, vérifiant en outre un

système d’équations ou d’inéquations, ces fonctions étant linéaires.

2.1.1 Exemple

a) Agriculteur

Un agriculteur possède 40ha, 63 000 FF et 840 jours de travail. Il désire semer du maïs, du blé

et du soja qui ont les coûts et les rapports suivants:

Prix (FF/ha) Temps (jour) Rapports (FF/ha)

Maïs 1500 18 420

Blé 1800 27 510

soja 1050 15 360

Page 30: Cours gestion de la production Pr Falloul

Gestion de production FALLOUL Moulay El Mehdi

29

On peut synthétiser les contraintes de cette façon:

1500 x1 + 1800 x2 + 1050 x3 63 000

18 x1 + 27 x2 + 15 x3 840

X1 + x2 + x3 40

X1, x2, x3 IR+

X1, x2, x3 0

Et la fonction économique max z = 420 x1 + 510 x2 + 360 x3

b) Usine

De la même façon, une usine produit du "A" et du "B" avec du "M1" et du "M2" avec les

caractéristiques suivantes:

A B Stocks

M1 2 1 8

M2 1 2 7

M3 0 1 3

gains 4 5

Mise en équations avec x1 le nombre de "A" et x2 le nombre de "B" sachant que x1et x2 0

Bilan de M1: 2 x1 + x2 8

Bilan de M2: x1 + 2 x2 7

Bilan de M3: x2 3

Le critère étant un max z = 4 x1 + 5 x

2.1.2 Forme canonique

Tout programme linéaire peut être mis sous forme canonique, c'est à dire un système avec un

ensemble d'inéquation et une fonction à optimiser.

Page 31: Cours gestion de la production Pr Falloul

Gestion de production FALLOUL Moulay El Mehdi

30

1 1 2 2

11 1 12 2 1 1

21 1 22 2 2 2

1 1 2 2 2

1 2

... ( )

...

2 ...int

..........

2 ...

, ,.., 0

n n

n n

n n

n n nn n

n

Max Z c x c x c x fonction économique objective

a x a x a x b

a x a x a x bcontra es économiques

a x a x a x b

x x x

2.1.3 Forme Standard

La formulation standard du programme linéaire permet de transformer les inéquations en

équations en introduisant des variables d’écart ; ces variables d’écart expriment un éventuel

sous-emploi des capacités (ressources non employées).

Il faut noter qu’il y a autant de variables d’écarts que d’inéquations, ce qui donne au niveau

du programme linéaire une variable d’écart pour chacune des contraintes : soit e1pour la

contrainte (1), e2 pour la contrainte (2), et e3 pour la contrainte (3).

On obtient la formulation standard suivante :

1 1 2 2 1 2

11 1 12 2 1 1 1

21 1 22 2 2 2 2

1 1 2 2 2

... 0 0 ... 0

... 0

2 ... 0

..........

2 ... 0

e e e

n n n

e

n n

e

n n

e

n n nn n n

Max Z c x c x c x

a x a x a x b

a x a x a x b

a x a x a x b

Ecriture matricielle :

max (tc x)

Ax=b

x 0 avec :

Page 32: Cours gestion de la production Pr Falloul

Gestion de production FALLOUL Moulay El Mehdi

31

x =

mn

n

1

x

x

x

, c=

0

c

c

n

1

x, c Rn+m, A =

100aa

010aa

001aa

mn1m

n221

n111

, A M m,n+m(R), b=

m

1

b

b

,

b Rm

Convexité

C IRn est convexe SSI x C , et y C , 0,1 x + (1-)y C

L'intersection d'un nombre fini de convexes est convexe. Un polyèdre convexe est

l'intersection d'un nombre fini d'ensembles du type A , B , C.

Théorème : L'ensemble des solutions réalisables d'un programme linéaire est convexe.

x est un point extrémal d'un convexe (ou point anguleux, ou sommet) SSI il n'existe pas:

x' , x² C x' x² tels que x = x' + (1-)x² avec ]0,1[

Théorème : Tout point x d'un polyèdre convexe borné IRn est combinaison linéaire

convexe de points extrêmes de .

Remarque : Dans le cas où est un polyèdre non borné, il existe un théorème analogue

utilisant la notion de rayons extrémaux.

2.1.4 Formulation du programme dual :

Il s’agit, dans un premier temps, d’écrire le programme dual en respectant les

correspondances primal →dual :

-Chaque ligne primal correspond à un input du dual ;

- Chaque colonne primale correspond à une ligne duale ;

-Chaque output est représenté par une ligne primale ;

- Le nombre des variables du dual est égale au nombre des inputs du primal ;

- Les seconds membres des contraintes constituent les coefficients de la fonction objective ;

- Le sens de l’inégalité >= sera remplacé par <=.

Dans un second temps, il s’agit d’identifier les variables du dual, sens contraintes et enfin sa

fonction économique (ou objective).

Deux règles à respecter :

- Les fonctions objectives des deux programmes ont la même valeur optimale ;

- La valeur optimale d’une variable est égale à la valeur marginale de la variable associée.

Page 33: Cours gestion de la production Pr Falloul

Gestion de production FALLOUL Moulay El Mehdi

32

Exemple :

Considérons le programme primal suivant :

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

Min 1140 880 1060

8 6 2100

5 6 1200

12 5 8 1353

, , 0

W x x x

x x x

x x x

x x x

x x x

Le dual du 1er PL est obtenu à partir du tableau suivant :

La forme duale du programme linéaire s’écrira :

2.1.5 Résolution du programme linéaire par la méthode graphique

Une représentation graphique des inégalités (des contraintes) va nous permettre de déterminer

l’ensemble des solutions réalisables. Cette méthode ne peut être utilisée que lorsque le problème

se limite à deux variables. A chaque inéquation de contrainte, on peut associer une droite du

plan.

X1 X2 X3 Min

Y1 1 8 6 2100

Y2 1 5 6 1200

Y3 12 5 8 1353

max 1140 880 1060

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

Max 2100 1200 1353

12 1140

8 5 5 880

6 6 8 1060

y , y , y 0

Z y y y

y y y

y y y

y y y

Page 34: Cours gestion de la production Pr Falloul

Gestion de production FALLOUL Moulay El Mehdi

33

Application

L’entreprise XLS fabrique 2 types de produits les tables et des lits. Les besoins en matières et

en heures de travail qui nécessite chaque type de produit sont donnés par le tableau suivant :

Produits

Caoutchouc (m3) Acier (kg) Heures de travail

Sièges

Plafonds

0.3

0.2

100

50

2h

3h

27m3 8kg 280h

Travail à faire :

1) Déterminer tous les programmes de production possibles

2) Déterminer le programme permettant de maximiser le bénéfice sachant que la marge sur

coût variable est de 300 DH par table et 250 DH par lit.

Solution :

1) Détermination des programmes de production possibles :

0.3 0.2 27 3

0.1 0.05 8 ’

2 3 280

Max 30

0 250

, 0

x y m de bois

x y kg d acier

x y heures de travail

la prod

Z x y

uction ne peut être négax y tive

A chaque inéquation de contrainte, on peut associer une droite du plan.

-La droite 1 : de coordonnées (0 ; 135) (90 ; 0)

- La droite 2 : de coordonnées (0 ; 160) (80 ; 0)

-La droite 3 : de coordonnées (0 ; 120) (180 ; 0)

Page 35: Cours gestion de la production Pr Falloul

Gestion de production FALLOUL Moulay El Mehdi

34

Le polygone OABCD représente les régions des solutions(x ; y) admissibles, autrement dit

tous point à l’intérieur de ce polygone est un programme de production qui vérifie les

contraintes.

Les sommets du polygone sont des solutions particulières :

A (80 ; 0) ; B (18 ; 108) ; C (50 ; 60) ; D (80 ; 0).

2) détermination du programme de maximisation de bénéfices

Il importe maintenant de déterminer parmi les solutions admissibles celle qui maximise la

fonction économique : 350x + 250y = Z.

Pour déterminer cet optimum, on trace une droite (D) : 350x+250y=0 correspondant à la

fonction économique Z puis on la déplace parallèlement à elle-même jusqu’à ce qu’elle garde

un point dans la zone d’acceptabilité.

On remarque que le point C correspond à l’optimum économique recherché, donc le

bénéfice maximum est de (350 .50) + (250.60) = 32500.

Page 36: Cours gestion de la production Pr Falloul

Gestion de production FALLOUL Moulay El Mehdi

35

Différents cas possibles de résolution graphiques de programmes linéaires

Problème de maximisation

la solution optimale est B(40,110)

Problème avec solution non bornée

On peut augmenter la valeur de la fonction objectif dans la direction des flèches

indéfiniment donc la solution est non bornée

Page 37: Cours gestion de la production Pr Falloul

Gestion de production FALLOUL Moulay El Mehdi

36

Problème impossible

L’espace des solutions réalisables est vide, il est l’intersection des deux zones

grises de la figure ci-dessus

Problème à solutions multiples

L’ensemble des points décrit par le segment [AB] représente les solutions

optimales du problème linéaire

Page 38: Cours gestion de la production Pr Falloul

Gestion de production FALLOUL Moulay El Mehdi

37

Problème de dégénérescence

La solution optimale B(10,5) est dite dégénérée si trois contraintes concourent en

ce point.

2.1.6 Analyse de sensibilité

Une analyse de sensibilité se résume à la recherche des intervalles de variations

possibles des paramètres du programme linéaire sans que la solution optimale ne

soit modifiée.

Question : De combien peut-on faire varier le profit engendré par la culture d’un

hectare de tomates, dans le problème de l'agriculture, sans changer la solution

optimale ?

Réponse :

Page 39: Cours gestion de la production Pr Falloul

Gestion de production FALLOUL Moulay El Mehdi

38

fonction objectif est égale à

La solution demeure optimale si la pente de la fonction objective reste toujours

comprise entre la pente de la contrainte (1) et (3). Ceci est équivalent à dire que :

On peut vérifier aussi que si :

alors la solution optimale est A

alors le problème est à solutions multiples : [AB]

alors la solution optimale est B

alors le problème est à solutions multiples : [BC]

alors la solution optimale est C

alors le problème est à solutions multiples : [CD]

Alors la solution optimale est D

2.1.7 Résolution du programme linéaire par la méthode simplex

Lorsque le nombre de variables dépasse deux, la résolution graphique du programme linéaire

n’est pas possible, d’où l’utilisation de l’algorithme du Simple. Les étapes de cette méthode

peuvent être résumées comme suit :

Page 40: Cours gestion de la production Pr Falloul

Gestion de production FALLOUL Moulay El Mehdi

39

1- Modélisation :

Définir les variables

Contraintes en inéquation

Bénéfice

2- Matrice

Transformation de l’inéquation en équation (de la forme canonique à la forme standard)

Ajout de matrice d’écart

3- Recherche du pivot (critères de Dantzig)

Colonne : coût marginal le plus élevé

Ligne : on prend le plus petit ratio (second membre / coefficient de la variable entrante dans la

base)

4- Application de la règle du rectangle

Pour faire entrer la variable choisi dans la base

5- Itération jusqu’à ce que les coefficients de la fonction économique soit (<= 0),

dans ce cas on a atteint l’optimum.

Application

1 2 3

Max 500 400 600

3 2 28

20

18 5 11 324

, x , x 0

Z x y z

x y z

sc x y z

x y z

x

Forme standard du problème :

1 2 3

1

2

3

1 2 3, 1 2 3

Max 500 400 600

3 2 28

20

18 5 11 324

, x , x , , 0

Z x y z e e e

x y z e

sc x y z e

x y z e

x e e e

Page 41: Cours gestion de la production Pr Falloul

Gestion de production FALLOUL Moulay El Mehdi

40

Tableau 1

x y z e1 e2 e3 Bi Ri

e1 1 3 2 1 0 0 28 14 L1/2

e2 1 1 1 0 1 0 20 20 2L2-L1

e3 18 5 11 0 0 1 324 324/11 L3-5.5L1

Z 500 400 600 0 0 0 L4-300L1

Tableau 2

x y z e1 e2 e3 Bi Ri

z 0.5 0.5 1 0.5 0 0 14 28 2L1- L2

e2 1 -1 0 -1 2 0 12 12 L2

e3 12.5 -11.5 0 -5.5 0 1 170 13.6 L3- 12.5L2

Z 200 -500 0 -300 0 0 -

8400

L4- 200L2

Tableau 3

x y z e1 e2 e3 Bi

e1 0 4 2 2 -2 0 8

x 1 -1 0 -1 2 0 12

e3 0 -1 0 7 -25 1 20

Z 0 -300 0 -100 -400 0 -10800

Tous les coefficients sur la fonction économique sont négatifs ou nuls (le maximum est

atteint), les quantités optimales sont :

12, 8

(500*12) (600*8) (400*0) 10800

x z

optimum

Remarquons qu’à l’optimum la contrainte e1 et e2 valent 0, ces contraintes sont donc saturés et

e3 vaut 20, la troisième contrainte n’est pas saturée.

2.2. Problèmes de transport

On est en présence de problème de transport au sens strict, lorsqu’on souhaite réaliser des

transferts, entre des sommets d’origine et des sommets d’arrivées d’un graphe.

Application :

Transport de marchandises entre 3 usines et 4 entrepôts d’un même produit P, la capacité de

production mensuelle des 3 usines sont (Usine1= 400, Usine2= 250, Usine3= 500 unités). Le

besoin mensuels des entrepôts sont de (Entrepôt 1= 100, Entrepôt 2= 350, Entrepôt 3= 500 et

Entrepôt 4 = 200 unités).

Page 42: Cours gestion de la production Pr Falloul

Gestion de production FALLOUL Moulay El Mehdi

41

-La matrice des coûts de transport Cij (Le coût de l’usine i à l’entrepôt j) se présente comme

suit :

i j 1 2 3 4

1 50 60 10 20

2 100 40 30 30

3 20 70 80 50

-La matrice des quantités Xij (quantité à transporter de l’usine i à l’entrepôt j), le vecteur des

disponibilités des usines di, et les besoins des entrepôts bi se présente comme suit :

i j 1 2 3 4 di

1 x11 x12 x13 x14 400

2 x21 x22 x23 x24 250

3 x31 x32 x33 x34 500

bj 100 350 500 200 1150

2.2.1 Modélisation du problème du transport :

11 12 13 21 34. 50 60 10 100 ... 50 xij ij

i j

Min Z c x x x x x

Contraintes :

Toutes les disponibilités doivent être exactement utilisées : , :ij i

j

i x d

11 12 13 14

21 22 23 24

31 32 33 34

x x 400

x x 250

x x 500

x x

x x

x x

Tous les besoins doivent être exactement utilisés : , :ij j

i

j x b

11 21 31

11 22 23

13 23 33

14 24 34

x x 100

x x 350

x x 500

x x 200

x

x

x

x

Page 43: Cours gestion de la production Pr Falloul

Gestion de production FALLOUL Moulay El Mehdi

42

2.2.2 Résolution du problème de transport :

Première étape : on cherche une solution de base c’est-à-dire des quantités xij satisfaisant les

contraintes (en générale cette solution n’est pas optimale).

Deuxième étape : on améliore progressivement la solution de départ (de base), en basant d’une

solution de base à une autre jusqu’à ce qu’on obtient des solutions minimisant le coût total.

2.2.2.1 La méthode du coin Nord-ouest (solution de base) :

On commence par saturer la colonne du coin Nord-ouest et puis on sature (lignes et les colonnes

successivement).

i j 1 2 3 4 di

1 100 300 400

2 50 200 250

3 300 200 500

bj 100 350 500 200

Coût de la solution de base par la méthode du coin Nord-ouest :

50*100 60*300 40*50 30*200 80*300 50*200 65000Z euros

Pour trouver la solution optimale, il faut utiliser une autre méthode « L’algorithme du Stepping-

Stone », mais vu que cette méthode nécessite beaucoup d’itérations car la solution sur la base

de la méthode du coin Nord-Ouest est un peu lourde, c’est pourquoi il est préférable d’utiliser

la solution de base à partir de la méthode Ballas Hammer qu’on présente comme suit :

2.2.2.2 La méthode de Ballas Hammer (solution de base) :

A partir de la matrice initiale (coûts, besoins, disponibilités) :

a- Dans la matrice des Cij, on repère le coût unitaire de chaque ligne et chaque colonne.

Ce coût est comparé par différence, au coût immédiatement supérieur de la ligne ou de

la colonne.

b- On choisit le chemin ayant le coût le plus faible et on l’utilise pour faire transiter le maximum

de marchandises (pour saturer colonne ou ligne) et donc la supprimer.

c- Les étapes a et b sont répétées autant de fois jusqu’à obtenir une solution de base.

Page 44: Cours gestion de la production Pr Falloul

Gestion de production FALLOUL Moulay El Mehdi

43

1 2 3 4 di (1) (2)

1 50 60 400 20 400 10 10

2 100 250 30 30 250 10 10

3 100 100 100 200 500 30 20

bi 100 350 500 200

(1) 30 20 20 10

(2) 10 70 30

400*10 250*40 100*20 100*70 100*70 200*50 41000Z euros

D’emblée cette méthode permet d’obtenir un coût inférieur 41000<65000

2.2.2.3 Recherche d’une solution optimale par l’algorithme de Stepping-stone :

Dans cette méthode, on est conduit à évaluer pour chaque trajet (i, j) non utilisé, la variation

du coût total en faisant passer une unité par ce trajet et en procédant aux ajustements

nécessaires, Soit ∆ij variation (un coût marginal).

Si le ∆ij est <=0, alors on réduira le coût total en passant par ce trajet.

( , ) ' '(i', j') ci"j"(i", j") ci"'j"'(i"', j"')i j cij i j ci j (Formant ainsi un cycle)

Reprenant (la matrice des coûts et la solution de base obtenue par la méthode Ballas Hammer) :

i j 1 2 3 4

1 50 60 10 20

2 100 40 30 30

3 20 70 80 50

i j 1 2 3 4

1 400

2 250

3 100 100 100 200

Page 45: Cours gestion de la production Pr Falloul

Gestion de production FALLOUL Moulay El Mehdi

44

Trajet non utilisé

(i, j)

Chaines d’échange Coût marginal ∆ij

(1,1) (1,1), (1,3), (3,3), (3,1) =50-10+80-20=100

(1,2) (1,2), (1,3), (3,3), (3,2) =60-10+80-70=60

(1,4) (1,4), (1,3), (3,3), (3,4) =20-10+80-50=40

(2,1) (2,1), (2,2), (3,2), (3,1) =100-40+70-20=110

(2,3) (2,3), (2,2), (3,2), (3,3) =30-40+70-80=-20

(2,4) (2,4), (2,2), (3,2), (3,4) =30-40+70-50=10

On retiendra la chaine d’échanges utilisant (2,3)

i j 1 2 3 4

1 400

2 150 100

3 100 200 200

Le nouveau coût devient : 41000 (100*20) 39000 . En effet le coût optimal est de 39000

euros.

10*400 40*150 30*100 20*100 70*200 50*200 39000Z euros

2.3 Organisation des tournées

La planification des tournées de livraison peut s’effectuer suivant deux techniques ; la tournée

fixe et la tournée variable.

2.3.1 La tournée fixe :

La tournée fixe comme son nom l’indique consiste à fixer des tournées, à partir de données

établies au préalable, et pour une période donnée (semaine, mois…). Ce principe est simple

mais présente plusieurs inconvénients notamment :

• il ne garantit pas le remplissage optimal des véhicules ;

• il fige le planning de tournées de livraison donc n’optimise pas l’organisation en termes de

client à livrer et de distance minimum à parcourir.

Page 46: Cours gestion de la production Pr Falloul

Gestion de production FALLOUL Moulay El Mehdi

45

2.3.2 La tournée variable

Le principe de la tournée variable consiste à fixer chaque jour les tournées en fonction de la

demande (quantité à livrer, localisation des clients) et des véhicules disponibles. On engage

ainsi un nombre variable de véhicules lesquels parcourent un circuit variable, en fonction du

tonnage à distribuer et de la localisation des clients à livrer.

Ce problème peut être résolu à l’aide de logiciels d’optimisation utilisant l’algorithme de

Kruscal.

2.3.2.1 L’algorithme de Kruscal

Cette méthode fournit une approche d’une solution mais pas nécessairement la meilleure. Son

objectif vise à minimiser la distance à parcourir ou la durée de chaque tournée. Elle repose sur

la notion simple de gain ou d’écartement défini comme suit :

Application :

Soit un dépôt O et deux clients A et B. On veut trouver le plus court chemin permettant de

livrer A et B à partir de O.

Deux solutions s’offrent à nous :

(1) Approvisionner A, retouµ

(2) rner au dépôt, puis livrer B et revenir en O.

(3) Approvisionner A puis B au cours de la même tournée.

Page 47: Cours gestion de la production Pr Falloul

Gestion de production FALLOUL Moulay El Mehdi

46

Les distances parcourues s’écrivent alors :

D1 = 2 d(O,A) + 2 d(O,B)

D2 = d(O,A) + d(A,B) + d(O,B)

On appelle gain ou écartement du couple de points A, B par rapport au centre O, la

différence entre ces deux solutions c’est-à-dire en termes de quantités :

, 1 – 2 , , – ,G A B D D d O A d O B d A B

G (A,B) représente donc le gain obtenu en intégrant ces deux points dans une même

tournée.

Pour une localisation donnée du dépôt, minimiser la longueur de la tournée revient à maximiser

la somme des écartements.

Procédure de la méthode :

1) Calculer les écartements de tous les couples de points par rapport au centre ;

2) Les classer par importance décroissante ;

3) Sélectionner chaque couple de la liste ; abandonner ceux formant une boucle ou une

fourche avec ceux précédemment sélectionner (on s’interdit de passer plusieurs fois en

chaque point) ;

4) Arrêter la procédure en fonction des contraintes de tonnage, de temps…

5) Joindre le centre à ces deux extrémités.

Application :

Une entreprise P doit livrer cinq clients A, B, C, D, E à partir de son dépôt O avec un véhicule

de 10 tonnes. L’objectif est de composer une tournée de livraison dans le but de parcourir la

plus petite distance.

Page 48: Cours gestion de la production Pr Falloul

Gestion de production FALLOUL Moulay El Mehdi

47

Tonnage à

livrer

Dépôt O D A B C E

A 2.0 23 15 - 32 38 17

B 0.8 15 19 - 28 25

C 0.2 18 35 - 38

D 1.3 24 - 20

E 1.0 33 -

Chemin

(i, j)

Ecartement ou gain obtenu

G(A,B) d(O,A) d(O,B) – d(A,B)=6

G(A,C) d(O,A) d(O,C) – d(A,C)=3

G(A,D) d(O,A) d(O,D) – d(A,D)=32

G(A,E) d(O,A) d(O,E) – d(A,E)=39

G(B,C) d(O,C) d(B,C) – d(A,B)=5

G(B,D) d(O,A) d(O,B) – d(A,B)=20

G(B,E) d(O,A) d(O,B) – d(A,B)=23

G(C,D) d(O,A) d(O,B) – d(A,B)=7

G(C,E) d(O,A) d(O,B) – d(A,B)=13

G(D,E) d(O,A) d(O,B) – d(A,B)= 37

Ensuite, on classe les gains des couples par ordre décroissant :

G(A,E); (D,E); (A,D); (B,E); (B,D); (C,E); (C,D); (B,C); (A,C)

On trace alors la tournée en sélectionnant chaque couple les uns après les autres sans

considérer les clients déjà intégrés et en évitant de former des boucles dans la tournée ce qui

donne :

[A,E]; [D,E]; pas [A,D] (car cela formerait une boucle); pas [B,E]; [B,D]; pas [C,E]; pas

[C,D]; [B,C] puis on joint le dépôt O.

On vérifie que la somme des tonnages livrés ne dépasse pas la charge utile du véhicule (5,3

tonnes) et l’on calcule la longueur de la tournée (125 km).

Page 49: Cours gestion de la production Pr Falloul

Gestion de production FALLOUL Moulay El Mehdi

48

2.4 Files d’attente

Une file d’attente peut se former :

- au quai de déchargement d’une entreprise (camions) ;

- au guichet du magasin de pièces détachées d’un garage ;

- au poste de péage d’une autoroute (usagers) ;

- au service d’expédition d’une société de vente par correspondance (colis) ;

-etc.

Une file d’attente excessive révèle des insuffisances organisationnelles, Elle génère un coût

parfois élevé pour les entreprises. Sa réduction passe par une analyse du mécanisme de sa

formation qu’il faut modéliser. Nous allons présenter dans ce qui suit les modèles de file

d’attente basé sur la loi de Poisson et la loi exponentielle.

Données du modèle :

-Arrivées : nous considérons le cas où elles sont isolées (non regroupées) et aléatoires, le

nombre d’arrivées par unités de temps suit une loi de Poisson.

-Services : nous considérons la règle de la première arrivée première servi, ou il n y’a qu’un

serveur, les durées de service supposées aléatoires, le temps consacré à chaque individu servi

suivant une loi exponentielle.

-File d’attente : elle se forme et se résorbe du seul fait du caractère aléatoire des arrivées et des

services.

Page 50: Cours gestion de la production Pr Falloul

Gestion de production FALLOUL Moulay El Mehdi

49

2.4.1 Construction du modèle :

Etude des arrivées :

Il s’agit de s’assurer qu’elles suivent bien une loi de Poisson de paramètre à déterminer.

La vérification de cette hypothèse se fera en examinant la distribution d’un grand nombre

d’arrivée.

Exemple :

Arrivée des ouvriers au guichet unique du magasin de pièces détachées d’un grand garage

parisien :

Observations faites sur des intervalles de 5 minutes :

Nombre (Ci)

de tranches

0 1 2 3 4 5 >=6

Nombre d’arrivées

par tranche de 5 min

(Xi)

2 32 26 14 6 2 0

Fréquences (pi) 0.2 0.32 0.26 0.14 0.06 0.02 0

CiPi 0 0.32 0.52 0.42 0.24 0.1 0

Ci2Pi 0 0.32 2.08 3.78 3.84 2.5 0

Vérifiant si cette distribution de la variable X (nombre d’arrivées par tranche) suit

approximativement une loi Poisson de paramètre :

( )X P

( )!

k

P X k ek

Avec E(X) ( )V X

Page 51: Cours gestion de la production Pr Falloul

Gestion de production FALLOUL Moulay El Mehdi

50

E(X) 1.6i

CiPi

2( ) ( ) 4.08 2.56 1.52i

V X Ci Pi E X

La moyenne et la variance de cette distribution sont voisines.

La probabilité d’avoir k arrivées dans un intervalle de 5 minutes, est donc proche de :

1.6 1.6( )

!

k

P X k ek

Le paramètre de cette loi, nombre moyen d’arrivées par intervalle de 5 minutes, est appelé

taux d’arrivée (par tranches de 5 minutes) : =1.6

Etude des temps de service :

Il s’agit de s’assurer que le temps de service suit une loi exponentielle de paramètre à

déterminer. La vérification de cette hypothèse se fera en examinant la distribution d’un grand

nombre de temps de service.

Exemple :

Temps de service des ouvriers au guichet de pièces détachées du même garage : Observations

faites sur 100 ouvriers servis, aucun temps de service n’ayant dépassé 12 minutes :

0,2

0,3

2

0,2

6

0,1

4

0,0

6

0,0

2

0

0 1 2 3 4 5 6

FR ÉQ UEN CES DES AR R IV ÉES ( P I )

Page 52: Cours gestion de la production Pr Falloul

Gestion de production FALLOUL Moulay El Mehdi

51

Vérifiant si cette distribution de la variable X (temps service) suit approximativement une

loi Exponentielle de paramètre α :

( )X E

( ) Xf X e fonction de densité

1( ) (X)E X

E(X) 2.51i

CiPi

2( ) ( ) 11.86 6.30 2.36

10.4

2.5

i

X Ci Pi E X

La moyenne et l’écart type de cette distribution sont voisins.

La probabilité d’avoir un temps de service inférieur ou égale à x est donc proche de :

0.4( ) 1 xP X x e

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0-1 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-12

Fréquences relatives du nombre de services(Pi)

Page 53: Cours gestion de la production Pr Falloul

Gestion de production FALLOUL Moulay El Mehdi

52

: est le nombre moyen de service effectué par minute ou (taux de service par minute).

Pour le comparer au taux d’arrivée , ce temps de service doit être exprimé en même unité de

temps (intervalle de 5 minutes en l’occurrence) :

Le taux de service par tranche de 5 minutes est :

5 5*0.4 2

2.4.2 Caractéristiques du système d’attente :

Elles découlent du caractère poissonien des arrivées et du caractère exponentielle des services.

Intensité du trafic ( ) :

'taux d arrivée

taux de service

Si : <1 : c’est-à-dire ( ), alors il n’y aura pas d’engorgement du système

Si : >1 : c’est-à-dire ( ( ) ), alors il n’aura pas d’engorgement du système

En l’occurrence1.6

0.82

, il n y a pas donc d’engorgement de système.

Nombre N d’individus dans le système à un instant t :

N est une variable aléatoire dont on démontre que la loi de probabilité est :

( ) (1 )nP N n

Cette loi nous permet d’occupation dans le système :

- Probabilité que le système soit inutilisé :

( 0) (1 0.8) 0.2P N

Le système est inutilisé, et le guichetier inoccupé, 20% du temps.

Il est donc occupé durant 80 % du temps avec ( 0) 0.8P N

- Probabilité qu’il y a un seul individu dans le système :

( 1) (1 ) 0.8*0.2 0.16(16% )P N du temps

Page 54: Cours gestion de la production Pr Falloul

Gestion de production FALLOUL Moulay El Mehdi

53

- Probabilité qu’il se forme une file d’attente :

( 1) 1 ( 0) ( 1) 1 0.16 0.64P N P N P N

En effet, pour qu’il y ait une file d’attente, il faut qu’il y ait au moins 2 individus dans le

système, l’un en cours de service et l’autre dans la file. Ce sera le cas 64% du temps.

Nombre moyen d’individus dans le système :

C’est ( )sn E N , c’est-à-dire : 0 1

. ( ) . ( )n n

n P N n n P N n

On démontre que : 1

sn

On peut en déduire le temps moyen passé dans le système par chaque individu :

ss

nt

En l’occurrence

0.84

1 1 0.8sn

(4 ouvriers)

42.5

1.6

ss

nt

(2.5 tranches de 5 minutes soit 12.5 minutes)

Nombre moyen d’individus dans la file d’attente :

Lorsqu’il y a n individus dans le système (n>0), n-1 sont dans la file d’attente et 1 est en cours

de service ; le nombre moyen d’individus en attente est donc :

1

( 1). ( )f

n

n n P N n

.

On démontre que :

2

1f sn n

: C’est le nombre moyen d’individus en cours de service

sn : C’est le nombre moyen d’individus dans le système.

On peut en déduire le temps moyen passé par chaque individu dans la file d’attente :

Page 55: Cours gestion de la production Pr Falloul

Gestion de production FALLOUL Moulay El Mehdi

54

f

f

nt

, (en nombre d’intervalles de temps retenus pour exprimer )

C’est aussi le temps moyen passé dans le système diminué du temps moyen à être servi :

1f st t

2.4.3 Informations complémentaires :

-Taux de facturation moyen des heures à la clientèle du garage : 50 euros

- La direction du garage souhaite une évaluation approximative du coût des heures perdues

dans la file d’attente pour une journée de 8 heures (soit 96 tranches de 5 minutes).

4 0.8 3.2fn ouvriers

3.22

1.6ft tranches de 5 minutes soit 10 minutes

Ou 12.5 2.5 10ft minutes

Si l’on considère que le temps passé à être servi est un temps de travail effectif et facturable.

Seul le tempe passé dans la file d’attente génère un manque à gagner pour le garage :

Nombre d’arrivée au guichet : 96 *1.6 = 153.6

Temps perdu : 153.6*10=1536 min soit 25.60

Coût des heures perdues : 25.60*50=1280

Une évaluation plus sérieuse de ce coût serait nécessaire pour supposer une augmentation du

nombre des serveurs (le calcul précédent suppose entre autres que toutes les heures de présence

sont facturables).

Page 56: Cours gestion de la production Pr Falloul

Gestion de production FALLOUL Moulay El Mehdi

55

Chapitre 3 : Planification de la production

Les lois actuelles de l’économie imposent à tout dirigeant d’entreprise de prévoir ses activités

afin d’optimiser sa politique d’investissement, de fabrication, de vente… Dans toute entreprise,

il existe donc au moins un planning permettant de matérialiser ces prévisions.

La planification industrielle est un processus qui consiste à élaborer et à réviser un ensemble

de plans interdépendants (ventes, fabrication, achats, trésorerie…) et qui doit permettre de

garantir le meilleur équilibre possible entre l’offre et la demande en tout point de la chaîne

logistique à tout moment.

Demande

(besoins du marché)

Offre

(ressources entreprise)

-Commandes fermes

-Prévisions de vente (marketing)

-Promesses de vente (vente)

-Nouveaux produits (responsables de

projet)

-Objectifs d’inventaire commerciaux

-Stocks : produits finis, semi-finis,

matières premières, composants

-Main d’œuvre

-Moyens de production

-Fournisseurs

-Finances (BFR, trésorerie)

Remarque : toutes les copies d'écran de GPAO sont issues du didacticiel Prélude Production

4 édité et commercialisé par le CIPE

La méthode la plus utilisé dans la planification de production est dire MRP (Material

Requierement Planning) déclinée en 3 sous plans : le plan industriel et commercial (PIC), le

programme directeur de production (PDP), et le calcul de besoins en composants.

3.1 La méthode Material Requirement Planning

3.1.1 Principe MRP

Le concept M.R.P. est né de la mise en évidence par Joseph Orlicky des deux types

fondamentaux de besoins.

Page 57: Cours gestion de la production Pr Falloul

Gestion de production FALLOUL Moulay El Mehdi

56

Les besoins indépendants : ils forment la frontière entre l’entreprise et le monde

extérieur, ils sont principalement constitués par les commandes en produits finis et pièces de

rechanges. Ils ne peuvent être que estimés ou prévus.

Les besoins dépendants : ils sont générés par les besoins indépendants, ils sont le

résultat du calcul par la décomposition des produits finis en sous-ensembles, pièces, matières.

Ce calcul des besoins dépendants est le moteur des systèmes M.R.P., ces besoins peuvent et

doivent être calculés.

3.1.2Organigramme M.R.P.

Page 58: Cours gestion de la production Pr Falloul

Gestion de production FALLOUL Moulay El Mehdi

57

3.2 Le plan industriel et commercial (PIC) (Manufacturing and Sales Plan) :

Conjointement établi par la direction générale, la direction de la production et la direction

commerciale à partir du carnet de commandes et des prévisions commerciales. Le PIC a pour

objectif d’adapter les ressources (main d'œuvre et niveau de stocks) aux besoins de production

pour satisfaire la demande en termes de quantité.

Le PIC est le résultat d’un compromis entre les prévisions et souhaits du service commercial et

les contraintes et les capacités du service de production. La direction générale devra arbitrer en

tenant en compte certains éléments tels que la capacité financière de la firme, la politique en

termes de délais, la possibilité de sous-traitance, les ressources humaines etc.

Application :

Le tableau qui suit donne un exemple de PIC pour une famille de produits (en make-to-stock)

avec un objectif de stock constant ; les données du problème sont représentées en grisé. On

vous demande de déterminer ; le stock réel (n), la production prévisionnelle (n), la

production réelle (n) :

M-3 M-2 M-1 M1 M2 M3 M4 M5 M6

Ventes

Prévisionnelles 1800 1800 1800 1800 1800 1800 1800 1800 1800

Réelles 1690 1805 1980

Ecart 110 -5 -180

Ecart Cumulé 110 105 -75

Production

Prévisionnelle 1620 1420 1820 2166 1700 1700 1800 1800 1800

Réelle 1790 1305 1534

Ecart -170 115 286

Ecart Cumulé -170 -55 231

Stock

Prévisionnels 2000 1900 1800 1700 1600 1500 1500 1500 1500

Réels 2180 2280 1780 1334

Ecart -280 120 466

Ecart Cumulé -280 -160 586

Relations entre les diverses grandeurs

1 Prn n n nStock Stock oduction Ventes

1Pr n n n noductionprév Ventesprévis Stockprévis Stockréel

Page 59: Cours gestion de la production Pr Falloul

Gestion de production FALLOUL Moulay El Mehdi

58

1Pr n n n noduction Ventes Stock Stock

Le PIC est un premier outil permettant à l'entreprise de planifier ses capacités de production.

La production prévisionnelle est convertie en heures de travail dans le but de vérifier

l'adéquation entre la charge et la capacité globales par atelier et pour toutes les familles

de produits.

Supposons que l'entreprise ait défini quatre familles de produits à fabriquer, séquentiellement,

dans un atelier d'usinage puis dans un atelier d'assemblage.

Les PICs des quatre familles sont donnés dans le tableau suivant :

Mois M1 M2 M3 M4 M5 M6

Famille A 2160 1800 1800 2400 1600 1600

Famille B 520 500 490 520 500 500

Famille C 980 840 1200 1000 1000 1000

Famille D 140 120 140 100 150 100

La charge correspondant aux différentes familles se présente dans le tableau suivant :

Famille A Famille B Famille C Famille D

Usinage(en h/u) 1 0.5 1 2

Assemblage

(en h/u)

0.5 0.5 0.5 1

Après calcul on obtient le tableau suivant

Mois M1 M2 M3 M4 M5 M6

Charge en

usinage

3680 3130 3525 3860 3150 3050

Capacité en

usinage

4000 4000 3000 4000 4000 4000

Charge en

assemblage

1970 1690 1885 2060 1700 1560

Page 60: Cours gestion de la production Pr Falloul

Gestion de production FALLOUL Moulay El Mehdi

59

Capacité en

assemblage

1800 1800 1800 1350 1800 1800

Les données de la charge réelle sont représentées en grisé. Donc nous nous présentons dans

une situation de sous charge en usinage et de surcharge en assemblage.

Remarque :

Charge : Quantité de travail que doit fournir une unité de production pendant une

période déterminée.

Capacité : Quantité de travail que peut fournir une unité de production pendant une

période déterminée.

Les capacités de la production s’obtiennent d’un calcul spécifique à la production de

chaque famille de produit.

En cas de surcharge, on peut utiliser les moyens suivants :

- recours aux heures supplémentaires

- mutation de personnel depuis les ateliers en sous-charge

- recours à la sous-traitance

- recours au personnel intérimaire

- embauche

- investissement en ressources de production supplémentaires

En cas de sous-charge, on a le choix entre :

- suppression des heures supplémentaires

- chômage technique

- rapatriement de la sous-traitance

- suppression du travail intérimaire

- licenciements.

Le schéma suivant résume les différentes stratégies de la gestion de la capacité de l’entreprise.

En effet, plusieurs solutions existent selon le type de produit et de processus mis en œuvre :

Page 61: Cours gestion de la production Pr Falloul

Gestion de production FALLOUL Moulay El Mehdi

60

Application :

Une firme fabrique des pièces mécaniques. On veut planifier la production de ce produit pour

les 6 prochains mois. La demande mensuelle prévue, exprimée en heures de production requises

(mesure agrégée), est la suivante :

Mois 1 2 3 4 5 6

Demande

(en heures

30 30 120 90 60 30

Le tableau suivant présente les données relatives au contexte de production de l’entreprise.

Page 62: Cours gestion de la production Pr Falloul

Gestion de production FALLOUL Moulay El Mehdi

61

Coût de production (temps régulier) 200 kdh/heure

Coût de production

(temps supplémentaire)

300 kdh/heure

Coût de recrutement 120 kdh/heure

Coût de licenciement 70 kdh/heure

Coût de stockage 40 kdh/heure/mois sur stock final

Stock initial 30 heures

Stock final désiré 0 heures

Main d’œuvre initial (capacité) 30 heures

On veut trouver un plan global de production qui va permettre de rencontrer la demande à

coût minimum. Pour ce faire, on envisage trois stratégies spécifiques :

1. utiliser un taux constant de production sans rupture de stock ;

2. recruter et licencier de façon à suivre la demande ;

3. utiliser un taux constant de production de 30 heures/période et combler avec du temps

supplémentaire au besoin.

Plan 1 : Production à taux constant sans rupture de stock :

Page 63: Cours gestion de la production Pr Falloul

Gestion de production FALLOUL Moulay El Mehdi

62

Plan 2 : Production suivant la demande :

0

50

100

150

200

250

300

350

400

450

1 2 3 4 5 6 7

Production cumulée et demandecumulée (Plan1)

Demande cumulée Production cumulée

Page 64: Cours gestion de la production Pr Falloul

Gestion de production FALLOUL Moulay El Mehdi

63

Plan 3 : Production constante avec temps supplémentaire

0

50

100

150

200

250

300

350

400

1 2 3 4 5 6 7

Production cumulée et demande cumulée (Plan2)

Demande cumulée Production cumulée

Page 65: Cours gestion de la production Pr Falloul

Gestion de production FALLOUL Moulay El Mehdi

64

3.3 Le Plan Directeur de Production (PDP) (Master Production Schedule - MPS) :

Il prend en compte les prévisions, le PIC, le portefeuille des commandes, les disponibilités des

matières et ressources, les objectifs du management, pour fixer le cadre de référence de la

Production sur une période donnée.

Application :

Supposons que le plan global (PIC) prévoyait une production de 2960 unités équivalentes

pour le mois de mars. Ce plan global agrégeait l'information pour 4 produits (XA, XB, XC,

et XD) où 1’unité de chaque produit équivaut à une unité équivalente.

Une famille X : composé de

4 produits

XA, XB, XC, XD

Proportion des produits dans

la famille X

XA représente 7.7%

XB représente 16.9%

XC représente 35.6%

XD représente 39.8%

La demande désagrégée

prévue en mois de mars

230 unités de XA

500 unités de XB

1050 unités de XC

1180 unités de XD

Capacité de production 1120 unités /semaine

(4 semaines disponibles en mois de Mars)

Stock Aucun stock n’est disponible pour les différents

produits

- Un plan directeur réalisable pourrait être :

Semaine 1 fabriquer 70 unités de XA, 200 unités de XB, 250 unités de XC et 250

unités de XD

Semaine 2 fabriquer 70 unités de XA, 50 unités de XB puis 3250 unités de XD

Semaine 3 fabriquer 20 unités de XA, 50 unités de XB, 350 unités de XC puis 205

unités de XD

Semaine 4 fabriquer 70 unités de XA, 150 unités de XB, 500 unités de XC puis

400 unités de XD

Page 66: Cours gestion de la production Pr Falloul

Gestion de production FALLOUL Moulay El Mehdi

65

Objectif :

•Comme lors de l'élaboration du plan global, il faut calculer les différents coûts associés à un

plan lorsque ces coûts existent et tenter de trouver le plan à coût minimum.

Plan directeur de la Famille du produit X

Application :

On vous demande de déterminer ; le stock prévisionnel et le disponible à la vente dans le

programme directeur de production à la réception à partir des données suivantes.

3940

3015 2960 3225

43784789

56705067

6789

5890

49874230

0

1000

2000

3000

4000

5000

6000

7000

8000

Prodution

Programme directeur de production (PDP) déduit d'un plan industriel et commercial(PIC)

Janvier Fevrier Mars Avril Mai Juin

Juillet Août Septembre Octobre Novembre Décembre

Page 67: Cours gestion de la production Pr Falloul

Gestion de production FALLOUL Moulay El Mehdi

66

Méthode de calcul du stock prévisionnel

T=1 Stock prévisionnel = 100 – Max {45, 35} = 55

T=2 Stock prévisionnel = 55 – Max {40, 10} = 15 < Ss (20), donc proposition d’un ordre de

fabrication (OF de 50)

T=2 Stock prévisionnel devient : 55 + PDP – Max {40, 10} = 65

T=3 Stock prévisionnel = 65 – Max {40, 5} = 25

T=4 Stock prévisionnel = 25 + PDP (4) – Max{30, 7} = 45

T=5 Stock prévisionnel = 45 – 25 = 20

T=6 Stock prévisionnel = 20 + PDP (6) – 30 = 40

Méthode de calcul du disponible à la vente

Le disponible à la vente (DAV) correspond à la quantité du PDP couvrant une période donnée

(entre deux lots de PDP) – la somme des commandes de cette période.

Durant la première période du PDP, le calcul du disponible à la vente prend en compte le stock

physique initial.

T=1 Disponible à la vente = 100 – 35 = 65

T=2 Disponible à la vente = 50 – Cdes (T=2) et (T=3) = 35

T=4 Disponible à la vente = PDP – Cde (T=4) – Cde (T=5) = 43

T=6 Disponible à la vente = PDP – Cde (T=6) – Cde (T=6) = 50

Page 68: Cours gestion de la production Pr Falloul

Gestion de production FALLOUL Moulay El Mehdi

67

3.4 Calcul des besoins en composants

Le calcul des besoins repose sur une décomposition arborescente du produit. Cette

décomposition est effectuée suivant l’ordre retenu pour la fabrication et l’assemblage du

produit. À partir des nomenclatures et des PDP de chaque produit, on calcule les besoins

dépendants de chaque élément, sous-ensemble, matière première à acheter ou à fabriquer.

L’horizon de planification tient compte des délais d’achat et de fabrication des éléments à

fabriquer. Couramment, sur un horizon de un à trois mois, ils sont révisés toutes les semaines,

parfois tous les jours. Au niveau du calcul des besoins, on évalue les charges détaillées générées

par les ordres de fabrication, qu’ils soient planifiés ou lancés. C’est le cœur des systèmes

M.R.P., ce calcul permettra de ne relancer que la quantité nécessaire pour respecter le PDP, il

doit être fait niveau par niveau dans la nomenclature, ce qui explique qu’on l’appelle souvent

« éclatement des nomenclatures ». Ce calcul nécessite l’exploitation de la base de données

technique dont la « justesse » est indispensable.

3.4.1 Données techniques

Articles

On appelle Article tout produit pris en compte individuellement par le système de

gestion, c’est un produit stocké à une phase au moins du procédé de fabrication.

Chaque article est identifié par sa référence (code), sa catégorie (fabriqué, acheté,

sous-traité, matière première, fantôme, famille, ressource...) et toutes les informations utiles

pour sa gestion.

Page 69: Cours gestion de la production Pr Falloul

Gestion de production FALLOUL Moulay El Mehdi

68

Nomenclatures

Souvent différentes des nomenclatures de bureau d’études, elles sont les images du

procédé de fabrication des produits finis. Arborescentes, elles possèdent plusieurs niveaux,

définissent les liens composés - composants.

Les nomenclatures doivent être complètes, justes en respectant le processus de

fabrication. Une seule erreur dans la nomenclature donne une nomenclature inexacte. La

fiabilité des nomenclatures doit être la plus proche possible de 100%.

Page 70: Cours gestion de la production Pr Falloul

Gestion de production FALLOUL Moulay El Mehdi

69

Gammes

Établies par le bureau des méthodes, les gammes décrivent les séquences des

opérations à réaliser pour la fabrication ou l’assemblage d’un composé, d’un sous ensemble ou

ensemble fini.

Chaque gamme est identifiée par un code (souvent celui de l’article) et définit le poste

de charges utilisé, le temps de préparation et le temps d’exécution (machine et main d’œuvre).

La fiabilité des gammes (au niveau des temps en particulier doit être de l’ordre d’au

moins 95%).

Postes de charges

C’est l’unité de décomposition d’un atelier la plus précise pour les besoins de

l’ordonnancement et de l’imputation des coûts. Un poste de charge peut être composé:

* D’une ou plusieurs machines.

* D’une ou plusieurs personnes.

Page 71: Cours gestion de la production Pr Falloul

Gestion de production FALLOUL Moulay El Mehdi

70

* D’une combinaison personnes - machines

Il est caractérisé par un code, une capacité (nb. d’hommes, de machines, capacité

de production) ainsi que par des coûts horaires et des outillages associés. Souvent on

considère que le poste de charge est l’unité capable de transformer un article en un autre

article.

La qualité des informations

Le risque d’erreurs est grand !

Dans un système non informatisé, l’homme fait des erreurs mais il se méfie, par

contre, quand on reçoit une information de l’ordinateur on ne se méfie pas: on croit que

l’ordinateur a raison.

La qualité des données introduites par les utilisateurs eux-mêmes est la principale

condition de réussite d’un système de GPAO.

Formule du calcul :

BN = ( BB - ( SPH + ECF + ECC ) + Ss ) / ( 1 - r )

Avec:

BN : Besoins Nets

BB : Besoins Bruts (Donnés par le P.D.P.)

SPH : Stock physique

ECF : En-cours de fabrication

ECC : En-cours de commande

Ss : Stock de sécurité

r : Facteur de rebut proportionnel gamme (on introduira ultérieurement la notion de rebut

nomenclature).

Page 72: Cours gestion de la production Pr Falloul

Gestion de production FALLOUL Moulay El Mehdi

71

On définit alors l’ordre de fabrication (O.F.) ou l’ordre d’achat (O.A.) en fonction de la

technique de lotissement choisie (paramètres de gestion):

Techniques de lotissement

Lot pour lot

La plus simple des techniques, elle consiste à lancer un lot (O.F.) égal au besoin net (objectif

à atteindre pour minimiser les coûts, stocks et délais).

Besoin quotidien

Technique du lot par lot défini à partir des besoins nets regroupés sur une journée, mais

prenant en compte une quantité minimum (série économique) et respectant les contraintes de

conditionnement ou de fournisseur (quantité rationnelle ou quantité multiple).

O.F. = BN si BN >=Série économique (q*)

(Appelée aussi lot économique, quantité ou lot minimum)

O.F. = q* si q* >= BN

De même il est fréquent d’avoir une contrainte d’unité de conditionnement (yaourts

conditionnés par 8, vis vendues au kg...), appelée quantité rationnelle (qr), auquel cas OF=

k*qr avec k entier.

On pourra également regrouper les besoins sur une couverture de plusieurs jours. (Semaine,

mois)

Nomenclatures de gestion de production

Les nomenclatures de gestion de production diffèrent de celles du bureau d’étude car elles

font apparaître les différentes étapes du procédé de fabrication, chaque composant stocké doit

apparaître en tant qu’article dans la nomenclature, qui établit les liens inter articles, ceux - ci

pouvant être achetés, fabriqués ou donnés en sous-traitance.

Reprenons l’exemple de la lave linge :

Page 73: Cours gestion de la production Pr Falloul

Gestion de production FALLOUL Moulay El Mehdi

72

Nomenclature de gestion de production :

Page 74: Cours gestion de la production Pr Falloul

Gestion de production FALLOUL Moulay El Mehdi

73

Soit à calculer les besoins en composants pour un programme commercial de 100 lave linges

de type « K33 », sachant que :

Stocks disponibles : facteur de rebut :

K33 : 20 0

Caisse 20 5%

Hublot 10 0

Bouton 50 1%

Flan peint 20 0

Flan brut 10 10%

Peinture 5 litres 0

PVC 0.5 kg 0

Tôle 20 m² 0

TABLEAU DETAILLANT LE CALCUL DES BESOINS NETS :

On commence par le niveau 0 de la nomenclature, la commande reçue est le besoin brut en

produit fini, il suffit de retrancher les stocks pour déterminer le besoin net s'il n'y a pas de

rebut :

Niveau K33 Caisse Hublot Bouton Flan

peint

PVC Flan brut Peinture Tôle

0 bb 100

sph 20

r 0

BN 80

1 bb

sph

r

BN

On passe au niveau 1, les besoins nets du niveau 0 multipliés par les coefficients de liens de

nomenclature donnent les besoins bruts de niveau 1:

Niveau K33 Caisse Hublot Bouton Flan

peint

PVC Flan brut Peinture Tôle

0 bb 100

sph 20

r 0

BN 80

1 bb 80 80 240

sph

r

BN

Page 75: Cours gestion de la production Pr Falloul

Gestion de production FALLOUL Moulay El Mehdi

74

On calcule alors les besoins nets du niveau 1: ex pour les caisses, on soustrait les stocks et on

divise par 1-r (attention à ne pas multiplier par 1+r car sur les pièces produites en plus le taux

de rebut s'applique également), d'où (80-20)/(1-0.05)=63.16, on prendra bien sûr, l'arrondi

supérieur.

Niveau K33 Caisse Hublot Bouton Flan

peint

PVC Flan brut Peinture Tôle

0 bb 100

sph 20

r 0

BN 80

1 bb 80 80 240

sph 20 10 50

r 0.05 0 0.01

BN 64 70 192

On passe ainsi au niveaux suivants pour obtenir:

Niveau K33 Caisse Hublot Bouton Flan

peint

PVC Flan brut Peinture Tôle

0 bb 100

sph 20

r 0

BN 80

1 bb 80 80 240

sph 20 70 50

r 0.05 0 0.01

BN 64 10 192

2 bb 128 384g

sph 20 384g

r 0 0

BN 108 0

3 bb 108 16.2l

sph 10 5l

r 0.1 0

BN 109 11.2l

4 bb 87.2m²

sph 20m²

r 0

BN 67.2m²

Total 80 64 10 192 108 384g 109 11.2l 67.2m²

stock

résiduel

0 0 0 0 0 116g 0 0 0

Bien entendu dans cet exemple, nous avons négligé des paramètres importants, est-il possible

d'acheter 67.2m² de tôle ?, est-il raisonnable de régler une presse pendant 2h pour produire

109 flancs (moins de 4 minutes de production !).

Page 76: Cours gestion de la production Pr Falloul

Gestion de production FALLOUL Moulay El Mehdi

75

Influence d'une réimplantation sur la base de données technique :

Imaginons que l'entreprise décide d'implanter un poste de peinture dans l'atelier des presses

pour éviter une opération de stockage, les flans seront alors peints directement à la sortie de la

presse, on obtient une nouvelle nomenclature :

On remarque aussi bien sûr que si la nomenclature se simplifie, la gamme du flan peint se

complique.

Prise en compte des paramètres de gestion

Nous allons introduire la prise en compte des séries économiques et des quantités rationnelles,

dans le cas ci-dessus:

Page 77: Cours gestion de la production Pr Falloul

Gestion de production FALLOUL Moulay El Mehdi

76

On a déterminé les paramètres ci dessous:

Stocks disponibles : facteur de rebut : quantité q*: quantité qr:

K33 : 20 0 10 0

Caisse 20 5% 120 0

Hublot 10 0 0 50 (conteneur)

Bouton 50 1% 2000 0

Flan peint 30 0 500 0

Peinture 5 litres 0 0 5 l (pot)

PVC 2.5 kg 0 0 10kg (sac)

Tôle 20 m² 0 0 6 m² (plaque)

Reprenons le calcul des besoins nets, mais cette fois on définit l'ordre de fabrication (OF) ou

un ordre d'achat (OA) en tenant compte de tous les paramètres.

Niveau K33 Caisse Hublot Bouton Flan peint PVC Peinture Tôle

0 bb 100

sph 20

r 0

BN 80

q* 10

qr 0

OF 80

1 bb 80 80 240

sph 20 10 50

r 0.05 0 0.01

BN 64 70 192

q* 120 0 2000

qr 0 50 0

OF ou OA 120 100 2000

2 bb 240 4000 g

sph 30 2500 g

r 0 0

BN 210 1500 g

q* 500 0

qr 0 10000 g

OF ou OA 500 10000 g

3 bb 75 l 400 m²

sph 5 l 20 m²

r 0 0

BN 70 l 380 m²

q* 0 0

qr 5 l 6 m²

OF ou OA 70 l 384 m²

récapitulatif 80 120 100 2000 500 10000 g 70 l 384 m²

stock résiduel 0 56 30 1818 290 8500 g 0 4 m²

Page 78: Cours gestion de la production Pr Falloul

Gestion de production FALLOUL Moulay El Mehdi

77

Article fantôme

Pour des commodités de gestion, on peut être amené à créer dans une nomenclature, un article

"virtuel" ou "fictif" ou encore plus communément appelé "fantôme" pouvant ne pas avoir

d'existence physique, (donc n'existant pas en stock contrairement à la définition d'un article

"normal") ceci dans le but de simplifier la gestion ou de rendre une nomenclature plus lisible.

Dans l'exemple des lave-linges on peut imaginer que les 4 références K21, K33, K45 et K58

partagent le même entraînement (moteur, poulies, courroie...), plutôt que de définir ces éléments

dans chaque nomenclature comme ci-dessous:

Page 79: Cours gestion de la production Pr Falloul

Gestion de production FALLOUL Moulay El Mehdi

78

Il est beaucoup plus simple de créer un article fantôme contenant tous les éléments communs

que nous appelerons ici "kit", il suffira alors de créer la nomenclature de "Kit"

et d'insérer l'article "Kit" dans chaque modèle de lave-linge :

Page 80: Cours gestion de la production Pr Falloul

Gestion de production FALLOUL Moulay El Mehdi

79

de même pour K45 et K58.

Vous pouvez aisément imaginer la facilité avec laquelle on va pouvoir gérer des modifications

au niveau de l'entraînement, exemple, on modifie la référence de la poulie motrice, au lieu de

modifier les 4 nomenclatures des machines à laver, il suffit de modifier la nomenclature de

"Kit" !

Page 81: Cours gestion de la production Pr Falloul

Gestion de production FALLOUL Moulay El Mehdi

80

Chapitre 4 : Gestion des approvisionnements et des stocks

La fonction production consiste à produire, en temps voulu, les quantités demandées par les

clients dans des conditions de coût de revient et de qualité déterminés en optimisant les

ressources de l’entreprise de façon à assurer sa pérennité, sa compétitivité et son développement.

4.1 La classification des stocks

Dès que le nombre d’éléments d’une population devient grand, il est difficile de porter la même

attention à chacun d’entre eux. Il est facile de penser que tous les éléments d’une population

n’ont pas la même importance ; certains éléments importants devront être traités de manière

très rigoureuse alors que d’autres pourront l’être normalement, voire simplement. Cela est

possible si nous affectons à chaque élément de la population une classe d’importance qui

correspond à un type de traitement approprié.

4.1.1 Analyse ABC

La méthode ABC est la plus connue des méthodes de classification. Elle est également connue

sous le nom de loi 80-20 ou sous le nom de loi de Pareto.

Cette méthode permet de déterminer l’importance relative des éléments d’un ensemble dans

un contexte donné en les répartissant en trois classes d’importance :

• classe A : éléments de forte importance ;

• classe B : éléments d’importance normale ;

• classe C : éléments de faible importance.

Interprétation de la courbe

Dans une répartition se représentant par la courbe théorique de Pareto :

• 20 % des articles correspondent à 80 % de la valeur du critère ;

• les 20 % suivants correspondent à 10 % supplémentaires ;

• les 20 % suivants correspondent aux 10 % restants.

Page 82: Cours gestion de la production Pr Falloul

Gestion de production FALLOUL Moulay El Mehdi

81

Courbe théorique de Pareto

Toute courbe de répartition d’importance de notre population étudiée est à interpréter par rapport à trois

courbes :

• la courbe théorique de Pareto ;

• la courbe extrême 1 ;

• la courbe extrême 2.

Courbe extrême 1

• Un produit correspond à 100 % de la valeur du critère.

Courbe extrême 2

• Tous les produits ont la même importance.

Limites des courbes de Pareto.

Page 83: Cours gestion de la production Pr Falloul

Gestion de production FALLOUL Moulay El Mehdi

82

Zones de détermination des classes d’importance.

Afin de pouvoir déterminer les classes de répartition des produits, nous déterminons le ratio

de discrimination :

CB

RDAB

RD correspond (intersection entre qui correspond à la valeur lue pour le point d’intersection C

sur l’axe des ordonnées)

Les bornes de définition des classes des éléments sont fixées de manière arbitraire.

Généralement, chaque tranche est un multiple de 10 et la somme est égale à 100.

Valeur de RD Zones A B C

RD<0.65 5 Non interprétable

0.65<=RD<0.75 4 20 30 50

0.75<=RD<85 3 20 20 60

0.85<=RD<0.9 2 10 20 70

0.9<=RD<1 1 10 10 80

Page 84: Cours gestion de la production Pr Falloul

Gestion de production FALLOUL Moulay El Mehdi

83

Application n 1 :

Étant données les informations suivantes concernant un ensemble de 10 éléments (deux

premières colonnes).

Produits fréquences Consommation Cumul conso

Importance%

2 10 20000 20000 29

6 20 15000 35000 51

7 30 10000 45000 66

9 40 8000 53000 78

3 50 5000 58000 85

4 60 4000 62000 91

1 70 3000 65000 96

8 80 1500 66500 98

10 90 1000 67500 99

5 100 500 68000 100

68000 794

Méthode de calcul de l’indice de Gini :

RD = 48mm/71mm =0.76

La courbe se situe dans la zone 4, et correspond à une répartition 20, 30, 50 ce qui nous donne :

2 6 7 93 4 1

8 10 5

29

51

6678

8591 96 98 99 100

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10

Courbe de Pareto

Produits Importance%

Page 85: Cours gestion de la production Pr Falloul

Gestion de production FALLOUL Moulay El Mehdi

84

Les produits 2 et 5 représentent près de 51 % des ventes. Il faut donc surveiller leur

niveau de stock. Eviter d'être en rupture.

Les produits 7 et 10 représentent près de 34% des ventes il faut donc revitaliser les

ventes de ces produits.

Les produits restants représentent près de 15 % des ventes, il faut se demander si ces

produits ont un intérêt important pour l’entreprise.

4.2 L’approvisionnement

Approvisionner, c’est assurer la programmation des besoins de livraison et des stocks dans le

cadre de la planification générale de l’entreprise.

Définir une politique d’approvisionnement consiste essentiellement à répondre à trois

questions :

• QUOI (quel produit) faut-il approvisionner ?

• QUAND faut-il l’approvisionner ?

• COMBIEN faut-il en approvisionner ?

Il existe plusieurs modèles d'optimisation de gestion de stocks (Statistique, Wilson, ABC,

20/80...). Parmi ceux-ci, nous avons souhaité nous arrêter sur le "modèle de Wilson" qui est le

plus connu (mais pas forcément le plus réaliste...).

4.2.1 Le Modèle de WILSON

4.2.1.1 Modèle de base

Ce modèle appelé également "modèle du lot économique", permet de déterminer la fréquence

et la quantité optimale de réapprovisionnement pour un magasin, une usine... Elle est

couramment employée par les services logistiques de grandes structures. Elle a en fait été

introduite dès 1913...

Le but est de déterminer la stratégie qu'il faut adopter pour que le total périodique (annuel,

mensuel, hebdomadaire, journalier, ...) des commandes ou fabrications de pièces minimise le

Page 86: Cours gestion de la production Pr Falloul

Gestion de production FALLOUL Moulay El Mehdi

85

total des coûts d'acquisition et de possession de stocks pour l'entreprise. Cette méthode permet

d’éviter un sur stockage et sou stockage sous certaines conditions « hypothèses du modèle ».

Hypothèses du modèle

- L’entreprise ne s’intéresse qu’à un seul produit à la fois

- Le prix du produit sera considéré comme constant et indépendant du volume des

commandes

- La demande de ce produit est certaine

- La demande du produit est distribuée de façon uniforme sur toute la période [droite]

- Pas de produits invendus

- Le délai de livraison est certain et constant

- Le stock d’alerte sera constant de période en période puisqu’ étant basé sur la

consommation [constante] et le délai de livraison [constant]. Il ne dépend que de la

vitesse d’écoulement du stock et du délai de livraison

- Il sera par conséquent inutile de constituer un stock de sécurité

- Le réapprovisionnement se fera en une seule fois

- L’entreprise n’envisagera pas de stratégie de rupture des stocks.

Notation :

D : Consommation périodique (souvent annuelle)

Q : quantité de chaque lot

P : Prix unitaire

t : taux de possession

Cl : coût de passation pour chaque commande (lancement de commande)

SS : Stock de sécurité

Page 87: Cours gestion de la production Pr Falloul

Gestion de production FALLOUL Moulay El Mehdi

86

*ClD

Coût passationQ

et ( )* *2

QCoût détention SS P t

( ) *Cl ( )* *2

D QCoût total CT SS P t

Q

La quantité économique est la quantité qui minimise le coût total, elle correspond

graphiquement à l’intersection entre le coût de passation et le coût de détention du stock.

Le minimum est atteint lorsque la dérivée de ce coût total par rapport à Q est nulle. La valeur

de Q est alors égale à la quantité économique (notée Qe).

Formule de la quantité économique

2

*( 0) *Cl 0

2

CT D P t

Q Q

22* * * *

2*D*Cl

*

D Cl P t Q

QeP t

Page 88: Cours gestion de la production Pr Falloul

Gestion de production FALLOUL Moulay El Mehdi

87

Formule du nombre de commande optimale

On pose Q= D/N donc Q/2 = D/N

( ) *Cl ( )* *2

DCoût total CT N SS P t

N

2( 0) Cl *P*t 0

2

CT D

Q N

2 D* *

D* * t

P tN

Cl

PN

Cl

Ou bien

DN

Qe

Formule du coût de la gestion de stock

*P* t2

QSS

ClCU P

D D

Application

On dispose des informations suivantes d’une entreprise Lambda, et on vous demande de

calculer la quantité économique, la cadence optimale et coût de stockage.

- (D) Quantité consommée sur une période (année) 6000 unités

- (Cl) Coût de lancement d’une commande 60 Euros

- (P) Prix unitaire de chaque article stocké 8 Euros

- (t) Taux de possession 25 %

Page 89: Cours gestion de la production Pr Falloul

Gestion de production FALLOUL Moulay El Mehdi

88

2*6000*60

0.09*8Qe = 1000 unités

6000*8*0.09

2*6N = 6 commandes par année (tous les 2 mois) 12/6 = 2

(période optimale d’approvisionnement)

60 500*8*0.098 8 0.01 0.06 8.07

6000 6000Cu (Coût de stockage unitaire)

0

500

1000

1500

2000

2500

1 2 3 4 5 6 7 8 9 10 11 12

Coûts de stockage

Coût de passation Coût de possession Coût destockage

Nombre de commandes 1 2 3 4 5 6 7 8 9 10 11 12

Coût de passation 60 120 180 240 300 360 420 480 540 600 660 720

Coût de possession 2160 1080 720 540 432 360 308,5714 270 240 216 196,3636 180

Coût de stockage 2220 1200 900 780 732 720 728,5714 750 780 816 856,3636 900

Page 90: Cours gestion de la production Pr Falloul

Gestion de production FALLOUL Moulay El Mehdi

89

4.2.1.2 Cas où la consommation commence en cours de fabrication du lot

Pour le modèle de base, nous avons supposé que la livraison était effectuée en une seule fois.

Or il arrive fréquemment que la livraison se cale sur le rythme de la production de façon à ce

que le stock soit alimenté en continu par le processus de production. Cette situation peut se

modéliser de la manière suivante :

Figure : Modèle de réapprovisionnement en continu

Soit :

• Q : la quantité approvisionnée ;

• Cu : le coût unitaire du produit ;

• Cmj : la demande moyenne journalière de l’article ;

• Pmj : la cadence de livraison ou de production moyenne journalière ;

• N : la demande totale sur la période ;

• t : le taux de possession ;

• Cl : le coût de lancement en fabrication et d’approvisionnement.

Remarque : Le taux de production (Pmj) doit être supérieur au taux de consommation (Cmj)

sinon on se trouverait en rupture continuelle.

Le stock maximal est alors : max *imum

CmjS Q Q

Pmj

Page 91: Cours gestion de la production Pr Falloul

Gestion de production FALLOUL Moulay El Mehdi

90

Le stock moyen est alors : moyen

1( * )

2

CmjS Q Q

Pmj

Le coût de possession : 1

( * )*P* t2

p

CmjC Q Q

Pmj

Le coût de passation : C *l

NCl

Q

Le coût de gestion des stocks s’exprime donc par la relation :

1* ( * )*P* t

2

N CmjCg Cl Q Q

Q Pmj

La quantité économique devient :

2* *Cl

(1 )* *

DQe

Cmjt P

Pmj

Application

Une ligne de montage alimente le stock de produits finis et les livraisons aux clients sont

quotidiennes. Cette ligne est utilisée au montage de plusieurs références. Pour une référence

particulière, les données de gestion du stock sont les suivantes :

– la cadence de production Pmj = 50 unités par jour ;

– la demande Cmj = 10 unités par jour ;

– le coût unitaire Cu = 100 € ;

Sachant qu’il y a 250 jours ouvrés par an, quelle est la quantité économique de

lancement de cette référence ?

2*2500*50

10(1 )*100*0.25

50

Qe

= 123 unités

Page 92: Cours gestion de la production Pr Falloul

Gestion de production FALLOUL Moulay El Mehdi

91

4.2.1.3 Modèle de Wilson avec remises (coûts d’achats dégressifs)

Ce modèle retient des remises qui augmentent en fonction de l’augmentation du nombre de

commandes. On dispose de plusieurs Prix P1, P2, P3….et des quantités minimales (pour

obtenir des remises) Qm1, Qm2, Qm3… et des quantités économiques (calcul selon les

nouveaux prix) Qe1, Qe2, Qe3….

Résolution :

1

1

: Q , Q

: Q Qm

: Q Qm

e i i e

e i i

e i i

Si Qm Qm On retient

Si Qm On retient

Si Qm On retient

On calcule le coût de chaque quantité et on choisit le minimum

Application

La société ALPHA a pu négocier des remises tarifaires sur pièces mécaniques.

Prix d’achat Quantité demandé au moins

0.9 dh 1

0.8 dh 5000

0.79 dh 15000

0.78 40000

Taux de possession est de 9% (un an de stockage), Le coût de lancement est de 30 dh et la

société achètera 50000 pièces mécaniques cette année.

Question : A quelle fréquence l’entreprise dit-elle passer de nouvelles commandes pour

optimiser son coût d’approvisionnement ?

Page 93: Cours gestion de la production Pr Falloul

Gestion de production FALLOUL Moulay El Mehdi

92

La décision la plus pertinente est de commander une quantité de 40000 à 0.78 dh.

4.2.2 Stock de sécurité

Quelle que soit la méthode utilisée, tous les calculs s’effectuent sur des moyennes

(consommation, délai d’approvisionnement…). Sauf être dans un monde idéal, cela ne se

passe jamais comme on l’a prévu et il faut tenir compte de deux types d’aléas qui peuvent

nous conduire à une rupture de stock :

• une augmentation de la consommation ;

• une augmentation du délai d’approvisionnement.

Le stock de sécurité est alors une quantité en stock qui doit permettre de pallier à ces aléas. Le

calcul de ce stock de sécurité peut se déterminer de manière déterministe (on se fixe des

valeurs moyennes d’aléas) ou de manière probabiliste (on se fixe un taux de service à

atteindre). Ce taux de service étant défini comme :

Nombre de demandes satisfaites dans la totalit

Nombre total de demandessT

Pi 0,9 0,8 0,79 0,78

Qmi 1 5000 15000 40000

Qei 6086 6455 6496 6537

Qi retenu 5000 6455 15000 40000

N commandes 10 7 3 1

CL(Qi) 300 232,378 100 37,5

CP(Qi) 202,5 232,38 533,25 1404

CS(Qi) 502,5 464,758 633,25 1441,5

Coût d'achat 45000 36148 35550 31200

CT du stock 45502,5 36612,8 36183,25 32641,5

Page 94: Cours gestion de la production Pr Falloul

Gestion de production FALLOUL Moulay El Mehdi

93

a) Stock de sécurité (modèle déterministe)

Si on souhaite pallier à ces aléas, il est possible d’envisager un stock de sécurité qui permettra

de réagir face à une augmentation de la consommation ou du délai fournisseur. Le stock de

sécurité est à prendre en compte en supplément dans le calcul du point de commande.

➤ Augmentation de la consommation

Si cette augmentation revient à une consommation de Cmj’ pièces par unité de temps alors

que le point de commande a été calculé avec une consommation de Cmj pièces par unité de

temps, le stock de sécurité sera égal à : (Cmj’ – Cmj) DA .

Stock de sécurité déterministe (augmentation

de la consommation).

➤ Augmentation du délai de livraison

Le stock de sécurité est égal à : Cmj * ∆DA où ∆DA est le dépassement prévisible du délai de

livraison.

Page 95: Cours gestion de la production Pr Falloul

Gestion de production FALLOUL Moulay El Mehdi

94

Stock de sécurité (augmentation

du délai d’approvisionnement).

4.2.3 Stock de sécurité (modèle probabiliste)

Nous avons vu dans le modèle déterministe que le calcul du stock de sécurité se calcule avec

des valeurs moyennes de la consommation et du délai d’approfondissement et des écarts

déterministes de ces valeurs. D’une manière générale, on caractérise la consommation et le

délai par une loi normale.

Afin de mieux comprendre les calculs, les exemples ci-dessous ne concernent que les produits

approvisionnés par la méthode du point de commande. Dans ce cas, le délai de protection se

limite au délai d’approvisionnement.

➤ Augmentation de la consommation

La recherche du stock de sécurité revient à rechercher la valeur limite t qui nous assure une

probabilité P % (taux de service) que la variable X (demande moyenne : Cmj) soit inférieure

ou égale à cette limite.

P(X t) =PX X t X

Page 96: Cours gestion de la production Pr Falloul

Gestion de production FALLOUL Moulay El Mehdi

95

Exemple d’application

Étant donnée une pièce dont la consommation journalière Cmj suit la loi normale c (20; 2,5),

quel est le stock de sécurité qui nous assure un taux de service de 95 % avec un délai

d’approvisionnement de 8 jours ouvrés.

Stock de sécurité probabiliste (augmentation de la consommation).

Une probabilité de 95 % correspond à (1,645)

20 P(Cmj t) =P (1.65)

2.5

Cmj Cmj t

∆Cmj ≤1,645 2,5 4,1125 donc Ssec 4,1125* 8 32,9 soit 33 pièces.

Le point de commande, sans stock de sécurité, étant de 160 pièces (20 8) devient, avec stock

de sécurité 193 pièces (160 33).

➤ Augmentation du délai de livraison

Dans ce cas, le raisonnement est similaire au précédent conformément à la figure ci-dessous.

Page 97: Cours gestion de la production Pr Falloul

Gestion de production FALLOUL Moulay El Mehdi

96

Stock de sécurité probabiliste (augmentation du délai d’approvisionnement).

Exemple d’application

Étant donnée une pièce dont la consommation journalière Cmj est de 20 pièces, quel est le stock

de sécurité qui nous assure un taux de service de 95 % avec un délai d’approvisionnement en

jours ouvrés qui suit la loi normale D (8 ; 2) ? Une probabilité de 95 % correspond à Π (1,645).

8 P(DA t) =P (1.65)

2

DA DA t

∆DA ≤1,645 2 3.29 donc Ssec 3.29* 20 65.8 soit 66 pièces.

Le point de commande, sans stock de sécurité, étant de 160 pièces (20 8) devient, avec stock

de sécurité 226 pièces (160 66).

Page 98: Cours gestion de la production Pr Falloul

Gestion de production FALLOUL Moulay El Mehdi

97

➤ Augmentation de la consommation et du délai de livraison

Exemple d’application

Étant donnée une pièce dont la consommation journalière Cmj suit la loi normale c (20 ; 2,5),

quel est le stock de sécurité qui nous assure un taux de service de 95 % avec un délai

d’approvisionnement en jours ouvrés qui suit la loi normale D (8 ; 2) ?

Tout d’abord, en considérant le délai moyen et la variation de la consommation, la demande

totale, sur la période du délai d’approvisionnement suit donc une loi normale γ ((20 × 8) ; (2,5))

c’est-à-dire la loi γ (160 ; 7,07).

De même, en considérant la consommation moyenne et la variation du délai, la demande totale

suit également la loi normale liée au délai γ1 (160 ; 20 × 2), c’est- à dire la loi γ1 (160 ; 40).

Les variations de la consommation et du délai étant indépendantes, on peut appliquer la

propriété de l’additivité des variances du théorème de la limite centrale. L’écart type de

l’ensemble est égal à 2 2 2 2

1 2 = 7.07 40 40.62

On peut donc maintenant considérer que la demande suit la loi normale D (160 ; 40,62). Le

stock de sécurité sera alors de : Ssec = 1,645 × 40,62 = 67 pièces.

Le point de commande, sans stock de sécurité, étant de 160 pièces (20 × 8) devient, avec stock

de sécurité 227 pièces (160 + 67).

Remarque : Au regard des données de l’entreprise et des résultats obtenus, on peut noter que

ce sont les variations de la consommation liées au délai qui sont les plus critiques.

Page 99: Cours gestion de la production Pr Falloul

Gestion de production FALLOUL Moulay El Mehdi

98

Chapitre 5 : Contrôle statistique de la qualité

2. Contrôle statistique des lots

2.1 Champ d'application

Principalement utilisé en contrôle final chez le fournisseur ou en contrôle de réception chez le

client, ce contrôle statistique des lots ou contrôle par échantillonnage s’oppose au contrôle à

100%.

En effet, dans le contrôle à 100%, chaque produit est contrôlé. Lors du contrôle par

échantillonnage, on ne contrôle qu’un échantillon (une partie du lot) pour accepter ou refuser

tout le lot.

Produit de sécurité

Produit sans risque

Contrôle

destructif

Echantillonné Echantillonné

Contrôle non

destructif

100% Echantillonné

Le contrôle destructif (CD) : Le contrôle destructif d'un nombre limité de produit valide un

lot. Dans ce cas le contrôle s'accompagne ou même parfois est remplacé par un contrôle des

paramètres de fabrication (température, pression, intensité électrique etc.) ayant une influence

sur l'obtention de la caractéristique ne pouvant être mesuré que par un procédé destructif

Le contrôle non destructif (CND) : C’est un contrôle qui peut être effectués sans détruire la

pièce ou l'ensemble qui doit être contrôlé : mesures dimensionnelles, électriques, de couleur

etc.

Le contrôle 100% : Le contrôle à 100% est bien sûr nécessaire lorsqu’il y a un risque pour la

vie des personnes ; aussi, le contrôle par ultrasons (par ondes ultrasons à l’intérieur des

matériaux) doit se faire sur toutes les pièces.

Pour des raisons évidentes, le contrôle par échantillonnage devra être utilisé pour tous les

contrôles destructifs.

La rotule après le test de résistance aux chocs n’est plus utilisable donc on adoptera un contrôle

échantillonné.

Page 100: Cours gestion de la production Pr Falloul

Gestion de production FALLOUL Moulay El Mehdi

99

Remarque :

Un contrôle à 100% ne veut pas dire que l’on contrôle toutes les caractéristiques du produit

mais une seule.

2.2 Niveau de qualité acceptable, risque client, risque fournisseur, choix, taille

d'échantillon

2.2.1 Risque client, risque fournisseur

Il existe deux types de risque pour le contrôle par échantillon :

: Le risque fournisseur est la probabilité, pour un plan d'échantillonnage donné, de se voir

refuser un lot considéré comme mauvais alors qu’il est bon

: Le risque client est la probabilité, pour un plan d'échantillonnage donné, d’accepter un lot

mauvais alors qu’il est bon.

Le lot est conforme Le lot n’est pas

conforme

Refus Risque Décision correcte

Acceptation Décision correcte Risque

Lorsque l’on a déterminé les risques clients et fournisseurs correspondant à des lots

contenant différents pourcentages de défectueux, on peut construire la courbe d’efficacité

des plans d’échantillonnage (établie grâce à la loi de Poisson), qui permet d’établir la relation

entre la probabilité d'acceptation du lot et le pourcentage de défectueux du lot.

Page 101: Cours gestion de la production Pr Falloul

Gestion de production FALLOUL Moulay El Mehdi

100

Un plan d’échantillonnage : c’est le fait de déterminer les éléments suivants :

- La taille d’échantillon (n)

- Le critère d’acceptation C (ou k) le nombre de défectueux admis dans l’échantillon avant

de rejeter le lot.

Application :

Pour la fabrication d’écrous, supposons qu’on prend les deux décisions suivantes (sur la base

d’un contrôle de diamètre) :

-Nous acceptons des lots dont le taux de défectueux p0= 2%,

-Nous rejetons les lots dont le taux de de défectueux p1 =12%.

Page 102: Cours gestion de la production Pr Falloul

Gestion de production FALLOUL Moulay El Mehdi

101

Tableau d’inspection par échantillonnage standard simple par attributs ( = 5% et =10)

A partir de la lecture de la table standard, on a :

n=40 et c=2 à partir des deux valeurs de p0 et p1, avec un risque client de 1% et un risque

fournisseur de 5%.

Niveau de qualité acceptable (NQA)

Page 103: Cours gestion de la production Pr Falloul

Gestion de production FALLOUL Moulay El Mehdi

102

Le NQA : est le pourcentage maximum p0 d’individus défectueux d’un lot qui peut être

considéré comme satisfaisant en tant que moyenne d’un processus. Il est déterminé par un

accord commun entre le fournisseur et le client.

Lorsque la taille des lots, le niveau de contrôle et le NQA sont définis, on peut déterminer à

l'aide de tables (ci-dessous MIL STD 105 E, NFX 06-022, ISO 2859), la taille des échantillons et le

nombre de défectueux dans l’échantillon au-delà duquel on va refuser le lot.

Application :

On souhaite procéder à un contrôle de lots de 5000 pièces, de niveau de contrôle 2 avec un

NQA de 1%.

Déterminer la taille de l’échantillon et les critères d’acceptation et de rejet.

Réponse :

Puisque le lot est de 5000, on obtient de la table standard 1 la lettre code L et la taille de

l’échantillon n = 200

Puis la lettre code est L et le NQA est de 1% , on peut déterminer de la table 2 suivante les

critères d’acceptation et de rejet A= 5 et R = 6

Page 104: Cours gestion de la production Pr Falloul

Gestion de production FALLOUL Moulay El Mehdi

103

Conclusion :

Pour valider le lot, on doit prélever et contrôler un échantillon de 200 pièces, si l’échantillon

comporte au plus 5 pièces défectueuses le lot sera accepté, si le lot comporte plus défectueuses,

le lot sera rejeté.

Plans de contrôle

Lorsque les risques et les niveaux de qualité sont choisis par un accord commun entre client et

fournisseur, il faut déterminer le type de plan de contrôle.

Plan de contrôle simple :

- On prélever un échantillon de n individus et on contrôler le nombre k de défectueux.

-On accepte le lot si le critère d’acceptation est supérieur au nombre K.

- On rejette le lot si le critère d’acceptation est inférieur au nombre K.

Le schéma suivant illustre ce type de plan :

Page 105: Cours gestion de la production Pr Falloul

Gestion de production FALLOUL Moulay El Mehdi

104

Plans doubles :

Le principe est identique mais on donne une deuxième "chance" avant de rejeter le lot en

prélevant un deuxième échantillon.

Page 106: Cours gestion de la production Pr Falloul

Gestion de production FALLOUL Moulay El Mehdi

105

Plans multiples :

Le troisième type de plan est le plan multiple, sur le même principe que le plan double, il

consiste à réaliser et à prélever plusieurs échantillons.

2.2.4 Contrôle réduit, contrôle renforcé

A partir des résultats des contrôles de réception, le client procède à une classification des

fournisseurs comme suit :

-Si un fournisseur est douteux quant à la qualité de ses produits, le client pratiquera un

contrôle renforcé,

Page 107: Cours gestion de la production Pr Falloul

Gestion de production FALLOUL Moulay El Mehdi

106

-Si un fournisseur est sur quant à la qualité de ses produits, le client utilisera un plan réduit.

La norme prévoit comme suit le passage entre les différents plans :

Exemples de différents contrôles extraits de la norme NFX 06 022 :

Page 108: Cours gestion de la production Pr Falloul

Gestion de production FALLOUL Moulay El Mehdi

107

La Maîtrise Statistiques des Procédés (MSP) ou Statistical process control (SPC)

La MSP est Essentiellement utilisé pour les contrôles en cours de fabrication pour les

productions en grande série ou lorsque les moyens de contrôle sont destructifs.

Il consiste à prélever des échantillons et à vérifier que la moyenne, l’étendue ou l’écart-type se

trouve dans l’intervalle de confiance matérialisé par des limites sur un graphique de contrôle

appelé carte de contrôle.

3.2 Causes assignables et variabilité aléatoire

Pour les productions en série, les caractéristiques des produits ne sont pas identiques d’un

produit à l’autre (diamètre d’un axe, poids d’un aliment, dureté d’une pièce...).

En effet, tout procédé de fabrication, il existe des sources de variabilité.

Il existe de deux types de variabilité :

- Une variabilité aléatoire "normale" : inhérente au procédé, par exemple jeu dans une

machine-outil, usure d’un outil…

- Une variabilité importante et brutale : due à une cause assignable (identifiable) à une cause

précise, par exemple un réglage d’outillage, un changement de machine, une opération de

maintenance…

L’objectif des cartes de contrôle est de vérifier que le procédé n’est affecté que par la variabilité

aléatoire normale : le procédé est alors sous contrôle. Cela consiste à vérifier que la tendance

centrale (moyenne arithmétique, médiane) et la dispersion (étendue, écart-type) restent entre

des limites établies selon certains critères statistiques.

3.3 Capabilités

La première étape de vérification si le procédé de fabrication est sous contrôle est de vérifier

s’il est capable (machine par exemple est capable ou non).

Pour vérifier cette capabilité on peut calculer un indice de capabilité, il en existe plusieurs :

Page 109: Cours gestion de la production Pr Falloul

Gestion de production FALLOUL Moulay El Mehdi

108

- Les indices de capabilité machine (Cm et Cmk)

- Les indices de capabilité procédée (Cp et Cpk)

- L’indice de capabilité Cpm ou "indice de capabilité Taguchy".

Indices de capabilités Utilisation

6

ITCm

La machine sera dite capable si Cm≥1,33.

IT Intervalle de tolérance σ Ecart type estimé.

La capabilité machine uniquement,

ne prend en compte la variabilité

aléatoire de la machine (pas de

changement d’opérateur, de matières,

pas de réglage).

min ;3 3

X Ti Ts XCmk

Si Cmk ≥1,33 alors la machine est bien centrée.

(capable et bien réglée)

L’indice Cmk mesure à la fois si la

machine est capable mais aussi si

celle-ci est bien réglée.

6

Ts TiCpm

22 2

1

( )( ) ( )

1 1 1

nii

i

x Xx T n X T

n n n

22 ( )

1

n X Ts

n

S2

mesurant la dispersion et le deuxième terme

mesure l’écart par rapport à T la valeur cible.

Si Cpm ≥1,33 alors la machine est bien centrée.

(capable et bien réglée) càd ne s’éloigne pas de la

valeur cible.

L’indice de capabilité Cpm ou

"indice de capabilité Taguchy"

veille aussi à ce que l’on ne s’éloigne

pas trop d’une valeur cible (en

général le milieu de l’intervalle).

Page 110: Cours gestion de la production Pr Falloul

Gestion de production FALLOUL Moulay El Mehdi

109

Application :

Soit les paramètres relatifs à une machine de production de pièces mécanique :

- Cote à réaliser (intervalle de tolérance) = 10+ou – 0.48 mm ;

- Ecart type estimé : 0.12mm ;

- Moyenne : 10 mm

- Taille de l’échantillon n = 50

- Valeur cible T= 9.5mm

Tester la capabilité de cette machine.

Réponse :

10.48 9.52 0.961.33

6 6*0.12 0.72

Ts TiCpm

La machine est capable.

10 9.52 10.48 10min ; min ; 1.33

3 3 3*0.12 3*0.12

X Ti Ts XCmk

La machine est bien réglée : elle peut être mise sous contrôle.

Calculons maintenant l’indice Cmp de Taguchi

2 22 2

1

( ) ( ) 50(10 9.5)0.12 0.524

1 1 49

10.48 9.52 0.960.30 1.33

6 6*0.524 3.14

ni

i

x T n X Ts

n n

Ts TiCpm

Au sens de Taguschi la machine n’est pas bonne car on s’éloigne trop de la cible.

Page 111: Cours gestion de la production Pr Falloul

Gestion de production FALLOUL Moulay El Mehdi

110

Les cartes de contrôle

Suivant le type de la caractéristique contrôlée, il existe deux grandes familles de cartes de contrôle :

-La carte de contrôle aux mesures qui permet de suivre une caractéristique mesurable de façon

continue, par exemple une dimension, un poids…

-La carte de contrôle aux attributs qui permet de suivre une caractéristique non mesurable ou

contrôlée à l’aide de calibres, par exemple un contrôle visuel, un contrôle réalisé avec un calibre mini-

maxi permettant de trier les pièces non conformes.

3.5 Cartes de contrôle aux mesures

Les cartes de contrôle aux mesures les plus utilisées sont les suivantes :

-Carte des moyennes X et de l’étendue R (ou W)

-Carte des moyennes X et de l’écart-type σ

X : est la moyenne de chaque échantillon

R : L’étendue de chaque échantillon

σ : L’écart type de chaque échantillon

3.6 Calcul des limites

Si l’on considère (à vérifier) que la moyenne des échantillons suit une loi normale, alors

99,8% (99,74%) des mesures sont comprises dans l’intervalle moyenne ± 3,09 (3) σx

σx étant l’écart-type de la distribution des moyennes des échantillons.

Notation

2

2

3A

d n : écart type de la distribution des moyennes des échantillons

T : valeur cible (étant en général la moyenne de l’intervalle de tolérance)

S : écart type de l’échantillon

X : Moyenne de l’échantillon

n : taille de l’échantillon

Page 112: Cours gestion de la production Pr Falloul

Gestion de production FALLOUL Moulay El Mehdi

111

R : Moyenne des étendues de chaque échantillon

S : Moyenne des écarts type de chaque échantillon

: écart type de la population

m : moyenne de la population

N : taille de la population

Paramètre la population Paramètre de la distribution des échantillons

Xn

Si est inconnu on l’estime

-A partir de la moyenne des étendues :

2

R

d

-A partir de la moyenne des écarts types :

4

S

c

m

X

R

R

S S

1. Carte des moyennes X et de l’étendue R (ou W)

Pour chaque échantillon prélevé, on calcul la moyenne et l’étendue des valeurs observées.

1 2 .... mX X XX

m

Page 113: Cours gestion de la production Pr Falloul

Gestion de production FALLOUL Moulay El Mehdi

112

1 2 .... mR R RR

m

1 2 .... mS S SS

m

Limites inférieures et supérieurs de la carte moyenne-étendue

223 3 3

R

dLSC X X X A R

n n

Puisque

2

2

3A

d n

Donc

2

2

3

3

LSC X A R

LSI X A R

A2 et d2 sont tirés de la table de Shewhart.

Limites inférieures et supérieurs de la carte moyenne-écart type

433 3 3

S

cLSC X X X A S

n n

Puisque 3

4

3A

c n

Donc

3

3

3

3

LSC X A S

LSI X A S

A3 et c4sont tirés de la table de Shewhart

Page 114: Cours gestion de la production Pr Falloul

Gestion de production FALLOUL Moulay El Mehdi

113

Table : coefficients pour la détermination des limites de contrôle de Shewhart

Application :

On cherche à étudier la stabilité d’un processus d’usinage de rotors, fabriqué au rythme

de 1000 rotors par semaine à l’aide des cartes (moyennes-étendue) et (moyennes-écart

type). On prélève 20 échantillons de taille n= 5. Le tableau suivant contient les diamètres

de ces échantillons.

Page 115: Cours gestion de la production Pr Falloul

Gestion de production FALLOUL Moulay El Mehdi

114

1 2 .... 135 ...... 135135nX X X

Xm m

1 2 .... 0.0022 ..... 0.0410.002605

20

mR R RR

m

1 2 .... 0.000865 .... 0.0014620.001074

20

mS S SS

m

On calcule A2 et A3

2

2

3 30.576

2.3260 5A

d n et 3

4

3 31.427

0.94 5A

c n

Limites cartes (moyenne-étendue)

2

2

3 135 3*(0.02605*0.577) 135.04

3 135 3*(0.02605*0.577)

LSC X A R

LSI X A R

Page 116: Cours gestion de la production Pr Falloul

Gestion de production FALLOUL Moulay El Mehdi

115

Limites cartes (moyenne-écart type)

3

3

3 135 3*(1.427*0.001074)

3 135 3*(1.427*0.001074)

LSC X A S

LSI X A S

Le logiciel XLSTAT nous permet d’obtenir Les cartes de contrôle directement :

Carte de contrôle (moyenne-étendue)

Page 117: Cours gestion de la production Pr Falloul

Gestion de production FALLOUL Moulay El Mehdi

116

Carte de contrôle (moyenne-écart type)

D’après les deux cartes le processus de fabrication est sous contrôle.

134,998

134,9985

134,999

134,9995

135

135,0005

135,001

135,0015

135,002

Val

eu

rs

Observations

Carte X-barre

Moyenne CL LCL UCL

C Borne inf. C Borne sup. B Borne inf. B Borne sup.

Page 118: Cours gestion de la production Pr Falloul

Gestion de production FALLOUL Moulay El Mehdi

117

Pour établir les limites de contrôle de la S, on lit dans la table standard de Shewhart les valeurs

des coefficients B3=0 et B4= 2.089. Par l’équation suivante on obtient les valeurs suivantes

pour les paramètres de la carte S de Shewhart.

4

3

(2.089)*(0.001074) 0.00224

0.001074

0

LSC B S

LC S

LCI B S

Les cartes de contrôle aux attributs

Il arrive fréquemment que les conditions de qualité ne soient pas mesurables ou qu'il soit plus

pratique ou économique de réaliser un contrôle à l'aide de calibres. On utilise alors une carte

de contrôle aux attributs.

Les principales cartes de contrôle aux attributs sont :

Carte p, np, c et u :

Page 119: Cours gestion de la production Pr Falloul

Gestion de production FALLOUL Moulay El Mehdi

118

Page 120: Cours gestion de la production Pr Falloul

Gestion de production FALLOUL Moulay El Mehdi

119

ANNEXES

Loi de Student

Page 121: Cours gestion de la production Pr Falloul

Gestion de production FALLOUL Moulay El Mehdi

120

Page 122: Cours gestion de la production Pr Falloul

Gestion de production FALLOUL Moulay El Mehdi

121

Page 123: Cours gestion de la production Pr Falloul

Gestion de production FALLOUL Moulay El Mehdi

122

Loi de Poisson

Page 124: Cours gestion de la production Pr Falloul

Gestion de production FALLOUL Moulay El Mehdi

123