Conclusion on thermal storages - · PDF fileConclusion on thermal storages Peter Schossig ......

24
Conclusion on thermal storages Peter Schossig Fraunhofer-Institute for solar energy systems ISE and materials for the thermal energy storage First International Renewable Energy Storage Conference (IRES I) Gelsenkirchen, 31.10.2006

Transcript of Conclusion on thermal storages - · PDF fileConclusion on thermal storages Peter Schossig ......

Conclusion on thermal storages

Peter Schossig

Fraunhofer-Institute for solar energy systems ISEand materials for the thermal energy storageFirst International Renewable Energy Storage Conference (IRES I)Gelsenkirchen, 31.10.2006

Energy consumption in Europe

~ 50% of final energydemand in EU25+ isused for heating80 % of this thermal energy is used at temperatures below250°C

Source: ESTTP/ESTIF

heating49%

transport31%

electricity20%

thermal

sensible latent sorptiv chemical

solidliquid organicinorganic

watertank

aquifer

Buildingmass

concrete

ground

Salthydrathes

paraffins

adsorption absorption

open closed open closed

Thermo-oil

gravel/waterstorage

technologies

University of StuttgartInstitute for Thermodynamics and Thermal Engineering (ITW)Research and Testing Centre for Solar Systems (TZS)

Solar domestic hot water and combi - systems

Source: ESTIF

in EU 25+ in 2005 ~ 270.000 systems sold-> 110.000 m³ storage per year only for solar thermal

Share of combi systems increasing

Solid media / Concrete Storage

• sensible storage with castable ceramics and concrete• preferred for single phase HTF till 400/500 °C• dual medium indirect storage system with regenerative heat transfer• modular and scalable design from 500 kWh to 1000 MWh

Important applications• parabolic trough solar thermal power plants• waste heat storage < 500 °C• combined heat and power

hot storage

solar radiationfrom heliostatfield

solar tower

fluidizedbed cooler

turbine

Cold storage

ambient airair-sand

heat exchanger

Sand storage concept

Expanded graphite (SGL Carbon)

PCM/Graphite composite material approach

1000 lwatertank

factor > 3

300 lPCM /

graphite

Consortium:ZAE Bayern e.V., SGL Technologies GmbH,Behr Industrietechnik Mylau GmbH, Robert Bosch GmbH

Incorporation PCM/graphite in gypsum

paraffin

water

surfactant

paraffin/water-emulsion

encapsulatedparaffin/water-suspension

Phase Change Slurries (PCS) heat

carrier, which consist of a liquid and a

phase change material

investigated PCS

paraffin/water emulsion

encapsulated paraffin/water

suspension

FOAM/ZEOLITE COMPOSITE: reactive crystallization - I

3 mm

μ-CT Al-foam

CONDITIONS OF ZEOLITE CRYSTALLIZATION

Na-WG, TPABr, NaOH150°C, rotation, 24 h

0.4 Na2O*0.06 TPABr* 1 SiO2 *72 H2O (+ 1.6 Al)*

200 μm200 μm

2 μm2 μm

(Primary) Energy Flow Diagram

Chargingstation

Userusefulenergy100%

10.5%

auxiliary energy,transport

Fuel105%

waste heat

132%

Zeo

COP > 9 in terms of auxiliary energy !

thermochemical storage reversible

source: ECN/Visscher

A + B <-> AB + heat

Leading the 21st Century into the Solar Age

Industriestr.8D - 79541 Lörrach

Tel. +49 7621-95675-14Fax. +49 7621-95675-29

[email protected]

Kaiser Wilhelm Pl. 1 D-45470 Mülheim

Tel.: +49-208-306 1Fax: +49-208-306 2980

www.kofo.mpg.de

Fix-Focus Prototype

MgH2 Reactor

IRES I: the case of energy autonomy: Storing Renewable Energies – Gelsenkirchen, October 30 and 31, 2006

SUNVENTIONSOLAR

ENERGY

SUNVENTIONSOLAR

ENERGY

Heat Storage for Power GenerationExamples

Heat storage for solar thermalpower plants

Adiabatic compressed air energy storage power plant

Decentralized CHP systems

Conclusion on thermal storages I

thermal storages are needed to increase the fractionof renewable energy as well as energy efficiency forconventional systems

different solutions for different tasks, depending on temperature level and time scale

still research needed, on material as well as systemlevel, with the goal to:

reduce the costs

increase the storage density

increase the efficiency

Conclusion on thermal storages IIMaybe most important: people start to think aboutthermal energy storage

„Storage is gaining momentum“

Storage is still facing barriersgovernmental subsidies

regulatory barriers

cultural barriers

Storage community must work together with all parties to overcome these barriers

important to speak with policy makers to make storage visible in policies/standards/regulations

Thank you for your Attention

The energy store

- a key component for efficient use of solarthermal energy

- will qualify solar thermal heat for more domestic and industrial applications

- must address storage material, thermal engineering and system integration

- there is no single solution for the wide range of applications

- substantial R&D required to develop suitable materials for capacity and cost reduction

Dirk UweTimeline day/weekStorage versus transportGrid off areasCogeneration: thermal storage essential5uhr peak wärme

Heat storage– Low exergy latent better– Transport heat means transport mass– Electricity speed of light no mass but cable

Conclusion

Existing storage meets requirements– But life cycle cost– Efficiency– Envirenomental impact– Energy density

– Renewables needs storage to Avoit transmissionInvestment in more generationCogernrationSaisonal storage

Jim McdowellStorage is gaining momentumEspecially for renewablesBarrriers still exist

governmental subsidiesRegulatory (storage closer to load than to generationTariff basedcultural

Storage community must work will all parties to overcome these barriers

Ulf BosselFirst reduce storage demand by balanced management of renewables

No storage for all renewables

Stored on siteIndividual stored by the userStorage is matching physical demand to physical supplyEfficiency discussion H2 worstDifferent losses, losses of quantitiy a of quality b and halbwertszeitEconomics: profit per transaction * number of transactions per yearEfficiancy must be better than $r/$uSaisonal is very difficult!Power will be delivered when available and not when it is needed

Hermann Scheer Kein ppt und auf deutsch!

Hauptvorwurf gegenüber erneuerbaren ist schwankende verfügbarkeit, aber kein konventionelles System kommt heutzutage ohne Speicher aus

Die Wahl der Quelle bestimmt den Fluss bis zum nutzer, infrastruktur, wandler etc., entscheidet sogar bis hin zur Unternehmensform

Fossil: Zahl der förderländer kleiner, nutzer größer -> weitverzweigte lange Kette, viel infrastruktur und wandlungen

Erneuerbar: weit verteilt

Effizienz führt nicht automatisch zur reduktion (beweis: 20% verbrauchen 70%)

Atom geht nur mit brüter, fusion erst zu spät

Clean coal ist auch mit längeren verwertungsketten verbunden, 1000 jahre sichere lagerung auch noch ungeklärt

Neu bei erneuerbaren ist die speicherung nach der wandlung

Konzentration wichtig um kostenreduktion durch masse zu erreichen

„von langen Ketten zu kurzen“

Technologik und soziologik der erneuerbaren (neues Buch in 3 Wochen auf englisch)

-> mulare und dezentrale erzeugung, neue eigentümerformen

Edison versus westinghouse

Norbert Lewald:

DMS (Demand side management) ist billigerals Stromspeicher, also kleine lokale thermische speicher

christof gatzen:

speicher nach wie vor betriebswirtschaftlich schwer, nur bei hohen „spreads“, also hohe preisdifferenzen

je größer der teil an erneuerbaren energien, desto größer die chancefür speicher

christof wittwer: thermische Speicher helfen auch beim strommanagement, wichtig Entkoppelung produktion wärme/strom,günstig mit nähwärmenetz

Englisch

:Storage versus transportGrid off areas