Coppola network analysis_ucla-07032015

52
Data repositories and web tools for data mining Giovanni Coppola July 3 2015 2015 Network Analysis Short Course UCLA

Transcript of Coppola network analysis_ucla-07032015

Page 1: Coppola network analysis_ucla-07032015

Data repositories and web tools for data mining

Giovanni Coppola July 3 2015

2015 Network Analysis Short Course UCLA

Page 2: Coppola network analysis_ucla-07032015

-OMICs Studies - Life Cycle

Page 3: Coppola network analysis_ucla-07032015

Outline

• Repositories and Browsers • Gene Annotation and Pathway Analysis • Gene lists

Page 4: Coppola network analysis_ucla-07032015

Outline

• Repositories and Browsers • Gene Annotation and Pathway Analysis • Gene lists

Page 5: Coppola network analysis_ucla-07032015

GEO

www.ncbi.nlm.nih.gov/geo

Page 6: Coppola network analysis_ucla-07032015

Array Express

www.ebi.ac.uk/arrayexpress

Page 7: Coppola network analysis_ucla-07032015

UCSC Genome Browser

http://genome.ucsc.edu/

Page 8: Coppola network analysis_ucla-07032015

Ensembl

www.ensembl.org

Page 9: Coppola network analysis_ucla-07032015

dbGaP

http://www.ncbi.nlm.nih.gov/gap

Page 10: Coppola network analysis_ucla-07032015

www.1000genomes.org

1000 Genomes Project

Page 11: Coppola network analysis_ucla-07032015

http://evs.gs.washington.edu/EVS

Exome Variant Server

Page 12: Coppola network analysis_ucla-07032015

ExAC Server

http://exac.broadinstitute.org

Page 13: Coppola network analysis_ucla-07032015

Sequence Variant Analysis

http://genetics.bwh.harvard.edu/pph/

Page 14: Coppola network analysis_ucla-07032015

usegalaxy.org

Galaxy

Page 15: Coppola network analysis_ucla-07032015

Outline

• Repositories and Browsers • Gene Annotation and Pathway Analysis • Gene lists

Page 16: Coppola network analysis_ucla-07032015

GeneCards

www.genecards.org

Page 17: Coppola network analysis_ucla-07032015

Gene Ontology

geneontology.org

Page 18: Coppola network analysis_ucla-07032015

Gene Ontology

http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003343#s2

Cellular Component (CC)

Molecular Function (MF)

Biological Process (BP)

Page 19: Coppola network analysis_ucla-07032015

DAVID

http://david.abcc.ncifcrf.gov

Page 20: Coppola network analysis_ucla-07032015

WebGestalt

http://bioinfo.vanderbilt.edu/webgestalt

Page 21: Coppola network analysis_ucla-07032015

WebGestalt

http://bioinfo.vanderbilt.edu/webgestalt

Page 22: Coppola network analysis_ucla-07032015

http://cbl-gorilla.cs.technion.ac.il/

GOrilla

Page 23: Coppola network analysis_ucla-07032015

GSEA

www.broadinstitute.org/gsea

Page 24: Coppola network analysis_ucla-07032015

GSEA

www.broadinstitute.org/gsea

Page 25: Coppola network analysis_ucla-07032015

Ingenuity

www.ingenuity.com/

Page 26: Coppola network analysis_ucla-07032015

Ingenuity

www.ingenuity.com/

Page 27: Coppola network analysis_ucla-07032015

Ingenuity

www.ingenuity.com/

Page 28: Coppola network analysis_ucla-07032015

Gene Annotation Portal: Enrichr

http://amp.pharm.mssm.edu/Enrichr

Page 29: Coppola network analysis_ucla-07032015

BioGPS

http://biogps.org

Page 30: Coppola network analysis_ucla-07032015

Literature Mining

www.chilibot.net

Page 31: Coppola network analysis_ucla-07032015

www.brain-map.org

Allen Brain Atlas

Page 32: Coppola network analysis_ucla-07032015

Brain RNA-Seq

http://web.stanford.edu/group/barres_lab/brain_rnaseq.html

Page 33: Coppola network analysis_ucla-07032015

IlluminaAgilent

Affymetrix

Rosenberg K J et al. PNAS 2008

Microarrays vs. RNA-seq

Sequencing

Page 34: Coppola network analysis_ucla-07032015

Brain RNA-Seq

http://web.stanford.edu/group/barres_lab/brain_rnaseq.html

Page 35: Coppola network analysis_ucla-07032015

Brain RNA-Seq

http://web.stanford.edu/group/barres_lab/brain_rnaseq.html

Page 36: Coppola network analysis_ucla-07032015

COXPRESdb

http://coxpresdb.jp/

Page 37: Coppola network analysis_ucla-07032015

GeneNetwork

www.genenetwork.org/

Page 38: Coppola network analysis_ucla-07032015

STRING

http://string-db.org

Page 39: Coppola network analysis_ucla-07032015

DAPPLE

www.broadinstitute.org/mpg/dapple

Page 40: Coppola network analysis_ucla-07032015

https://tfenrichment.semel.ucla.edu/

Transcription Factor Enrichment

Page 41: Coppola network analysis_ucla-07032015

CoNTExT

https://context.semel.ucla.edu/

Page 42: Coppola network analysis_ucla-07032015

Integrative Functional GenomicAnalyses Implicate Specific MolecularPathways and Circuits in AutismNeelroop N. Parikshak,1,2 Rui Luo,3,4 Alice Zhang,2 Hyejung Won,1 Jennifer K. Lowe,1,4 Vijayendran Chandran,5

Steve Horvath,3,6 and Daniel H. Geschwind1,2,3,4,5,*1Program in Neurobehavioral Genetics, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles,CA 90095, USA2Interdepartmental Program in Neuroscience, University of California, Los Angeles, Los Angeles, CA 90095, USA3Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA4Center for Autism Treatment and Research, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles,Los Angeles, CA 90095, USA5Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles,CA 90095, USA6Department of Biostatistics, University of California, Los Angeles, Los Angeles, CA 90095, USA*Correspondence: [email protected]://dx.doi.org/10.1016/j.cell.2013.10.031

SUMMARY

Genetic studies have identified dozens of autismspectrumdisorder (ASD) susceptibility genes, raisingtwo critical questions: (1) do these genetic lociconverge on specific biological processes, and (2)where does the phenotypic specificity of ASD arise,given its genetic overlap with intellectual disability(ID)? To address this, we mapped ASD and ID riskgenes onto coexpression networks representingdevelopmental trajectories and transcriptional pro-files representing fetal and adult cortical laminae.ASD genes tightly coalesce in modules that implicatedistinct biological functions during human corticaldevelopment, including early transcriptional regula-tion and synaptic development. Bioinformatic ana-lyses suggest that translational regulation by FMRPand transcriptional coregulation by common tran-scription factors connect these processes. At a cir-cuit level, ASD genes are enriched in superficialcortical layers and glutamatergic projection neurons.Furthermore, we show that the patterns of ASD andID risk genes are distinct, providing a biologicalframework for further investigating the pathophysi-ology of ASD.

INTRODUCTION

Autism spectrum disorder (ASD) is a heterogeneous neurodeve-lopmental disorder in which hundreds of genes have been impli-cated (Berg and Geschwind, 2012; Geschwind and Levitt, 2007).Analysis of copy number variation (CNV) and exome sequencinghave identified rare variants that alter dozens of protein-coding

genes in ASD, none of which account for more than 1% ofASD cases (Devlin and Scherer, 2012). This and the fact that asignificant fraction (40%–60%) of ASD is explained by commonvariation (Klei et al., 2012) point to a heterogeneous geneticarchitecture.These findings raise several issues. Based on the background

human mutation rate (MacArthur et al., 2012), most genesaffected by only one observed rare variant to date are likely falsepositives that do not increase risk for ASD (Gratten et al., 2013). Itis therefore essential to develop approaches that prioritizesingleton variants, especially missense mutations. Furthermore,given the heterogeneity of ASD, it would be valuable to identifycommon pathways, cell types, or circuits disrupted within ASDitself. Recent studies combining gene expression, protein-protein interactions (PPIs), and other systematic gene annotationresources suggest some molecular convergence in subsets ofASD risk genes (Ben-David and Shifman, 2013; Gilman et al.,2011; Sakai et al., 2011; Voineagu et al., 2011). Yet, it remainsunclear how the large number of genes implicated throughdifferent methods may converge to affect human brain develop-ment, which is critical to a mechanistic understanding of ASD(Berg andGeschwind, 2012). Additionally, ASD has considerableoverlapwith ID at the genetic level, so identifyingmolecular path-ways and circuits that confer the phenotypic specificity of ASDwould be of considerable utility (Geschwind, 2011; Matson andShoemaker, 2009).Here, we took a stepwise approach to determine whether

genes implicated in ASD affect convergent pathways duringin vivo human neural development and whether they are en-riched in specific cells or circuits (Figure 1A). First, we con-structed transcriptional networks representing genome-widefunctional relationships during fetal and early postnatal braindevelopment and mapped genes from multiple ASD and IDresources to these networks. We then assessed shared neurobi-ological function among these genes, including coregulatoryrelationships and enrichment in layer-specific patterns from

1008 Cell 155, 1008–1021, November 21, 2013 ª2013 Elsevier Inc.

http://geschwindlab.neurology.ucla.edu/sites/all/files/networkplot/ParikshakDevelopmentalCortexNetwork.html

Network Browser

http://goo.gl/vwp2iG

Page 43: Coppola network analysis_ucla-07032015

Outline

• Repositories and Browsers • Gene Annotation and Pathway Analysis • Gene lists

Page 44: Coppola network analysis_ucla-07032015

https://coppolalab.ucla.edu/account

REPAIR

username: HDinHDdemo password: test123

Page 45: Coppola network analysis_ucla-07032015

REPAIR study list

Page 46: Coppola network analysis_ucla-07032015

REPAIR query results

Page 47: Coppola network analysis_ucla-07032015

REPAIR study comparisons

Page 48: Coppola network analysis_ucla-07032015

https://www.hdinhd.org/

HDinHD

Page 49: Coppola network analysis_ucla-07032015

GeneSet analysis

Page 50: Coppola network analysis_ucla-07032015

anRicher

Page 51: Coppola network analysis_ucla-07032015

-OMICs Studies - Life Cycle

Page 52: Coppola network analysis_ucla-07032015

Thank you

[email protected]

Doxa Chatzopoulou Sandeep Deverasetty

Yeongshnn Ong Yining Zhao