Computational Modeling of Functionalized Carbon Nanotubes

139
Computational Modeling of Functionalized Carbon Nanotubes by Nathaniel Lee Miller B.S., Florida Institute of Technology A thesis submitted to the Department of Chemical Engineering of Florida Institute of Technology in partial fulfilment of the requirements for the degree of Master of Science in Chemical Engineering Melbourne, Florida July 2012

Transcript of Computational Modeling of Functionalized Carbon Nanotubes

Page 1: Computational Modeling of Functionalized Carbon Nanotubes

Computational Modeling of Functionalized

Carbon Nanotubes

by

Nathaniel Lee Miller

B.S., Florida Institute of Technology

A thesis submitted to the Department of Chemical Engineering

of Florida Institute of Technology in partial fulfilment

of the requirements for the degree of

Master of Science

in

Chemical Engineering

Melbourne, Florida

July 2012

Page 2: Computational Modeling of Functionalized Carbon Nanotubes

Computational Modeling Of Functionalized

Carbon Nanotubes

A Thesis

By

Nathaniel Lee Miller

Approved as to style and content by:

James Brenner, Ph.D., Chairperson Assistant Professor Department of Chemical Engineering

Clayton Baum, Ph.D. Professor Department of Chemistry

Kurt Winkelmann, Ph.D. Associate Professor Department of Chemistry

Manolis Tomadakis, Ph.D., Professor and Department Head Department of Chemical Engineering

Page 3: Computational Modeling of Functionalized Carbon Nanotubes

i

Abstract

Computational Modeling of Functionalized

Carbon Nanotubes

by Nathaniel Lee Miller, B.S., Florida Institute of Technology

Chairperson of Advisory Committee: James Brenner, Ph.D.

Ab initio self-consistent field (SCF) molecular orbital calculations were

performed employing various basis sets to computationally predict methods

to functionalize and solubilize carbon nanotubes. The structure and Re-

stricted Hartree-Fock (RHF) or “total” energies of functionalized nanotubes

of various configurations were determined via theoretical calculations. Total

energies were used to determine preferences for adsorption on nanotube sur-

faces. Various diameter carbon nanotubes (CNTs) were tested to determine

where a transition from a non-wrapping to a wrapping approach was found

likely to occur as a function of diameter. Further refinements to this

method could be used to explore additional interactions as nanotube diame-

ter decreases. Whether additional phenyl interactions would impose con-

straints on desired self-assembly was also evaluated.

Page 4: Computational Modeling of Functionalized Carbon Nanotubes

ii

Table of Contents

List of Tables .......................................................................................................................... v

List of Figures ........................................................................................................................ vi

1 Introduction ..................................................................................................................... 1

1.1 Problem Statement ............................................................................................... 1

2 Literature Review ............................................................................................................ 2

2.1 Importance of CNTs ............................................................................................. 2

2.2 Solubilizing CNTs ................................................................................................. 2

2.3 Non-wrapping Functionalization ........................................................................... 3

2.4 DCG Systems Functionalization ........................................................................... 4

2.5 Modeling SWNT Adsorption and Curvature Effects ............................................. 5

2.6 GPU Enhancement of Calculations ....................................................................... 6

3 Project Description .......................................................................................................... 8

3.1 Prior Work ............................................................................................................ 8

3.2 Custom GAMESS Build ........................................................................................ 9

3.2.1 Benefits of a Custom Build ........................................................................ 9

3.2.2 A Word on Clusters ................................................................................. 10

3.2.3 64-Bit Parallel Operation on Linux across Eight CPUs ........................... 11

3.2.4 Mathematics Libraries .............................................................................. 11

3.3 Interaction Models .............................................................................................. 12

3.3.1 π-Stacking ................................................................................................. 12

3.3.2 Demonstration of Non-Wrapping Approach ............................................. 12

3.3.3 Demonstration of Wrapping Approach ..................................................... 13

3.3.4 “Coin-stacking” of Polynuclear Aromatics ................................................ 13

3.3.5 Transition to Wrapping Approach as a Function of Diameter ................. 14

3.4 Procedure ............................................................................................................ 14

3.4.1 Adding Functionalizations ........................................................................ 19

3.5 Assumptions ........................................................................................................ 20

3.5.1 Basis Function Selection/Justification ...................................................... 20

3.5.2 Truncated Representation of Larger Systems ........................................... 21

3.6 Data Collection ................................................................................................... 21

3.7 Analysis of Results .............................................................................................. 22

4 Results ........................................................................................................................... 23

Page 5: Computational Modeling of Functionalized Carbon Nanotubes

iii

4.1 Coin- vs. Adjacent-Stacking ................................................................................ 23

4.1.1 5,5 Armchair nanotube ............................................................................. 23

4.1.2 5,5 Armchair nanotube with pyrene ......................................................... 23

4.1.3 5,5 Armchair nanotube with two pyrenes adjacently stacked ................... 24

4.1.4 5,5 Armchair nanotube with two pyrenes coin-stacked ............................ 25

4.1.5 5,5 Armchair nanotube with two HO-nCH2-pyrenes................................. 27

4.2 Non-Wrapping Approach .................................................................................... 29

4.2.1 5,5 armchair nanotube (300 carbons) ....................................................... 29

4.2.2 Nanotube vs. Graphene Sheet .................................................................. 30

4.2.3 n-succinimidyl-1-pyrenebutanoate ............................................................ 31

4.3 Transition to Wrapping ...................................................................................... 32

4.3.1 Adding Functionalizations ........................................................................ 34

5 Conclusions .................................................................................................................... 39

5.1 Coin-Stacking Interference .................................................................................. 39

5.2 Transition to Wrapping Configuration as Function of Diameter ........................ 40

5.3 Suggestions for Further Study ............................................................................ 41

5.3.1 Larger Systems to Minimize Boundary Effects ......................................... 41

5.3.2 Additional Diameter Ranges Nanotube Cases .......................................... 42

5.3.3 Expedited Solving of Similar Cases .......................................................... 43

6 Literature Cited ............................................................................................................. 44

Appendix A Generating CNT Arc Segments ................................................................... 47

Appendix B Compiling GAMESS .................................................................................... 50

Appendix C Example GAMESS Input ............................................................................. 52

5,5 Armchair Nanotube ................................................................................................. 52

Appendix D GAMESS Results ......................................................................................... 55

5,5 Armchair Nanotube (100 Carbons) .......................................................................... 55

Pyrene............................................................................................................................ 56

5,5 Armchair nanotube with pyrene .............................................................................. 57

5,5 Armchair nanotube with two pyrenes adjacently π-π stacked on surface ................. 58

5,5 Armchair nanotube with two pyrenes coin-stacked on surface ................................. 59

5,5 Armchair nanotube with two adjacently stacked HO-4CH2-pyrenes ........................ 60

5,5 Armchair nanotube with two coin-stacked HO-4CH2-pyrenes .................................. 61

5,5 Armchair nanotube with two adjacently stacked HO-8CH2-pyrenes ........................ 62

5,5 Armchair nanotube with two coin-stacked HO-8CH2-pyrenes .................................. 63

Page 6: Computational Modeling of Functionalized Carbon Nanotubes

iv

5,5 Armchair nanotube with two adjacently stacked HO-12CH2-pyrenes ...................... 64

5,5 Armchair nanotube with two coin-stacked HO-12CH2-pyrenes ................................ 65

5,5 armchair nanotube (300 carbons) ............................................................................. 66

5,5 Graphene Sheet (300 carbons) ................................................................................. 68

n-succinimidyl-1-pyrenebutanoate .................................................................................. 70

5-nm diameter nanotube segment .................................................................................. 71

5-nm diameter nanotube segment with n-succinimidyl-1-pyrenebutanoate .................... 73

8-nm diameter nanotube segment .................................................................................. 75

8-nm diameter nanotube segment with n-succinimidyl-1-pyrenebutanoate .................... 77

10-nm diameter nanotube segment ................................................................................ 79

10-nm diameter nanotube segment with n-succinimidyl-1-pyrenebutanoate .................. 81

12-nm diameter nanotube segment ................................................................................ 83

12-nm diameter nanotube segment with n-succinimidyl-1-pyrenebutanoate .................. 85

15-nm diameter nanotube segment ................................................................................ 87

15-nm diameter nanotube segment with n-succinimidyl-1-pyrenebutanoate .................. 89

20-nm diameter nanotube segment ................................................................................ 93

20-nm diameter nanotube segment with n-succinimidyl-1-pyrenebutanoate .................. 95

30-nm diameter nanotube segment ................................................................................ 97

30-nm diameter nanotube segment with n-succinimidyl-1-pyrenebutanoate .................. 99

50-nm diameter nanotube segment .............................................................................. 101

50-nm diameter nanotube segment with n-succinimidyl-1-pyrenebutanoate ................ 103

80-nm diameter nanotube segment .............................................................................. 105

80-nm diameter nanotube segment with n-succinimidyl-1-pyrenebutanoate ................ 107

90-nm diameter nanotube segment .............................................................................. 109

90-nm diameter nanotube segment with n-succinimidyl-1-pyrenebutanoate ................ 111

100-nm diameter nanotube segment ............................................................................ 113

100-nm diameter nanotube segment with n-succinimidyl-1-pyrenebutanoate .............. 115

1000-nm diameter nanotube segment ........................................................................... 117

1000-nm diameter nanotube segment with n-succinimidyl-1-pyrenebutanoate ............. 120

Graphene (d = ∞) before n-succinimidyl-1-pyrenebutanoate ....................................... 124

Graphene (d = ∞) with n-succinimidyl-1-pyrenebutanoate .......................................... 126

Page 7: Computational Modeling of Functionalized Carbon Nanotubes

v

List of Tables

Table 3.1 Basis function result and performance on 5,5 armchair CNT................................ 21

Table 4.1 Total Energies in Hartrees of Characterization Models Using GAMESS. ............. 26

Table 4.2 Total energies in Hartrees of nanotube with two HO-nCH2-pyrenes. .................... 27

Table 4.3 Total energy differences of nanotube with two HO-nCH2-pyrenes. ....................... 27

Table 4.4 Total energies of 300 carbon atom systems as a function of configuration. ........... 30

Table 4.5 Differences in total energies in Hartrees as a result of functionalization at various

diameters. ...................................................................................................................... 36

Table A.1 Spreadsheet example for transforming graphene sheet model into CNT arc

segment. ......................................................................................................................... 47

Page 8: Computational Modeling of Functionalized Carbon Nanotubes

vi

List of Figures

Figure 2.1 Watson-Crick base pairs adsorbed on SWNT surface (Akdim, et al., 2012). .......... 6

Figure 3.1 Aromatic Stacking Interactions Used in "Molecular Tweezers" Application

(Sygula, 2007). ........................................................................................................................... 12

Figure 3.2 Example of Coin-stacking Configuration (Sygula, 2007). ......................................... 13

Figure 3.3 A model is created using Avogadro. ............................................................................ 16

Figure 3.4 The model is converted into a GAMESS input using Avogadro. ............................ 16

Figure 3.5 The input file is modified using the $BASIS and $SYSTEM headers. ................... 17

Figure 3.6 The job.bat file is executed. .......................................................................................... 17

Figure 3.7 GAMESS Output File in Text Editor ......................................................................... 18

Figure 3.8 The output file is visualized using a program such as MacMolPlt. ......................... 18

Figure 4.1 MacMolPlt output of 5,5 armchair nanotube model. ................................................ 23

Figure 4.2 MacMolPlt output of 5,5 armchair nanotube with noncovalently attached pyrene.

..................................................................................................................................................... 24

Figure 4.3 MacMolPlt output of 5,5 armchair nanotube with two pyrenes noncovalently

attached at different points on surface. .................................................................................. 25

Figure 4.4 MacMolPlt output of 5,5 armchair nanotube with two pyrenes “coin-stacked" on

surface. ........................................................................................................................................ 26

Figure 4.5 Difference in Total Energies in Hartrees of Nanotube with two HO-nCH2-pyrenes.

..................................................................................................................................................... 28

Figure 4.6 MacMolPlt output of 5,5 armchair nanotube with two HO-4CH2-pyrenes "coin-

stacked" on surface. .................................................................................................................. 28

Figure 4.7 MacMolPlt output of 5,5 armchair nanotube with two HO-12CH2-pyrenes "coin-

stacked" on surface. .................................................................................................................. 29

Figure 4.8 MacMolPlt output of 5,5 armchair nanotube containing 300 carbon atoms. ......... 30

Figure 4.9 MacMolPlt output of 5,5 armchair graphene sheet containing 300 carbon atoms.

..................................................................................................................................................... 31

Figure 4.10 MacMolPlt output of 5,5 armchair nanotube containing 300 carbon atoms with

solubilizer. .................................................................................................................................. 31

Page 9: Computational Modeling of Functionalized Carbon Nanotubes

vii

Figure 4.11 MacMolPlt output of 5,5 armchair graphene sheet containing 300 carbon atoms.

..................................................................................................................................................... 32

Figure 4.12 Arc segment of 5,5 armchair nanotube with 20 nm diameter. ............................... 34

Figure 4.13 Arc segment of 5,5 armchair nanotube with 100 nm diameter. ............................. 34

Figure 4.14 30 nm diameter nanotube arc segment with solubilizer. ......................................... 35

Figure 4.15 50 nm diameter nanotube arc segment with solubilizer. ......................................... 35

Figure 4.16 100 nm diameter nanotube arc segment with solubilizer ........................................ 35

Figure 4.17 Effective difference in total energies versus diameter due to addition of

solubilizer. .................................................................................................................................. 38

Figure 5.1 Example of noncovalent functionalization of nanotube surface by conjugated

polymers as engineered by Zyvex Corporation (Chen J. , et al., 2002). ............................ 40

Figure 5.2 Example of noncovalent functionalization of nanotube surface by n-succinimidyl-

1-pyrenebutanoate, as explored in this project. .................................................................... 40

Figure A.1 Graphene Sheet Revised Coordinates from Table A.1. ............................................ 48

Figure A.2 Final Coordinates for CNT Arc Segment in Table A.1. .......................................... 48

Figure A.3 MacMolPlt output of coordinates from Figure A.1. ................................................. 49

Figure A.4 MacMolPlt output of coordinates from Figure A.2. ................................................. 49

Page 10: Computational Modeling of Functionalized Carbon Nanotubes

1

1 Introduction

1.1 Problem Statement

The primary goal of this project was to computationally predict a method

for and to describe the challenges encountered in functionalizing carbon nano-

tubes (CNTs) for solubility, drug delivery, and/or selective binding in possible

biomedical applications. Using an appropriate basis function set, ab initio SCF

calculations were performed to simulate the π-stacking between polynuclear

aromatics and carbon nanotube structures. These structures, including the ad-

dition of solubilizing agents with polar terminating groups, were analyzed to

determine the most electronically stable configurations.

Page 11: Computational Modeling of Functionalized Carbon Nanotubes

2

2 Literature Review

2.1 Importance of CNTs

In 2005, the Dai research group at Stanford University developed a novel

method for killing cancer cells by heating them with near-infrared radiation

(NIR) (Dai, et al., 2005). This is accomplished using single-walled carbon nano-

tubes (SWNTs) functionalized with folate groups. These modified nanotubes

attach somewhat selectively to cancer cells because such cells tend to overpro-

duce folate binding protein (FBP) sites on the cell membrane. Because most

biological tissue is transparent in the near infrared (NIR) wavelengths (700-

1100 nm) and because nanotubes exhibit a strong optical absorbance at these

wavelengths, NIR has been used to selectively target cancer cells in a cell cul-

ture. A major obstacle that remains is ensuring the solubility or suspension of

the CNTs in the bloodstream, as well as controlling CNT toxicity. CNT size

and structure affect its toxicity; for example, the Kostarelos research group at

the University of London has shown that CNTs should be less than 5 m in

length and less than 20-30 nm in diameter, as larger CNTs are likely to result

in incomplete phagocytosis (Kostarelos, 2008).

2.2 Solubilizing CNTs

Stoddart, et al. (2002) have had success solubilizing CNTs by modifying

their surfaces using carbohydrates, including starch, gum arabic and glucosa-

Page 12: Computational Modeling of Functionalized Carbon Nanotubes

3

mine, to allow CNTs to remain soluble in an aqueous solution using the

starchy solution to form a fine “bucky paper” around a SWNT. This envelop-

ing, or wrapping, approach has proven to be an important step in functionaliz-

ing CNTs for solubility.

More recently, Zhao and Stoddart have used pyrenecyclodextrin and other

aromatic small-molecule-based noncovalent functionalization to solubilize

SWNTs (Stoddart & Zhao, 2009). Using aromatic molecules such as pyrene,

porphyrin, and their derivatives, π- π stacking interactions allow for “noncova-

lent functionalization of SWNT sidewalls and the subsequent immobilization of

biological molecules onto SWNTs with a high degree of control and specificity.”

In addition to biomolecular applications, these SWNTs functionalized with a

Zn porphyrin derivative have been employed as devices for transistor meas-

urements (Stoddart & Zhao, 2009). Their versatility make pyrene- and porphy-

rin-based molecules excellent candidates for functionalizing agents to be com-

putationally modeled as part of this project's scope.

2.3 Non-wrapping Functionalization

The Prato reaction describes the functionalization of either CNTs or

fullerenes, using the 1,3-dipolar cycloaddition of azomethine ylides (Prato,

2002). Using this general method, transmission electron micrographs have re-

vealed that adequate solubility is achieved when organic groups are introduced

to the carbon atoms of the nanotube, with a ratio of about 1:100, respectively

(Prato, 2002). This approach is novel in its lack of wrapping around CNTs it

seeks to solubilize, as well as in the low mass ratio of solubilizing agent to ma-

Page 13: Computational Modeling of Functionalized Carbon Nanotubes

4

terial to be solubilized. These factors make it an important reaction for any

similar computational projects focused on solubilizing CNTs in organic solu-

tions.

2.4 DCG Systems Functionalization

DCG Systems (DCGS), formerly Zyvex, developed a patent for functional-

izing CNTs for multiple applications, including modifying them so that they

may be suspended in aqueous solution (Chen & Liu, 2005).

Solubility of carbon nanotubes can be achieved if π-stacking is applied in a

non-wrapping fashion by functionalized conjugated polymers. A functionalizer

is provided by the DCGS patent that possesses a rigid backbone that is

capable of noncovalently bonding to the nanotube’ s surface along its length,

as opposed to around its circumference (Chen & Liu, 2005). A non-wrapping

approach is one whose method does not involve enveloping the entire circum-

ference of the CNT surface. The method applied in the DCGS patent should

allow better control over the distance between functional groups on the carbon

nanotube surface by precisely varying the length and constitution of the back-

bone and side chain. This control, afforded by the non-wrapping approach,

constitutes the greatest advantage of the DCGS method over prior approaches

to nanotube functionalization.

Nanotubes produced by the HiPCO technique (Bronikowski, et al., 2004), a

high-pressure method of synthesizing CNTs from carbon monoxide, are de-

scribed by the DCGS patent (Chen & Liu, 2005) as generally having diameters

of approximately 0.7 to 0.8 nm, and examples of rigid functional conjugated

Page 14: Computational Modeling of Functionalized Carbon Nanotubes

5

polymers that may be utilized in embodiments of the present invention include,

but are not limited to, poly-(aryleneethynylene)s and poly(3-decylthiophene)

(Chen & Liu, 2005).

According to the thin film visible and NIR spectroscopies, the band struc-

tures of conjugated, HiPCO-derived SWNTs are very similar to those of pris-

tine SWNTs, indicating that the electronic structures of the SWNTs are basi-

cally intact upon modification to enable solubilisation, and the charge transfer

in conjugated SWNTs is believed to be insignificant based on both absorption

and Raman spectra (Chen & Liu, 2005). This is especially important if the

SWNTs functionalized using this process are to be used in any NIR applica-

tions, such as those involved in the Dai group's aforementioned research

(Henry, 2005).

2.5 Modeling SWNT Adsorption and Curvature Effects

Improvements in computational platforms have made larger-scale simula-

tions of assembly pathways a viable option for approximating single-wall car-

bon nanotube surfaces and functionalization thereof. A recent example includes

work done by the Akdim group, whereby selectivity of single nucleobases ad-

sorbed onto the surface of a SWNT, as well as that of Watson-Crick base pairs,

was tested using DFT calculations (Akdim, et al., 2012). The example of this

group’s use of similar computational methods for the base pair adsorptions,

shown in Figure 2.1, is of particular interest for this project because of its simi-

larity to the noncovalent attachment of pyrene-based polynuclear aromatics

selected for this project. Using adsorption energies calculated by their simulat-

ed model, the Akdim group was able to establish an order of adsorptive prefer-

Page 15: Computational Modeling of Functionalized Carbon Nanotubes

6

ence, and also simulated the effect on graphene surfaces to model the differ-

ences due to curvature.

Figure 2.1 Watson-Crick base pairs adsorbed on SWNT surface (Akdim, et al., 2012).

2.6 GPU Enhancement of Calculations

One of the topics explored in setting up an installation to use for computa-

tional chemistry applications is the use of graphics processing units (GPUs) to

supplement available central processing unit (CPU) capabilities when the ap-

propriate graphics hardware is available. NVIDIA, a producer of graphical ac-

celeration hardware, has produced Compute Unified Device Architecture

(CUDA), a programming language for use in applying graphics hardware to

accomplish CPU-intensive mathematical processes. In recent years, perform-

ance of GPUs compared to their main CPU counterparts have been capable of

Page 16: Computational Modeling of Functionalized Carbon Nanotubes

7

achieving speedups of 40-150 fold, allowing the current generation of GPUs to

run standard molecular dynamics simulations at 107 flops/$ USD 2007 (van

Meel & Arnold, 2007).

Page 17: Computational Modeling of Functionalized Carbon Nanotubes

8

3 Project Description

3.1 Prior Work

In order to determine whether the GAMESS software package would be

suitable for the scope of this project, sample inputs were generated to test the

installations of GAMESS on the hosts being used. Molecular models tested so

far include glucose (as a forerunner to glucosamine), pyrene, and a single-wall

nanotube generated using TubeGen Online (Frey & Doren, 2005).

Some lessons have been learned since beginning experimentation with the

GAMESS software package. Memory management became increasingly more

important when configuring input files of increasing size and number of bonds.

Memory is specified in words rather than bits (64 bits/word), and the default

memory allocation is 1 MWord (64 x 106 bits). The default memory allocation

is sufficient for most single-molecule inputs, but becomes grossly insufficient to

accommodate nanotube models, whose carbons usually number in the hundreds

or greater. Therefore, care must be taken to specify a memory allocation suit-

able for each simulation run. This can be determined fairly easily by trial-and-

error, as the requested amount of memory that results in an error is reported in

the output file.

Another lesson involved the importance of initiating a geometric optimiza-

tion within GAMESS early in the iterative SCF calculations. Adjusting the tol-

erance before the optimization is triggered in GAMESS is helpful to ensure

that a convergence is more likely to be reached in a reasonable number of it-

erations. Also, it is often necessary in the case of larger, multi-molecule files to

increase the number of maximum iterations to be performed before the system

Page 18: Computational Modeling of Functionalized Carbon Nanotubes

9

is declared unconverged by GAMESS and the process abandoned. This pre-

vents unnecessary repetition in performing SCF calculations.

3.2 Custom GAMESS Build

The PC-GAMESS binary provided by the Gordon group (Gordon, 2009) is

compiled and linked with the goal of functioning across as many architectures

as possible, with the lowest reasonably common system requirements, making it

accessible to the widest range of end users, requiring minimal configuration,

and without making compilers a prerequisite to performing basic computational

simulations. The computer hardware used for this project was generally an x86-

64 architecture, with multiple cores available. Usually 8-10 CPUs were utilized.

The systems were often Kernel Based Virtual Machine (KVM) systems, which

allowed full use of the hardware, but still allowed for other uses of the server

without reinstalling the operating system.

3.2.1 Benefits of a Custom Build

In order to improve performance, a custom GAMESS build was desired.

The pre-compiled PC-GAMESS binary executable distributed by the Gordon

group (Gordon, 2009) assumes a single-CPU 32-bit architecture. While this is

more than adequate for basic instructional examples across even multiple CPU

systems, the time cost of larger computational loads is unnecessarily extended

when the client's full resources and addressable memory are not utilized.

In addition to using multiple CPUs for parallelizing computations and in-

creasing the quantity of memory space that can be addressed, additional con-

figuration can be performed to enable massively parallel operation with at-

Page 19: Computational Modeling of Functionalized Carbon Nanotubes

10

tached graphics hardware using CUDA. For example, a common graphics card

used for this kind of computation in a mid-range workstation might be the Ge-

Force 8800 GT, which features 112 cores available for parallel operations.

Therefore, CUDA-enabled installations combined with higher end GeForce or

Tesla graphics hardware can provide greater performance at a fraction of the

cost of a Beowulf or High Performance Cluster (HPC).

After the Ubuntu-customized test build of 64-bit GAMESS (Gordon, 2009)

was successfully completed, the procedure and selected packages were applied

to a target system running the Archlinux distribution. Archlinux was chosen as

an ideal distribution for a computational platform due to its minimal base in-

stallation. Existing instructions were found for compiling GAMESS with

CUDA on Ubuntu (Christensen, 2011). More information, including command

line inputs specific to each Linux distribution, can be found in Appendix B.

3.2.2 A Word on Clusters

It is possible to employ High Performance Computing (HPC) clusters for

large scale computational chemistry, and there are instructions for implement-

ing GAMESS across a Fast Ethernet cluster, such as a Beowulf cluster, for ex-

ample (Gordon, 2009). If a research group has a large number of identical

workstations, then a scalable solution such as a Beowulf cluster might be an

option, as these clusters have proven an economic alternative for high perform-

ance sequential jobs, provided that the required networking infrastructure is

available. In a study performed at the University of Adelaide in Australia, it

was discovered that while RHF calculations do not scale as well (though giving

“reasonable efficiencies up to around 10-15 processors”), calculations requiring

more intense computation such as MP2 calculations can undergo much greater

Page 20: Computational Modeling of Functionalized Carbon Nanotubes

11

optimization (Hawick, et al., 2000). Advancements in cellular graphics process-

ing units, however, make a CUDA-enabled parallelization a more economical

solution, as they eliminate the need for costlier network infrastructures, as dis-

cussed above.

3.2.3 64-Bit Parallel Operation on Linux across Eight CPUs

The initial test build was compiled using Ubuntu 10.04 (Ubuntu, 2010).

The Ubuntu distribution was chosen for the initial test bed system because of

its ease of initial configuration in order to expedite the process of developing a

procedure for build customization. 64-bit versions were selected to utilize the

maximum available memory addressing space.

3.2.4 Mathematics Libraries

The GAMESS build requires a set of libraries so that the Fortran mathe-

matics functions referenced may be included. If no external basic linear algebra

subprograms (BLAS) packages are installed, the build script can be configured

to use the built-in Fortran function sets, but this is not a reasonable perform-

ance option for a customized build, because these libraries cause calculations to

take between two and five times (Gordon, 2009) as long as a build compiled

with the correct BLAS packages.

Intel has a BLAS package available through its Math Kernel Library

(MKL) available for i386 and x86-64 architectures, and is the highest perform-

ing compatible mathematics package listed in the GAMESS documentation

(Gordon, 2009). The no-cost option used in this project was the Automatically

Tuned Linear Algebra Software (ATLAS) package, available for many Linux

platforms (ATLAS, 2011).

Page 21: Computational Modeling of Functionalized Carbon Nanotubes

12

3.3 Interaction Models

3.3.1 π-Stacking

Non-covalent interactions in this project refer to a stacked arrangement of

aromatic molecules. This frequently occurs where two relatively non-polar rings

have overlapping π orbitals. Figure 3.1 demonstrates aromatic stacking interac-

tions being used to non-covalently attach to buckyball structures to be used as

“molecular tweezers” (Sygula, 2007).

Figure 3.1 Aromatic Stacking Interactions Used in "Molecular Tweezers" Ap-plication (Sygula, 2007).

3.3.2 Demonstration of Non-Wrapping Approach

A non-wrapping approach using pyrene molecules functionalized with a sur-

factant to allow for suspension in a polar aqueous solution was modelled. A

non-wrapping approach to functionalization may be desired for certain bio-

medical applications (Chen & Liu, 2005), and a solubilizing agent that has

been used is n-succinimidyl-1-pyrenebutanoate. The non-wrapping approach to

non-covalent functionalization was simulated at various nanotube diameters.

Page 22: Computational Modeling of Functionalized Carbon Nanotubes

13

3.3.3 Demonstration of Wrapping Approach

A computational example of a wrapping approach to solubilizing nanotubes

analogous to prior work in this area was attempted to determine properties to

look for in a non-wrapping approach that might indicate that a transition is

taking place to a wrapping approach at certain diameters. Once the CNTs

have a large enough diameter, the surface of the CNTs is effectively flat to the

polynuclear aromatic component of surfactant modifiers.

3.3.4 “Coin-stacking” of Polynuclear Aromatics

One of the results sought after in this project was to determine whether π-

stacking between the polynuclear aromatics to be used will adversely affect the

self-assembly of the functionalized CNTs. This was attempted by simulating π-

stacking with many of the polynuclear aromatics stacked on top of the one at-

tached to the CNT surface in a columnar, “coin-stacking” fashion, as seen in

Figure 3.2.

Figure 3.2 Example of Coin-stacking Configuration (Sygula, 2007).

Page 23: Computational Modeling of Functionalized Carbon Nanotubes

14

3.3.5 Transition to Wrapping Approach as a Function of Diameter

The major advantage of a non-wrapping approach is that it can be used to

functionalize CNTs of multiple diameters. Also, the rigid backbone structure of

some approaches, such as the one developed by DCG Systems, allows for mul-

tiple functionalizations. One aim of this project was to simulate the non-

wrapping approach at various CNT radii to determine where the transition to

a wrapping approach occurs as a function of CNT diameter. A limiting case of

graphene was examined, simulating a nanotube as the diameter approaches in-

finity.

3.4 Procedure

The following procedure outlines the basic steps performed for each simula-

tion to produce a set of data for each simulated structure for comparison of

total energies:

1. A molecular model was created in Avogadro.

2. The model was converted into a GAMESS input file using Avo-

gadro.

3. The input file was modified to specify computational settings,

including the selected set of basis functions (STO-3G, see Basis

Function Selection/Justification on page 20), hardware con-

straints, etc.

4. A batch file or shell script was created, producing a “job" file.

Page 24: Computational Modeling of Functionalized Carbon Nanotubes

15

5. The job file was executed, and GAMESS performed an analysis

of the input file. This step often took several minutes, hours, or

days, depending on the input complexity and hardware con-

straints.

6. GAMESS generated an output file with the results of its compu-

tational analysis.

7. The output file was analyzed and converted to a visual repre-

sentation using MacMolPlt (Bode & Gordon, 1998).

8. These results were compared and reported to determine

(dis)agreement with those stated in the expected results.

These steps are also illustrated in Figure 3.3 - Figure 3.8.

Page 25: Computational Modeling of Functionalized Carbon Nanotubes

16

Figure 3.3 A model is created using Avogadro.

Figure 3.4 The model is converted into a GAMESS input using Avogadro.

Page 26: Computational Modeling of Functionalized Carbon Nanotubes

17

Figure 3.5 The input file is modified using the $BASIS and $SYSTEM headers.

Figure 3.6 The job.bat file is executed.

Page 27: Computational Modeling of Functionalized Carbon Nanotubes

18

Figure 3.7 GAMESS Output File in Text Editor

Figure 3.8 The output file is visualized using a program such as MacMolPlt.

Page 28: Computational Modeling of Functionalized Carbon Nanotubes

19

3.4.1 Adding Functionalizations

Once the total energies for the control set (sans functionalizer) were deter-

mined, the next step was to begin testing the same set of diameters, but with

the solubilizer noncovalently attached.

Constructing a set of models for this series presented a challenge that re-

quired developing a new procedure for constructing the models to be tested.

The reason for this is that the models for simulated diameters are truncated,

resulting in a model whose effective diameter is distorted when a force-field

geometric optimization is performed using molecular editing software like

Avogadro without “freezing” the position of the nanotube arc segment. To cir-

cumvent this limitation, the following procedure was used.

1. The carbon atoms making up the graphene arc to which the

solubilizer was being added were marked using comment code in

the GAMESS input file, as their coordinates would require a

manual adjustment later in Step 5.

2. The solubilizer was added to each model, positioning it on the

surface of the nanotube arc segment using coordinates that place

it in close proximity to the nanotube surface. These coordinates

are adjusted in Step 4 of this process.

3. The coordinates of the graphene arc were copied to another file,

identified by the comment marker added in Step 1.

4. A geometric optimization was performed in Avogadro, which re-

fines the positioning of the solubilizer, but this will alter the ef-

fective diameter of the graphene arc in the truncated model be-

Page 29: Computational Modeling of Functionalized Carbon Nanotubes

20

cause the optimization is likely to create a concave curvature in

the arc segment because of end effects.

5. The coordinates of the graphene arc in the optimized model

were replaced by the coordinates that were copied in Step 3 to

maintain the desired diameter, which was altered in Step 4.

3.5 Assumptions

3.5.1 Basis Function Selection/Justification

It was desired to use a basis set that would yield dependable RHF calcula-

tions. Of the basis sets employed in initial examples performed for the purpose

of establishing a benchmark for this project, the 3-21G and 6-31G function

sets, while rendering a more complete representation of the molecular orbitals

in systems in which the function sets are employed, appear prohibitively costly

in terms of CPU and wall clock time. The STO-3G basis set yields results in

time savings an order of magnitude below those of the 3-21G set. It is also jus-

tifiable to use the less complete (STO-3G) basis set when the systems to be

analysed lack any heavy metallic elements (Cook, 1998). Nevertheless, a quan-

titative analysis was performed to justify forgoing the more costly sets.

In order to determine the relative benefit and time cost of using basis sets

of differing completeness, a 5,5 armchair nanotube was simulated using the

STO-3G and 3-21G basis sets. The results show a 0.66% difference in RHF en-

ergy calculated. However, the 3-21G simulation took over 620 hours, compared

with the STO-3G simulation's 30 hours.

Page 30: Computational Modeling of Functionalized Carbon Nanotubes

21

Table 3.1 Basis function result and performance on 5,5 armchair CNT

Basis Function Set RHF Energy (Hartrees) Total Time (hours)

STO-3G -11220.967 30.2

3-21G -11295.239 622.5

Based on these results, the STO-3G basis function set was employed for

this project's calculations, as the advantage gained by using the 3-21G basis

function set was determined not to be worth the additional time cost required,

which would have been prohibitive to the project. It is important to ensure

that the same basis function set is used consistently through the project, to

make certain that the individual results can be meaningfully compared.

3.5.2 Truncated Representation of Larger Systems

An anticipated problem as the project progressed was memory requirements

and CPU burdens, increasing with system size. Therefore, the models run were

truncated in size, as other authors have used relatively short nanotubes to

simulate normal field emission (Nojeh et al., 2006).

3.6 Data Collection

After simulations were run, the total energies of the system were recorded.

GAMESS records simulation results in a text-only *.out file, which can be read

in a text editor, or the model graphically visualized using MacMolPlt (Bode &

Gordon, 1998). The output files were stored for later reference and trouble-

shooting, if necessary. An example output can be seen in Figure 3.7.

Page 31: Computational Modeling of Functionalized Carbon Nanotubes

22

3.7 Analysis of Results

Once the data had been collected as described in the previous section, ener-

gies of structures to be compared were plotted and correlations were observed.

The differences in total energies give an indication whether one configuration is

more or less likely to be preferred thermodynamically.

Page 32: Computational Modeling of Functionalized Carbon Nanotubes

23

4 Results

4.1 Coin- vs. Adjacent-Stacking

4.1.1 5,5 Armchair nanotube

One of the first computational goals for this project was to successfully

model a 5,5 armchair nanotube with a length of 5 unit cells using the GAMESS

software package (Gordon, 2009). The aim for this model was to serve as a

proof-of-concept to ensure that the software was configured properly before ap-

plying the package to larger, more complex systems. The SCF results for this

model can be viewed in Appendix D and the total energy is given in Table 4.1.

Figure 4.1 MacMolPlt output of 5,5 armchair nanotube model.

4.1.2 5,5 Armchair nanotube with pyrene

Once again, a proof-of-concept model was evaluated to ensure that the

software was configured properly before attempting to model differing case sce-

narios. Pyrene molecules were chosen as the polynuclear aromatic for this exer-

cise because of their simplicity and use experimentally (Chen & Liu, 2005;

Page 33: Computational Modeling of Functionalized Carbon Nanotubes

24

Stoddart & Zhao, 2009) The energies for pyrene and the 5,5 armchair with

pyrene are given in Table 4.1.

Figure 4.2 MacMolPlt output of 5,5 armchair nanotube with noncovalently at-tached pyrene.

4.1.3 5,5 Armchair nanotube with two pyrenes adjacently stacked

This test case was used to determine a value for the total energy of a model

in which two pyrenes attach themselves via π-stacking to different locations

along the nanotube surface. The total energy value is given in Table 4.1.

Page 34: Computational Modeling of Functionalized Carbon Nanotubes

25

Figure 4.3 MacMolPlt output of 5,5 armchair nanotube with two pyrenes noncovalently attached at different points on surface.

4.1.4 5,5 Armchair nanotube with two pyrenes coin-stacked

This test case was run to compare with the previous example. It involved π-

stacking between one pyrene molecule and another pyrene, itself attached via

π-stacking to the CNT surface. The total energy is given in Table 4.1. This in-

dicates a small difference in the stability between the two cases in favour of the

“coin-stacking” configuration for the pyrene case.

Page 35: Computational Modeling of Functionalized Carbon Nanotubes

26

Figure 4.4 MacMolPlt output of 5,5 armchair nanotube with two pyrenes coin-stacked on surface.

Table 4.1 Total Energies in Hartrees of Characterization Models Using GAMESS.

Model Characterized Total Energy (Hartrees)

5,5 armchair nanotube (100 Carbons) -3738.816 Pyrene -604.305 5,5 armchair nanotube with pyrene (100 Carbons) -4214.986

5,5 armchair nanotube with two pyrenes adjacently π-stacked on surface (100 Carbons)

-4947.410

5,5 armchair nanotube with two pyrenes coin-stacked on surface (100 Carbons)

-4947.416

There is a positive difference between the 5,5 armchair nanotube with

pyrene and the sum of the pyrene and nanotube energies of 128.135 Hartrees,

indicating energy is required to solubilize the nanotube. Another positive

though slighter difference was observed involving the nanotube solubilized with

two pyrenes. The adjacently stacked configuration resulted in a difference of

0.016 Hartrees, while the coin-stacked configuration resulted in a difference of

0.010 Hartrees. This effect was also observed with the nanotubes solubilized

using n-succinimidyl-1-pyrenebutanoate, and those results, as will be shown,

Page 36: Computational Modeling of Functionalized Carbon Nanotubes

27

may have been intensified by the added step of artificially holding the coordi-

nates of the solubilizer constant, described in Step 5 of the procedure in Section

3.4.1.

4.1.5 5,5 Armchair nanotube with two HO-nCH2-pyrenes

This was a series of test cases performed to determine the relationship be-

tween the desired adjacent and “coin-stacked” configurations as a function of n,

for n = 0, 4, 8, and 12. In this case, n represents the number of methylenes (-

CH2-) separating the pyrene and hydroxide. Where n = 0, there is no func-

tional group attached to the pyrene molecule.

Table 4.2 Total energies of nanotube with two HO-nCH2-pyrenes.

n Adjacent Stacking (Hartrees) “Coin-stacking” (Hartrees) 0 -4947.40955 -4947.41649

4 -5403.71526 -5403.71534

8 -5712.34353 -5712.33667

12 -6020.97671 -6020.96748

Table 4.3 Total energy differences of nanotube with two HO-nCH2-pyrenes.

n Difference (Hartrees) Difference (kJ/mol)

0 -6.94E-03 -18.22

4 -8.00E-05 -0.21

8 6.86E-03 18.01

12 9.23E-03 24.23

The results for the total energies and energy differences are displayed in

Table 4.2 and Table 4.3. While the difference in total energies favors the “coin-

stacking” configuration for the pyrene without solubilizer, the difference in-

creased in favour of adjacent stacking as n increased, as expected.

Page 37: Computational Modeling of Functionalized Carbon Nanotubes

28

Figure 4.5 Difference in Total Energies in Hartrees of Nanotube with two HO-nCH2-pyrenes.

Figure 4.6 MacMolPlt output of 5,5 armchair nanotube with two

HO-4CH2-pyrenes "coin-stacked" on surface.

-8

-6

-4

-2

0

2

4

6

8

10

12

0 2 4 6 8 10 12 14

Diffe

rence

in T

ota

l E

nerg

ies

Betw

een C

oin

stack

ed a

nd

Adja

cent

Sta

ckin

g A

ppro

ach

(H

art

rees

x 1

0-3)

n

Page 38: Computational Modeling of Functionalized Carbon Nanotubes

29

Figure 4.7 MacMolPlt output of 5,5 armchair nanotube with two

HO-12CH2-pyrenes "coin-stacked" on surface.

4.2 Non-Wrapping Approach

4.2.1 5,5 armchair nanotube (300 carbons)

To prepare for the testing of nanotube arc segments of various diameters, it

was necessary to increase the size of the nanotube to ensure that the functional

group attached to the pyrene would not hang over the edge of the nanotube

arc segment as the nanotube was “unrolled” for larger diameters. This 5,5 arm-

chair SWNT was simulated and compared to its unrolled grapheme counter-

part as described in the next section.

Page 39: Computational Modeling of Functionalized Carbon Nanotubes

30

4.2.2 Nanotube vs. Graphene Sheet

Simulations were performed of two systems of equivalent size: a 5,5 arm-

chair SWNT and its unrolled, graphene equivalent, representative of the sur-

face geometry of a nanotube with a diameter approaching infinity. The energies

are listed in Table 4.4. As shown in the table, the total energy of the 5,5 arm-

chair nanotube is lower than that of its unrolled graphene counterpart. This is

likely a result of the carbons on either end of the unrolled graphene sheet, and

contributes to end effects of the truncated model, which will be discussed fur-

ther in Section 5.3.1.

Table 4.4 Total energies of 300 carbon atom systems as a function of configura-tion.

π-stacking configuration Total Energy (Hartrees)

5,5 armchair nanotube -11220.967

5,5 armchair graphene -11217.010

Figure 4.8 MacMolPlt output of 5,5 armchair nanotube containing 300 carbon atoms.

Page 40: Computational Modeling of Functionalized Carbon Nanotubes

31

Figure 4.9 MacMolPlt output of 5,5 armchair graphene sheet containing 300 carbon atoms.

4.2.3 n-succinimidyl-1-pyrenebutanoate

This molecule is a non-wrapping solubilizer used by both the Dai (2005)

and Stoddart (2009) groups, making it a convenient illustrative example for the

purposes of this project. This molecule was used to functionalize a 5,5 armchair

nanotube, as well as an unrolled graphene sheet of equivalent size, each con-

taining 300 carbon atoms. A transition to a wrapping approach is forced at this

diameter, because there is no cylindrical peak along its axial length.

Figure 4.10 MacMolPlt output of 5,5 armchair nanotube containing 300 carbon atoms with solubilizer.

Page 41: Computational Modeling of Functionalized Carbon Nanotubes

32

Figure 4.11 MacMolPlt output of 5,5 armchair graphene sheet contain-ing 300 carbon atoms.

4.3 Transition to Wrapping

The goal of this section was to determine if and where a transition to a

wrapping approach will occur as a function of diameter, where the diameter is

within the domain of biocompatibility, whose upper limit is between 20-30 nm

(Kostarelos, 2008). Diameters up to 100 nm were tested.

In order to accomplish this, a formulaic process was used to generate sys-

tems representing sections of nanotubes with varying specified diameters. The

spreadsheet, shown in Appendix A, as well as summarized by Equations 4.1 -

4.5, analyses a graphene sheet and generates an arc of equivalent size repre-

senting a portion of a nanotube with the user-specified diameter. First, the

length of the sheet, L, in the x direction is calculated by taking the difference

between maximum and minimum x values in Å as in Equation 4.1. An angular

range in radians, , is calculated using nanotube diameter, d, in Å in Equa-

tion 4.2. In Eq. 4.3, for each carbon atom, an angular distance, , is calculated

using the original x coordinate of the atom, the total angular range, and the

sheet length. New x,y coordinates are calculated using and the original x,y

coordinates for each atom in Equations 4.4 and 4.5.

Page 42: Computational Modeling of Functionalized Carbon Nanotubes

33

(4.1)

(4.2)

(4.3)

(4.4)

(4.5)

This resulted in a total energy difference of 3.958 Hartrees. As predicted,

this suggests a transition to a wrapping approach is likely to occur as the

CNT's surface approaches that of a graphene sheet as diameter approaches in-

finity. However, the difference between the two non-functionalized models is

significant, so these results are clearly influenced to some extent by the end

effects in this truncated approximation of a comparatively near infinite system.

In order to determine the impact that the end effects have on nanotube di-

ameter alone, it was desired to establish a control to demonstrate how much a

change in diameter affects the electronic structure of nanotube arc segments of

an equal system size (300 carbon atoms), before a functionalizer is noncova-

lently attached. This would assist later in determining the impact that nano-

tube diameter has as the noncovalent functionalization transitions into a wrap-

ping configuration, depending on the diameter of the system. As with the case

of the pyrene in Section 4.1, a positive difference between the 5,5 armchair nano-

tube with n-succinimidyl-1-pyrenebutanoate and the sum of the n-succinimidyl-

1-pyrenebutanoate and nanotube energies for each diameter, shown in Table 4.5,

indicating energy is required to solubilize the nanotube. These results are likely

impacted by the geometric optimization operation in Step 5 of the procedure de-

Page 43: Computational Modeling of Functionalized Carbon Nanotubes

34

scribed in Section 3.4.1. The limits of this approach become more apparent as di-

ameter decreases, as discussed in the recommendations contained within Section

5.3.2.

Figure 4.12 Arc segment of 5,5 armchair nanotube with 20 nm diameter.

Figure 4.13 Arc segment of 5,5 armchair nanotube with 100 nm diameter.

4.3.1 Adding Functionalizations

Following the steps described in the Section 3.4.1 of the Procedure, the ef-

fect of the noncovalent addition of n-succinimidyl-1-pyrenebutanoate was cal-

culated, as shown in Figure 4.17, where the difference between wrapping and

non-wrapping configurations at various diameters is illustrated.

Page 44: Computational Modeling of Functionalized Carbon Nanotubes

35

Figure 4.14 30 nm diameter nanotube arc segment with solubilizer.

Figure 4.15 50 nm diameter nanotube arc segment with solubilizer.

Figure 4.16 100 nm diameter nanotube arc segment with solubilizer

The difference in total energies increases with nanotube diameter with this

particular configuration of nanotube. In each case throughout this project, a

positive energy difference results, indicating energy is required to solubilise the

Page 45: Computational Modeling of Functionalized Carbon Nanotubes

36

nanotube. This implies repulsive interactions between the solubilizer and nano-

tube, and the effect may be compounded by Step 5 in the procedure for nano-

tube arc solubilization in Section 3.4.1 for the transition-to-wrapping cases. As

the nanotube diameter increases, the long functionalizing chain attached to the

pyrene is contorted. This difference in energy changes at a decreasing rate as

diameter approaches infinity, approaching a maximum in the case of graphene

where the curvature indicates an infinitely large diameter. However, this range

of diameters is far greater than the range for biocompatibility (Kostarelos,

2008), as mentioned previously on page 32.

Table 4.5 Differences in total energies in Hartrees as a result of functionaliza-tion at various diameters.

Diameter (nm)

Arc Segment

With Solubilizer

Sum of Individual Energies Difference

5 -11217.064 -12474.939 -12474.946 0.007

8 -11217.041 -12474.920 -12474.923 0.003

10 -11217.069 -12474.942 -12474.951 0.009

12 -11217.072 -12474.941 -12474.954 0.013

15 -11217.074 -12474.869 -12474.956 0.087

20 -11217.076 -12474.915 -12474.958 0.043

25 -11217.010 -12474.827 -12474.892 0.065

30 -11217.077 -12474.870 -12474.959 0.089

50 -11217.078 -12474.767 -12474.960 0.193

80 -11217.009 -12474.657 -12474.891 0.235

90 -11217.078 -12474.630 -12474.960 0.330

100 -11217.079 -12474.607 -12474.961 0.354

1000 -11216.979 -12474.205 -12474.861 0.656

graphene (∞) -11217.080 -12474.245 -12474.962 0.717

It is also important to note that a maximum energy difference occurs in the

case of graphene, whose effective diameter is infinite. This serves as an asymp-

tote that is approached as the diameter approaches infinity, making the curve

Page 46: Computational Modeling of Functionalized Carbon Nanotubes

37

appear logarithmic. This effect is even more pronounced when the 1000 nm di-

ameter model is added. Because the energy differences as a function of diame-

ter do not level out until extremely large diameters, it is unlikely that a carbon

nanotube surface would be sufficiently flat to facilitate a transition from a non-

wrapping to a wrapping approach at a diameter suitable for biomedical appli-

cations.

Another effect to note is that the arc segment total energy at 25 nm and 80

nm is higher than expected. After running freshly-generated models at these

diameters again, it appears that the total energy as a function of diameter may

not be monotonic, though it is not immediately clear why this deviation takes

place at these diameters. Additional testing of a wider range of diameters may

provide an insight as to any non-monotonic patterns that emerge, or if there is

a problem with the models at these diameters. It is likely that the problem

with certain diameters is that those diameters are not good fits for a 300-

carbon system. Further testing at very small diameters will be at multiples of

the d-spacing of graphite (~0.33 nm).

Page 47: Computational Modeling of Functionalized Carbon Nanotubes

38

Figure 4.17 Effective difference in total energies versus diameter due to addi-tion of solubilizer.

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

1 10 100 1000

Diffe

rence

in T

ota

l E

nerg

y R

esu

ltin

g

from

Functi

onaliza

tion (

Hart

rees

)

Nanotube Diameter (nm)

Page 48: Computational Modeling of Functionalized Carbon Nanotubes

39

5 Conclusions

The primary goal of this project was to develop and test a way to computa-

tionally predict a likely set of outcomes and challenges in functionalizing

nanostructures. The scenario used to test this method was simulating π-

stacking interactions for the functionalization of carbon nanotubes and explor-

ing issues in self-assembly suggested by literature. Nearly equally important as

the observations made about the particular set of systems observed was the

construction of a set of guidelines to optimize the use of computing resources

available to accelerate the calculations required for this process. The procedure

developed for this project is ultimately intended to provide a systematic ap-

proach to solving similar, more complex problems.

5.1 Coin-Stacking Interference

It was desired to determine what impact unexpected π-stacking interactions

might have, if any, on the desired configuration. The case examined was

whether there would be a significant preference for a “coin-stacking” configura-

tion, rather than an adjacent noncovalent functionalization. As discussed in

Section 4.1, for very small systems without functional groups this effect ap-

pears pronounced but it becomes vanishingly insignificant and is reversed as

the size of the system and functional groups increase, as shown in Table 4.2

and Figure 4.5.

With a realistic number of reagents, a preference for undesired coin-

stacking is unlikely to significantly impact noncovalent functionalization.

Page 49: Computational Modeling of Functionalized Carbon Nanotubes

40

5.2 Transition to Wrapping Configuration as Function of Di-

ameter

Because it is often advantageous to use a non-wrapping configuration for

noncovalent CNT functionalization (see Section 3.3.5), it is important to de-

termine what diameter, if any, will result in a shift in preference toward a

wrapping configuration. Because graphene approximates a section of nanotube

whose diameter approaches infinity, it was ideal to use as a limiting case for

noncovalent functionalization.

Figure 5.1 Example of noncovalent functionalization of nanotube surface by conjugated polymers as engineered by Zyvex Corporation (Chen J. , et al.,

2002).

Figure 5.2 Example of noncovalent functionalization of nanotube sur-face by n-succinimidyl-1-pyrenebutanoate, as explored in this project.

Page 50: Computational Modeling of Functionalized Carbon Nanotubes

41

Although there was some boundary effect interference due to the trun-

cated size of the models, a reasonable trend was demonstrated that the proba-

bility of a transition to a wrapping approach is negligible at the diameters that

similar noncovalent functionalization would be applied, as discussed in the ex-

ample of DCG Systems (Chen & Liu, 2005), as shown by Figure 5.1. The sys-

tems approximated in this project, as shown in Figure 5.2, are truncated and

could be improved upon by testing larger, more complex systems. Recommen-

dations for further research would include simulations of systems of increased

size, whose boundaries would comprise a smaller fraction of the system’s overall

volume.

As discussed in Section 4.3, the differences in functionalization energy in-

crease at a decreasing rate as diameter increases approaching a maximum for

the 5,5 armchair nanotubes tested in this project. This result is informative

because the transition occurs far outside the range of diameters required for

biocompatibility. Provided comparable nanotube structures follow a similar

trend regarding this transition, it will not have a significant impact on func-

tionalizations in biomedical applications.

5.3 Suggestions for Further Study

5.3.1 Larger Systems to Minimize Boundary Effects

One of the factors that affect the usefulness of truncated models is the de-

gree to which the results are affected by proximity to the system’s boundaries.

A more accurate set of data could be obtained by increasing the size of the sys-

tem being computationally analysed for the problems presented in this project,

or comparable systems in future projects.

Page 51: Computational Modeling of Functionalized Carbon Nanotubes

42

While a full nanotube should have a relatively continuous charge density

along the surface, a truncated nanotube arc segment is expected to be less con-

tinuous at the edges, which may result in the generation of artifacts, especially

for longer solubilizers. The nanotube arc segment used in these calculations was

an unrolled graphene sheet whose original nanotube diameter was approximate-

ly 0.656 nm, a reasonable example that is just slightly smaller than a nanotube

produced via the HiPCO method as mentioned on page 4. The total energy

difference between the 300 carbon nanotube and the 300 carbon graphene mod-

el used to generate arc segments was 3.958 Hartrees, as mentioned in Section

4.3. This can be accounted for by remembering that two of the four edges of

the graphene sheet are unbonded, while the nanotube model contains only two

terminating ends. A longer nanotube arc segment would ensure that the inter-

actions of interest are modeled as far away from the ends as possible, resulting

in minimal artifacts in the calculated total energies.

5.3.2 Additional Diameter Ranges Nanotube Cases

An issue encountered at smaller diameters is that the curvature is much

more pronounced and the coordinates generated for each model place the solu-

bilizer insufficiently close to the arc segment, so the increase in total energy

difference that would be expected is not reflected. This results in the total en-

ergy of the solubilized nanotube arc segment being spuriously equal to the sum

of the total energies of the separate solubilizer and arc segment, as shown in

Figure 4.17 and Table 4.5. For continued research, while testing smaller diame-

ter arc segments (less than 15 nm in diameter), a new set of initial coordinates

should be generated using a built-in optimization tool of the molecular editor,

such as the force field optimization function in Avogadro, every 5 nm. This will

Page 52: Computational Modeling of Functionalized Carbon Nanotubes

43

ensure that the stacking interactions are taking place and will reflect an in-

creasing difference in total energy as the pyrene conforms further to the curva-

ture of the nanotube at increasingly small nanotube diameters.

Additional testing at larger diameter ranges is also recommended. Obtain-

ing total energies at larger diameters over a broader range may also provide a

more complete sampling and account for any non-monotonic results obtained

within the range of diameters already tested, as mentioned in Section 4.3.1. An

added advantage is that it will become more apparent precisely where a transi-

tion to a wrapping approach is expected as the difference in total energy due to

functionalization approaches the 0.717 Hartree limit resulting by the case of

graphene.

5.3.3 Expedited Solving of Similar Cases

The procedure developed for this project, as well as all compilation and

linking instructions, can be used to solve similar problems in an expedited fash-

ion, especially if GPU enhancement is utilized. The reduced time and hardware

cost of GPU parallelization versus serial operation or other clustering methods

will enable researchers to investigate with a significant savings in terms of

$/Teraflop, as discussed in Section 2.6.

Page 53: Computational Modeling of Functionalized Carbon Nanotubes

44

6 Literature Cited

Akdim, B., Pachter, R., Day, P. N., Kim, S. S., & Naik, R. R. (2012, March 30).

On modeling biomolecular–surface nonbonded interactions: application

to nucleobase adsorption on single-wall carbon nanotube surfaces.

Nanotechnology, 23, 165703.

ATLAS. (2011). Automatically Tuned Linear Algebra Software (ATLAS)

Sourceforge Summary Page. Retrieved from http://math-

atlas.sourceforge.net/

Avogadro. (2009, April). Avogadro Community Project Main Page. Retrieved

from http://avogadro.openmolecules.net/wiki/Main_Page

Bode, B., & Gordon, M. S. (1998). J. Mol. Graphics Mod., 16, 133-138.

Bronikowski, M. J., Willis, P. A., Colbert, D. T., Smith, K. A., & Smalley, R.

E. (2004). Gas-phase production of carbon single-walled nanotubes

from carbon monoxide via the HiPCO process: A parametric study. J

Nanoscience Nanotechnology, 4(4), 307-316.

Chen, J., & Liu, H. (2005). Patent No. US 6,905,667 B1. United States of

America.

Chen, J., Liu, H., Weimer, W. A., Halls, M. D., Waldeck, D. H., & Walker, G.

C. (2002). Noncovalent Engineering of Carbon Nanotube Surfaces by

Rigid, Functional Conjugated Polymers. J. Am. Chem. Soc., 124(31),

9034-9035.

Christensen, A. (2011, February 11). Compiling GAMESS with CUDA (GPU

support) . Retrieved from Computational Biochemistry:

http://combichem.blogspot.com/2011/02/compiling-gamess-with-cuda-

gpu-support.html

Cook, D. (1998). Handbook of Computational Quantum Chemistry. Oxford:

Oxford University Press.

Dai, H., Shi Kam, N. W., O'Connell, M., & Wisdom, J. A. (2005). Carbon

nanotubes as multifunctional biological transporters and near-infrared

Page 54: Computational Modeling of Functionalized Carbon Nanotubes

45

agencts for selective cancer cell destruction. PNAS, 102(33), 11600-

11605.

Frey, J. T., & Doren, D. J. (2005). TubeGen Online (web interface). (University

of Delaware, Newark) Retrieved from

http://turin.nss.udel.edu/research/tubegenonline.html

Gordon, M. (2009). General Atomic and Molecular Electronic Structure System

(GAMESS). Retrieved from

http://www.msg.chem.iastate.edu/gamess/gamess.html

Hawick, K. A., Grove, D. A., Coddington, P., James, H. A., & Buntine, M. A.

(2000). A Beowulf Cluster for Computational Chemistry. HPCN

Europe 2000 Proceedings of the 8th International Conference on High-

Performance Computing and Networking, (pp. 535-538).

Henry, C. (2005, August 8). Cooking Cancer: Carbon Nanotubes and Near-

Infrared Radiation Kill Cancer Cells by Heating. Chemical &

Engineering News, 83(32), 16.

Kostarelos, K. (2008, July). The long and short of carbon nanotube toxicity.

Nature: Biotech, 26(7), 774-776.

Molcanov, K., Kojić-Prodić, B., & Meden, A. (2009). Pi-stacking of Quinoid

Rings in Crystals of Alkali Diaqua Hydrogen Chloranilates.

CrystEngComm, 11, 1407-1415.

Nojeh, A., Shan, B., Cho, K., & Pease, R. (2006). Ab Initio Modeling of the

Interaction of Electron Beams and Single-Walled Carbon Nanotubes.

Physical Review Letters, 96(5), 56802.

Prato, M. (2002). Organic Functionalization of Carbon Nanotubes. Journal of

the American Chemical Society, 124(5), 760-761.

Stoddart, J. F., & Zhao, Y. (2009). Noncovalent functionalization of single-

walled carbon nanotubes. Accounts of Chemical Research, 42(8), 1161-

1171.

Page 55: Computational Modeling of Functionalized Carbon Nanotubes

46

Stoddart, J. F., Star, A., Steurman, D. W., & Heath, J. R. (2002). Starched

Carbon Nanotubes. Angewandte Chemie International Edition, 41(14),

2508-2512.

Sygula, A. (2007). A double Concave Hydrocarbon Buckycatcher. Journal of

the American Chemical Society, 129(13), 3842-3843.

Ubuntu. (2010). Homepage | Ubuntu. Retrieved from http://www.ubuntu.com/

van Meel, J. A., & Arnold, A. (2007). Harvesting Graphics Power for MD

Simulations. arXiv: 0709.3225.

Page 56: Computational Modeling of Functionalized Carbon Nanotubes

47

Appendix A Generating CNT Arc Segments

CNT arc segments can be approximated by applying a geometrical trans-

formation to a model of a grapheme sheet. Beginning with a set of coordinates

in a tab-delimited *.xyz file, these coordinates can be exported to a spread

sheet and manipulated using a set of geometric formulae, as discussed in Tran-

sition to Wrapping on page 32.

Table A.1 Spreadsheet example for transforming graphene sheet model into CNT arc segment.

Properties of Tube to Fit Arc

radius (nm): 50

radius (ang): 500

Arclength : 20.614 (ang)

xoffset: 10.657

θtotal 0.041 (rad)

original coordinates

revised coordinates

final coordinates

X y z

x y z

θi x y z

-10.657 0.000 -18.459

0.000 0.000 -18.459

0.000 500.000 0.000 -18.459

-9.226 0.000 -18.459

1.431 0.000 -18.459

0.003 499.998 1.431 -18.459

-8.526 0.000 -17.229

2.131 0.000 -17.229

0.004 499.995 2.131 -17.229

-7.095 0.000 -17.229

3.562 0.000 -17.229

0.007 499.987 3.562 -17.229

-6.394 0.000 -18.459

4.263 0.000 -18.459

0.009 499.982 4.263 -18.459

-4.963 0.000 -18.459

5.694 0.000 -18.459

0.011 499.968 5.694 -18.459

-4.263 0.000 -17.229

6.394 0.000 -17.229

0.013 499.959 6.394 -17.229

-2.832 0.000 -17.229

7.825 0.000 -17.229

0.016 499.939 7.825 -17.229

-2.131 0.000 -18.459

8.526 0.000 -18.459

0.017 499.927 8.526 -18.459

-0.700 0.000 -18.459

9.957 0.000 -18.459

0.020 499.901 9.956 -18.459

0.000 0.000 -17.229

10.657 0.000 -17.229

0.021 499.886 10.656 -17.229

1.431 0.000 -17.229

12.088 0.000 -17.229

0.024 499.854 12.087 -17.229

2.131 0.000 -18.459

12.788 0.000 -18.459

0.026 499.836 12.787 -18.459

3.563 0.000 -18.459

14.220 0.000 -18.459

0.028 499.798 14.218 -18.459

4.263 0.000 -17.229

14.920 0.000 -17.229

0.030 499.777 14.918 -17.229

5.694 0.000 -17.229

16.351 0.000 -17.229

0.033 499.733 16.348 -17.229

Page 57: Computational Modeling of Functionalized Carbon Nanotubes

48

Figure A.1 Graphene Sheet Revised Coordinates from Table A.1.

Figure A.2 Final Coordinates for CNT Arc Segment in Table A.1.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25

y-C

oo

rdin

ate

of

Ca

rbo

n A

tom

s

(An

gst

rom

s)

x-Coordinate of Carbon Atoms (Angstroms)

Graphene Sheet Carbon Atoms

0

5

10

15

20

25

499.5 499.6 499.7 499.8 499.9 500 500.1

y-C

oo

rdin

ate

of

Ca

rbo

n A

tom

s

(An

gst

rom

s)

x-Coordinate of Carbon Atoms (Angstroms)

Arc Segment Carbon Atoms

Page 58: Computational Modeling of Functionalized Carbon Nanotubes

49

Figure A.3 MacMolPlt output of coordinates from Figure A.1.

Figure A.4 MacMolPlt output of coordinates from Figure A.2.

Page 59: Computational Modeling of Functionalized Carbon Nanotubes

50

Appendix B Compiling GAMESS

The following is a list of instructions for compiling GAMESS for use with

Ubuntu. These instructions can also be used to approximate a procedure for

similar Linux distributions, if Ubuntu is not an option. The operating system

used in this example was Ubuntu 10.04 64-bit.

The compiling process is broken into two steps: a computer science compo-

nent and a chemistry component. The computer science component, which in-

cludes the distributed data interface (ddi) handling, includes instructions for

distributing computational loads across the system's available processors. The

chemistry component is responsible for specifying the work whose load will be

managed by the computer science component.

Note that for the compiling and linking steps for each component in these

build instructions, a log file will be generated for review before proceeding to

the next step to ensure there were no fatal errors in the process.

1. Unpack the GAMESS package, usually downloaded in Tarball format.

2. Use your software installation manager to install the csh and fortran95

packages, as these will be necessary for compiling the GAMESS suite

from the source code included in the tarball.

3. Select a mathematics package, such as Automatically Tuned Linear Al-

gebra Software (atlas) or Intel's Math Kernel Library (mkl), and install

the package. This will be necessary to compile the quantum chemistry

components later on in the process.

4. Open a command line interface and switch to the GAMESS install di-

rectory. Note that for any instance of $PATH, the directory path to the

/gamess folder should be substituted.

Page 60: Computational Modeling of Functionalized Carbon Nanotubes

51

cd $PATH/gamess ./config

5. Compile the computer science component of the GAMESS installation.

cd $PATH/gamess/ddi

./compddi >& compddi.log & mv ddikick.x ..

6. Compile the chemistry component of the GAMESS installation.

cd $PATH/gamess

./compall >& compall.log &

7. Once both major components of the GAMESS installation have been

compiled, the executable must be linked.

cd $PATH/gamess

./lked gamess 01 >& lked.log &

8. Edit the ‘rungms' and ‘runall' files so that the version number is con-

sistent.

Page 61: Computational Modeling of Functionalized Carbon Nanotubes

52

Appendix C Example GAMESS Input

Note: All inputs are plaintext in GAMESS input (*.gamin or *.inp) format.

5,5 Armchair Nanotube

$BASIS GBASIS=STO NGAUSS=3 $END

$CONTRL SCFTYP=RHF RUNTYP=ENERGY MAXIT=200 $END

$SCF SOSCF=.FALSE. DIIS=.TRUE. ETHRSH=5 SOGTOL=5 $END

$SYSTEM MWORDS=40 $END

$GUESS GUESS=HUCKEL PRTMO=.TRUE. $END

C1

C 6.0 3.21215 -0.31676 -6.23878

C 6.0 2.81541 0.81400 -6.23298

C 6.0 2.28393 1.50681 -5.10434

C 6.0 1.23397 2.35067 -5.11183

C 6.0 0.46662 2.73942 -6.24944

C 6.0 -0.71000 2.96519 -6.26583

C 6.0 -1.59857 2.87732 -5.15083

C 6.0 -2.82386 2.30467 -5.17106

C 6.0 -3.39804 1.65963 -6.31093

C 6.0 -3.84938 0.54940 -6.32164

C 6.0 -3.89877 -0.33006 -5.19596

C 6.0 -3.45701 -1.60684 -5.19339

C 6.0 -2.92397 -2.30674 -6.31768

C 6.0 -1.98563 -3.05173 -6.30919

C 6.0 -1.20260 -3.40961 -5.17232

C 6.0 0.12107 -3.66294 -5.15893

C 6.0 1.00009 -3.56697 -6.27996

C 6.0 2.09015 -3.06901 -6.26907

C 6.0 2.71124 -2.46238 -5.13211

C 6.0 3.21592 -1.20508 -5.11813

C 6.0 3.12609 -0.45407 -3.80510

C 6.0 2.64457 0.83824 -3.80205

C 6.0 2.17478 1.38875 -2.50851

C 6.0 1.11289 2.23913 -2.51559

C 6.0 0.49487 2.58624 -3.81724

C 6.0 -0.85319 2.86731 -3.83446

C 6.0 -1.58244 2.77083 -2.54721

C 6.0 -2.82320 2.20568 -2.56449

C 6.0 -3.30844 1.69788 -3.87199

C 6.0 -3.82448 0.41881 -3.88575

C 6.0 -3.84065 -0.30562 -2.59069

C 6.0 -3.38292 -1.58912 -2.58911

C 6.0 -2.95632 -2.17305 -3.88337

C 6.0 -1.86885 -3.01731 -3.87594

C 6.0 -1.21674 -3.29203 -2.57375

C 6.0 0.11697 -3.56186 -2.55846

C 6.0 0.84887 -3.50967 -3.84666

C 6.0 2.11301 -2.95942 -3.83229

C 6.0 2.59497 -2.44772 -2.52549

C 6.0 3.09799 -1.18046 -2.51191

Page 62: Computational Modeling of Functionalized Carbon Nanotubes

53

C 6.0 3.07749 -0.46601 -1.21340

C 6.0 2.58741 0.80389 -1.21339

C 6.0 2.13973 1.37234 0.07755

C 6.0 1.07975 2.22343 0.07024

C 6.0 0.44694 2.53961 -1.22922

C 6.0 -0.88109 2.82799 -1.24449

C 6.0 -1.61177 2.75259 0.04212

C 6.0 -2.85435 2.19075 0.02722

C 6.0 -3.33875 1.67607 -1.27812

C 6.0 -3.84625 0.41111 -1.29222

C 6.0 -3.86957 -0.31738 0.00037

C 6.0 -3.40727 -1.59920 -0.00017

C 6.0 -2.96115 -2.16673 -1.29324

C 6.0 -1.88269 -2.99274 -1.28703

C 6.0 -1.24528 -3.30050 0.01230

C 6.0 0.08679 -3.57428 0.02842

C 6.0 0.81905 -3.50301 -1.25654

C 6.0 2.07238 -2.97062 -1.23961

C 6.0 2.56070 -2.46188 0.06629

C 6.0 3.06185 -1.19329 0.07914

C 6.0 3.04254 -0.47568 1.37621

C 6.0 2.56272 0.79821 1.37368

C 6.0 2.14176 1.38737 2.66658

C 6.0 1.07356 2.25715 2.65902

C 6.0 0.42379 2.54157 1.35732

C 6.0 -0.90733 2.81931 1.34364

C 6.0 -1.63638 2.75608 2.63333

C 6.0 -2.89016 2.17959 2.62035

C 6.0 -3.36754 1.66123 1.31416

C 6.0 -3.87553 0.39703 1.29977

C 6.0 -3.90917 -0.32999 2.59313

C 6.0 -3.45229 -1.63148 2.59006

C 6.0 -2.99353 -2.18720 1.29434

C 6.0 -1.91947 -3.02052 1.29936

C 6.0 -1.29542 -3.36223 2.60031

C 6.0 0.05705 -3.62568 2.61757

C 6.0 0.78670 -3.52625 1.33142

C 6.0 2.03595 -2.98509 1.35126

C 6.0 2.52265 -2.48064 2.65928

C 6.0 3.03158 -1.19862 2.67146

C 6.0 3.09489 -0.44876 3.98037

C 6.0 2.64395 0.82242 3.97581

C 6.0 2.12156 1.53075 5.09993

C 6.0 1.19713 2.29018 5.09182

C 6.0 0.41583 2.65854 3.95607

C 6.0 -0.90693 2.91196 3.94523

C 6.0 -1.78306 2.80294 5.06781

C 6.0 -2.86428 2.28823 5.05709

C 6.0 -3.47845 1.67505 3.92003

C 6.0 -3.98399 0.42114 3.90643

C 6.0 -3.98863 -0.46635 5.02806

C 6.0 -3.60863 -1.60108 5.02245

C 6.0 -3.08780 -2.29961 3.89154

C 6.0 -2.03629 -3.13943 3.89563

Page 63: Computational Modeling of Functionalized Carbon Nanotubes

54

C 6.0 -1.26232 -3.52351 5.03206

C 6.0 -0.08698 -3.73714 5.04817

C 6.0 0.80237 -3.64120 3.93354

C 6.0 2.03117 -3.08159 3.95669

C 6.0 2.60668 -2.43838 5.09771

C 6.0 3.05354 -1.32732 5.10769

$END

Page 64: Computational Modeling of Functionalized Carbon Nanotubes

55

Appendix D GAMESS Results

5,5 Armchair Nanotube (100 Carbons)

------------------- RHF SCF CALCULATION ------------------- NUCLEAR ENERGY = 17704.3687903174 MAXIT = 200 NPUNCH= 2 EXTRAP=T DAMP=F SHIFT=F RSTRCT=F DIIS=T DEM=F SOSCF=F DENSITY CONV= 1.00E-05 MEMORY REQUIRED FOR RHF STEP= 1767179 WORDS. ITER EX DEM TOTAL ENERGY E CHANGE DENSITY CHANGE DIIS ERROR * * * INITIATING DIIS PROCEDURE * * * 1 0 0 -3735.056358708 -3735.056358708 0.169259867 0.737275873 2 1 0 -3738.538359298 -3.482000590 0.086011283 0.116731027 3 2 0 -3738.680374015 -0.142014717 0.039246129 0.086471014 4 3 0 -3738.803322543 -0.122948528 0.012739300 0.026873094 5 4 0 -3738.812851792 -0.009529248 0.007802402 0.008644506 6 5 0 -3738.815185136 -0.002333345 0.003765326 0.003592743 7 6 0 -3738.815587373 -0.000402237 0.004071092 0.002525912 8 7 0 -3738.815811299 -0.000223926 0.001393584 0.001070214 9 8 0 -3738.815854231 -0.000042932 0.001452826 0.000695191 10 9 0 -3738.815879874 -0.000025643 0.000612298 0.000383983 11 10 0 -3738.815885137 -0.000005263 0.000268499 0.000209541 12 11 0 -3738.815886377 -0.000001239 0.000305899 0.000124164 13 12 0 -3738.815887008 -0.000000631 0.000079750 0.000035202 14 13 0 -3738.815887050 -0.000000042 0.000018234 0.000006067 15 14 0 -3738.815887054 -0.000000004 0.000006993 0.000005474 16 15 0 -3738.815887055 -0.000000001 0.000008966 0.000005053 ----------------- DENSITY CONVERGED ----------------- TIME TO FORM FOCK OPERATORS= 207.8 SECONDS ( 13.0 SEC/ITER) TIME TO SOLVE SCF EQUATIONS= 12.9 SECONDS ( 0.8 SEC/ITER) FINAL ENERGY IS -3738.8158870551 AFTER 16 ITERATIONS

Page 65: Computational Modeling of Functionalized Carbon Nanotubes

56

Pyrene

------------------- RHF SCF CALCULATION ------------------- NUCLEAR ENERGY = 971.1900438116 MAXIT = 200 NPUNCH= 2 EXTRAP=T DAMP=F SHIFT=F RSTRCT=F DIIS=T DEM=F SOSCF=F DENSITY CONV= 1.00E-05 MEMORY REQUIRED FOR RHF STEP= 65640 WORDS. ITER EX DEM TOTAL ENERGY E CHANGE DENSITY CHANGE DIIS ERROR * * * INITIATING DIIS PROCEDURE * * * 1 0 0 -603.807835903 -603.807835903 0.173383094 0.734044995 2 1 0 -604.293215271 -0.485379368 0.046265096 0.041570773 3 2 0 -604.303095031 -0.009879760 0.012494789 0.014797201 4 3 0 -604.304376952 -0.001281920 0.004848765 0.005731194 5 4 0 -604.304561859 -0.000184908 0.001164846 0.001337382 6 5 0 -604.304572915 -0.000011056 0.001110494 0.000684934 7 6 0 -604.304576647 -0.000003732 0.000188569 0.000116594 8 7 0 -604.304576727 -0.000000080 0.000016254 0.000014771 9 8 0 -604.304576728 -0.000000001 0.000005174 0.000005679 10 9 0 -604.304576728 0.000000000 0.000003132 0.000001915 ----------------- DENSITY CONVERGED ----------------- TIME TO FORM FOCK OPERATORS= 0.8 SECONDS ( 0.1 SEC/ITER) TIME TO SOLVE SCF EQUATIONS= 0.1 SECONDS ( 0.0 SEC/ITER) FINAL ENERGY IS -604.3045767285 AFTER 10 ITERATIONS

Page 66: Computational Modeling of Functionalized Carbon Nanotubes

57

5,5 Armchair nanotube with pyrene

--------------------------

RHF SCF CALCULATION

--------------------------

NUCLEAR ENERGY = 23094.5030676451

MAXIT = 30 NPUNCH= 2

EXTRAP=T DAMP=F SHIFT=F RSTRCT=F DIIS=F DEM=F SOSCF=T

DENSITY MATRIX CONV= 1.00E-05

SOSCF WILL OPTIMIZE 83661 ORBITAL ROTATIONS, SOGTOL= 0.250

MEMORY REQUIRED FOR RHF ITERS= 2809604 WORDS.

ITER EX DEM TOTAL ENERGY E CHANGE DENSITY CHANGE ORB. GRAD

1 0 0 -4209.6832361214 -4209.6832361214 0.168081848 0.000000000

---------------START SECOND ORDER SCF---------------

2 1 0 -4214.7059142581 -5.0226781367 0.089350033 0.071657002

3 2 0 -4214.8476692822 -0.1417550241 0.036219624 0.050545845

4 3 0 -4214.9779138019 -0.1302445197 0.012129622 0.013382147

5 4 0 -4214.9839632106 -0.0060494087 0.005327465 0.005003530

6 5 0 -4214.9859832846 -0.0020200739 0.002178701 0.001177761

7 6 0 -4214.9861393333 -0.0001560488 0.001922624 0.000585031

8 7 0 -4214.9861834255 -0.0000440922 0.000866820 0.000256671

9 8 0 -4214.9861915520 -0.0000081265 0.000233075 0.000137941

10 9 0 -4214.9861939902 -0.0000024383 0.000061345 0.000025823

11 10 0 -4214.9861941382 -0.0000001480 0.000033674 0.000012231

12 11 0 -4214.9861941649 -0.0000000266 0.000016205 0.000004832

13 12 0 -4214.9861941697 -0.0000000048 0.000008490 0.000002573

14 13 0 -4214.9861941707 -0.0000000010 0.000009657 0.000002207

-----------------

DENSITY CONVERGED

-----------------

TIME TO FORM FOCK OPERATORS= 404.3 SECONDS ( 28.9 SEC/ITER)

TIME TO SOLVE SCF EQUATIONS= 17.4 SECONDS ( 1.2 SEC/ITER)

FINAL RHF ENERGY IS -4214.9861941707 AFTER 14 ITERATIONS

Page 67: Computational Modeling of Functionalized Carbon Nanotubes

58

5,5 Armchair nanotube with two pyrenes adjacently π-π stacked on

surface

--------------------------

RHF SCF CALCULATION

--------------------------

NUCLEAR ENERGY = 29009.9955560624

MAXIT = 30 NPUNCH= 2

EXTRAP=T DAMP=F SHIFT=F RSTRCT=F DIIS=F DEM=F SOSCF=T

DENSITY MATRIX CONV= 1.00E-05

SOSCF WILL OPTIMIZE 111244 ORBITAL ROTATIONS, SOGTOL= 0.250

MEMORY REQUIRED FOR RHF ITERS= 3721296 WORDS.

ITER EX DEM TOTAL ENERGY E CHANGE DENSITY CHANGE ORB. GRAD

1 0 0 -4942.6372406023 -4942.6372406023 0.174523486 0.000000000

---------------START SECOND ORDER SCF---------------

2 1 0 -4947.0729714596 -4.4357308573 0.101347580 0.071475336

3 2 0 -4947.2258939198 -0.1529224602 0.040746851 0.057184289

4 3 0 -4947.3981006884 -0.1722067685 0.014614877 0.015310135

5 4 0 -4947.4063882979 -0.0082876095 0.007553295 0.004766156

6 5 0 -4947.4092398797 -0.0028515818 0.002738840 0.001264018

7 6 0 -4947.4094530292 -0.0002131495 0.002330798 0.000747507

8 7 0 -4947.4095279446 -0.0000749154 0.000976674 0.000436297

9 8 0 -4947.4095439987 -0.0000160541 0.000251140 0.000218087

10 9 0 -4947.4095476305 -0.0000036318 0.000096812 0.000041610

11 10 0 -4947.4095479411 -0.0000003105 0.000058430 0.000023770

12 11 0 -4947.4095480137 -0.0000000726 0.000023021 0.000011724

13 12 0 -4947.4095480297 -0.0000000160 0.000018132 0.000004974

14 13 0 -4947.4095480354 -0.0000000057 0.000022174 0.000004385

15 14 0 -4947.4095480407 -0.0000000053 0.000025758 0.000003279

16 15 0 -4947.4095480442 -0.0000000034 0.000017283 0.000001992

17 16 0 -4947.4095480459 -0.0000000018 0.000010552 0.000001212

18 17 0 -4947.4095480468 -0.0000000009 0.000007282 0.000001111

19 18 0 -4947.4095480470 -0.0000000002 0.000005832 0.000000804

-----------------

DENSITY CONVERGED

-----------------

TIME TO FORM FOCK OPERATORS= 1394.3 SECONDS ( 73.4 SEC/ITER)

TIME TO SOLVE SCF EQUATIONS= 36.7 SECONDS ( 1.9 SEC/ITER)

FINAL RHF ENERGY IS -4947.4095480470 AFTER 19 ITERATIONS

Page 68: Computational Modeling of Functionalized Carbon Nanotubes

59

5,5 Armchair nanotube with two pyrenes coin-stacked on surface

--------------------------

RHF SCF CALCULATION

--------------------------

NUCLEAR ENERGY = 28454.8048234261

MAXIT = 30 NPUNCH= 2

EXTRAP=T DAMP=F SHIFT=F RSTRCT=F DIIS=F DEM=F SOSCF=T

DENSITY MATRIX CONV= 1.00E-05

SOSCF WILL OPTIMIZE 111244 ORBITAL ROTATIONS, SOGTOL= 0.250

MEMORY REQUIRED FOR RHF ITERS= 3721296 WORDS.

ITER EX DEM TOTAL ENERGY E CHANGE DENSITY CHANGE ORB. GRAD

1 0 0 -4942.6523255254 -4942.6523255254 0.174582619 0.000000000

---------------START SECOND ORDER SCF---------------

2 1 0 -4947.0888198050 -4.4364942796 0.097685087 0.075379437

3 2 0 -4947.2461717476 -0.1573519426 0.040144741 0.053444201

4 3 0 -4947.4058560035 -0.1596842560 0.013113098 0.014770479

5 4 0 -4947.4135102443 -0.0076542408 0.006389823 0.004703775

6 5 0 -4947.4161941481 -0.0026839038 0.002452414 0.001216972

7 6 0 -4947.4164021961 -0.0002080480 0.002300836 0.000690401

8 7 0 -4947.4164707152 -0.0000685191 0.001031938 0.000368766

9 8 0 -4947.4164835196 -0.0000128045 0.000274724 0.000188235

10 9 0 -4947.4164874926 -0.0000039729 0.000114859 0.000039000

11 10 0 -4947.4164877889 -0.0000002963 0.000062103 0.000021108

12 11 0 -4947.4164878775 -0.0000000886 0.000027452 0.000008675

13 12 0 -4947.4164878894 -0.0000000119 0.000029696 0.000006771

14 13 0 -4947.4164878971 -0.0000000076 0.000042879 0.000005666

15 14 0 -4947.4164879039 -0.0000000069 0.000044255 0.000003918

16 15 0 -4947.4164879092 -0.0000000052 0.000028094 0.000002681

17 16 0 -4947.4164879116 -0.0000000025 0.000012685 0.000001228

18 17 0 -4947.4164879125 -0.0000000008 0.000006803 0.000000970

19 18 0 -4947.4164879130 -0.0000000005 0.000005967 0.000000798

-----------------

DENSITY CONVERGED

-----------------

TIME TO FORM FOCK OPERATORS= 1204.9 SECONDS ( 63.4 SEC/ITER)

TIME TO SOLVE SCF EQUATIONS= 33.6 SECONDS ( 1.8 SEC/ITER)

FINAL RHF ENERGY IS -4947.4164879130 AFTER 19 ITERATIONS

Page 69: Computational Modeling of Functionalized Carbon Nanotubes

60

5,5 Armchair nanotube with two adjacently stacked HO-4CH2-pyrenes

--------------------------

RHF SCF CALCULATION

--------------------------

NUCLEAR ENERGY = 33022.5351694775

MAXIT = 30 NPUNCH= 2

EXTRAP=T DAMP=F SHIFT=F RSTRCT=F DIIS=F DEM=F SOSCF=T

DENSITY MATRIX CONV= 1.00E-05

SOSCF WILL OPTIMIZE 133800 ORBITAL ROTATIONS, SOGTOL= 0.250

MEMORY REQUIRED FOR RHF ITERS= 4471256 WORDS.

ITER EX DEM TOTAL ENERGY E CHANGE DENSITY CHANGE ORB. GRAD

1 0 0 -5398.2377344170 -5398.2377344170 0.574931642 0.000000000

---------------START SECOND ORDER SCF---------------

2 1 0 -5403.3472585123 -5.1095240953 0.184786885 0.075810714

3 2 0 -5403.5370324037 -0.1897738914 0.056328962 0.056327914

4 3 0 -5403.7035277729 -0.1664953692 0.017075888 0.016066076

5 4 0 -5403.7120364433 -0.0085086704 0.006008908 0.004778902

6 5 0 -5403.7149646422 -0.0029281989 0.002454458 0.001252271

7 6 0 -5403.7151727469 -0.0002081047 0.002268316 0.000655569

8 7 0 -5403.7152430070 -0.0000702601 0.001187111 0.000377830

9 8 0 -5403.7152564319 -0.0000134249 0.000508243 0.000210011

10 9 0 -5403.7152604647 -0.0000040328 0.000202584 0.000043182

11 10 0 -5403.7152608051 -0.0000003404 0.000068520 0.000030910

12 11 0 -5403.7152609180 -0.0000001128 0.000031009 0.000012025

13 12 0 -5403.7152609327 -0.0000000147 0.000027588 0.000007021

14 13 0 -5403.7152609430 -0.0000000103 0.000033892 0.000005803

15 14 0 -5403.7152609516 -0.0000000087 0.000033085 0.000004045

16 15 0 -5403.7152609571 -0.0000000054 0.000022704 0.000002322

17 16 0 -5403.7152609597 -0.0000000026 0.000010985 0.000001908

18 17 0 -5403.7152609607 -0.0000000010 0.000007525 0.000001871

19 18 0 -5403.7152609613 -0.0000000006 0.000005954 0.000001065

-----------------

DENSITY CONVERGED

-----------------

TIME TO FORM FOCK OPERATORS= 1353.8 SECONDS ( 71.3 SEC/ITER)

TIME TO SOLVE SCF EQUATIONS= 49.0 SECONDS ( 2.6 SEC/ITER)

FINAL RHF ENERGY IS -5403.7152609613 AFTER 19 ITERATIONS

Page 70: Computational Modeling of Functionalized Carbon Nanotubes

61

5,5 Armchair nanotube with two coin-stacked HO-4CH2-pyrenes

--------------------------

RHF SCF CALCULATION

--------------------------

NUCLEAR ENERGY = 32449.4994938211

MAXIT = 30 NPUNCH= 2

EXTRAP=T DAMP=F SHIFT=F RSTRCT=F DIIS=F DEM=F SOSCF=T

DENSITY MATRIX CONV= 1.00E-05

SOSCF WILL OPTIMIZE 133800 ORBITAL ROTATIONS, SOGTOL= 0.250

MEMORY REQUIRED FOR RHF ITERS= 4471256 WORDS.

ITER EX DEM TOTAL ENERGY E CHANGE DENSITY CHANGE ORB. GRAD

1 0 0 -5398.2461235645 -5398.2461235645 0.575320895 0.000000000

---------------START SECOND ORDER SCF---------------

2 1 0 -5403.3581770935 -5.1120535290 0.185384145 0.074188061

3 2 0 -5403.5520436222 -0.1938665288 0.057996907 0.052830304

4 3 0 -5403.7044546400 -0.1524110177 0.016606616 0.015169421

5 4 0 -5403.7122957662 -0.0078411263 0.006625698 0.005156242

6 5 0 -5403.7150560137 -0.0027602474 0.002522849 0.001162189

7 6 0 -5403.7152574179 -0.0002014042 0.002139173 0.000681170

8 7 0 -5403.7153250255 -0.0000676076 0.001424844 0.000380164

9 8 0 -5403.7153368089 -0.0000117834 0.000473302 0.000192498

10 9 0 -5403.7153407484 -0.0000039396 0.000193691 0.000043535

11 10 0 -5403.7153410771 -0.0000003287 0.000087763 0.000018856

12 11 0 -5403.7153412076 -0.0000001305 0.000041182 0.000014156

13 12 0 -5403.7153412312 -0.0000000235 0.000057941 0.000012556

14 13 0 -5403.7153412579 -0.0000000267 0.000087211 0.000009863

15 14 0 -5403.7153412851 -0.0000000271 0.000063127 0.000006203

16 15 0 -5403.7153412982 -0.0000000131 0.000028867 0.000004634

17 16 0 -5403.7153413025 -0.0000000043 0.000015046 0.000001879

18 17 0 -5403.7153413035 -0.0000000011 0.000009605 0.000001238

19 18 0 -5403.7153413039 -0.0000000003 0.000004088 0.000000662

-----------------

DENSITY CONVERGED

-----------------

TIME TO FORM FOCK OPERATORS= 1418.1 SECONDS ( 74.6 SEC/ITER)

TIME TO SOLVE SCF EQUATIONS= 50.2 SECONDS ( 2.6 SEC/ITER)

FINAL RHF ENERGY IS -5403.7153413039 AFTER 19 ITERATIONS

Page 71: Computational Modeling of Functionalized Carbon Nanotubes

62

5,5 Armchair nanotube with two adjacently stacked HO-8CH2-

pyrenes

--------------------------

RHF SCF CALCULATION

--------------------------

NUCLEAR ENERGY = 35855.5859718628

MAXIT = 30 NPUNCH= 2

EXTRAP=T DAMP=F SHIFT=F RSTRCT=F DIIS=F DEM=F SOSCF=T

DENSITY MATRIX CONV= 1.00E-05

SOSCF WILL OPTIMIZE 154872 ORBITAL ROTATIONS, SOGTOL= 0.250

MEMORY REQUIRED FOR RHF ITERS= 5163144 WORDS.

ITER EX DEM TOTAL ENERGY E CHANGE DENSITY CHANGE ORB. GRAD

1 0 0 -5706.4928845098 -5706.4928845098 0.575761656 0.000000000

---------------START SECOND ORDER SCF---------------

2 1 0 -5711.9717109694 -5.4788264595 0.183441375 0.075286862

3 2 0 -5712.1720745131 -0.2003635437 0.058658326 0.054745277

4 3 0 -5712.3320180903 -0.1599435772 0.015887494 0.015628534

5 4 0 -5712.3402998216 -0.0082817314 0.006844540 0.005443555

6 5 0 -5712.3432445425 -0.0029447209 0.002318701 0.001212151

7 6 0 -5712.3434480410 -0.0002034984 0.002159628 0.000600135

8 7 0 -5712.3435167839 -0.0000687429 0.001374580 0.000342214

9 8 0 -5712.3435289794 -0.0000121955 0.000440111 0.000194294

10 9 0 -5712.3435331453 -0.0000041659 0.000182718 0.000042800

11 10 0 -5712.3435334839 -0.0000003386 0.000052201 0.000034107

12 11 0 -5712.3435335926 -0.0000001087 0.000026107 0.000010442

13 12 0 -5712.3435336058 -0.0000000132 0.000034620 0.000005764

14 13 0 -5712.3435336149 -0.0000000091 0.000033479 0.000004657

15 14 0 -5712.3435336206 -0.0000000057 0.000025574 0.000003402

16 15 0 -5712.3435336244 -0.0000000038 0.000019297 0.000002481

17 16 0 -5712.3435336263 -0.0000000019 0.000010479 0.000001619

18 17 0 -5712.3435336274 -0.0000000011 0.000010710 0.000001745

19 18 0 -5712.3435336278 -0.0000000004 0.000006476 0.000001062

20 19 0 -5712.3435336281 -0.0000000003 0.000002802 0.000000544

-----------------

DENSITY CONVERGED

-----------------

TIME TO FORM FOCK OPERATORS= 1416.3 SECONDS ( 70.8 SEC/ITER)

TIME TO SOLVE SCF EQUATIONS= 64.1 SECONDS ( 3.2 SEC/ITER)

FINAL RHF ENERGY IS -5712.3435336281 AFTER 20 ITERATIONS

Page 72: Computational Modeling of Functionalized Carbon Nanotubes

63

5,5 Armchair nanotube with two coin-stacked HO-8CH2-pyrenes

--------------------------

RHF SCF CALCULATION

--------------------------

NUCLEAR ENERGY = 35229.8075781828

MAXIT = 30 NPUNCH= 2

EXTRAP=T DAMP=F SHIFT=F RSTRCT=F DIIS=F DEM=F SOSCF=T

DENSITY MATRIX CONV= 1.00E-05

SOSCF WILL OPTIMIZE 154872 ORBITAL ROTATIONS, SOGTOL= 0.250

MEMORY REQUIRED FOR RHF ITERS= 5163144 WORDS.

ITER EX DEM TOTAL ENERGY E CHANGE DENSITY CHANGE ORB. GRAD

1 0 0 -5706.4930755963 -5706.4930755963 0.576425680 0.000000000

---------------START SECOND ORDER SCF---------------

2 1 0 -5711.9762300565 -5.4831544603 0.184313769 0.068995100

3 2 0 -5712.1800358377 -0.2038057811 0.059962382 0.051581580

4 3 0 -5712.3259545961 -0.1459187584 0.015236889 0.015106406

5 4 0 -5712.3335890298 -0.0076344337 0.006363269 0.005395397

6 5 0 -5712.3363944136 -0.0028053838 0.002269233 0.001164596

7 6 0 -5712.3365922070 -0.0001977934 0.002055641 0.000568145

8 7 0 -5712.3366587518 -0.0000665448 0.001479231 0.000305552

9 8 0 -5712.3366687454 -0.0000099936 0.000594748 0.000163263

10 9 0 -5712.3366725654 -0.0000038199 0.000166165 0.000041368

11 10 0 -5712.3366728477 -0.0000002823 0.000090452 0.000037450

12 11 0 -5712.3366729750 -0.0000001273 0.000031345 0.000006749

13 12 0 -5712.3366729850 -0.0000000101 0.000021449 0.000006026

14 13 0 -5712.3366729916 -0.0000000066 0.000032422 0.000005211

15 14 0 -5712.3366729972 -0.0000000056 0.000033830 0.000003813

16 15 0 -5712.3366730010 -0.0000000037 0.000027453 0.000002574

17 16 0 -5712.3366730031 -0.0000000022 0.000014028 0.000001553

18 17 0 -5712.3366730041 -0.0000000010 0.000009585 0.000000877

19 18 0 -5712.3366730047 -0.0000000005 0.000006472 0.000000917

-----------------

DENSITY CONVERGED

-----------------

TIME TO FORM FOCK OPERATORS= 1289.1 SECONDS ( 67.8 SEC/ITER)

TIME TO SOLVE SCF EQUATIONS= 60.5 SECONDS ( 3.2 SEC/ITER)

FINAL RHF ENERGY IS -5712.3366730047 AFTER 19 ITERATIONS

Page 73: Computational Modeling of Functionalized Carbon Nanotubes

64

5,5 Armchair nanotube with two adjacently stacked HO-12CH2-

pyrenes

--------------------------

RHF SCF CALCULATION

--------------------------

NUCLEAR ENERGY = 38354.7969501944

MAXIT = 30 NPUNCH= 2

EXTRAP=T DAMP=F SHIFT=F RSTRCT=F DIIS=F DEM=F SOSCF=T

DENSITY MATRIX CONV= 1.00E-05

SOSCF WILL OPTIMIZE 177480 ORBITAL ROTATIONS, SOGTOL= 0.250

MEMORY REQUIRED FOR RHF ITERS= 5905080 WORDS.

ITER EX DEM TOTAL ENERGY E CHANGE DENSITY CHANGE ORB. GRAD

1 0 0 -6014.7370925466 -6014.7370925466 0.575398754 0.000000000

---------------START SECOND ORDER SCF---------------

2 1 0 -6020.5836187822 -5.8465262356 0.183732515 0.071014864

3 2 0 -6020.7922391092 -0.2086203269 0.058167892 0.056730879

4 3 0 -6020.9645044892 -0.1722653800 0.015855287 0.016386090

5 4 0 -6020.9733809875 -0.0088764983 0.006945625 0.005050698

6 5 0 -6020.9764063151 -0.0030253277 0.002790056 0.001227564

7 6 0 -6020.9766149518 -0.0002086367 0.002275827 0.000726618

8 7 0 -6020.9766885962 -0.0000736444 0.001160817 0.000446622

9 8 0 -6020.9767030474 -0.0000144512 0.000447556 0.000213537

10 9 0 -6020.9767070339 -0.0000039865 0.000192431 0.000044385

11 10 0 -6020.9767073987 -0.0000003648 0.000078575 0.000026204

12 11 0 -6020.9767075144 -0.0000001157 0.000029249 0.000013523

13 12 0 -6020.9767075404 -0.0000000260 0.000046971 0.000007570

14 13 0 -6020.9767075613 -0.0000000209 0.000050448 0.000007231

15 14 0 -6020.9767075745 -0.0000000132 0.000029993 0.000003745

16 15 0 -6020.9767075808 -0.0000000063 0.000015255 0.000002261

17 16 0 -6020.9767075829 -0.0000000020 0.000010348 0.000001972

18 17 0 -6020.9767075840 -0.0000000011 0.000007317 0.000001902

19 18 0 -6020.9767075847 -0.0000000007 0.000009524 0.000001035

-----------------

DENSITY CONVERGED

-----------------

TIME TO FORM FOCK OPERATORS= 1729.3 SECONDS ( 91.0 SEC/ITER)

TIME TO SOLVE SCF EQUATIONS= 82.5 SECONDS ( 4.3 SEC/ITER)

FINAL RHF ENERGY IS -6020.9767075847 AFTER 19 ITERATIONS

Page 74: Computational Modeling of Functionalized Carbon Nanotubes

65

5,5 Armchair nanotube with two coin-stacked HO-12CH2-

pyrenes

--------------------------

RHF SCF CALCULATION

--------------------------

NUCLEAR ENERGY = 38285.9968088875

MAXIT = 30 NPUNCH= 2

EXTRAP=T DAMP=F SHIFT=F RSTRCT=F DIIS=F DEM=F SOSCF=T

DENSITY MATRIX CONV= 1.00E-05

SOSCF WILL OPTIMIZE 177480 ORBITAL ROTATIONS, SOGTOL= 0.250

MEMORY REQUIRED FOR RHF ITERS= 5905080 WORDS.

ITER EX DEM TOTAL ENERGY E CHANGE DENSITY CHANGE ORB. GRAD

1 0 0 -6014.7348305619 -6014.7348305619 0.585595112 0.000000000

---------------START SECOND ORDER SCF---------------

2 1 0 -6020.5891999713 -5.8543694094 0.176687543 0.074343792

3 2 0 -6020.8022070622 -0.2130070908 0.058084277 0.052504509

4 3 0 -6020.9562561799 -0.1540491177 0.014974342 0.015270134

5 4 0 -6020.9642637469 -0.0080075670 0.006076695 0.004527301

6 5 0 -6020.9671791403 -0.0029153934 0.002880748 0.001132367

7 6 0 -6020.9673790666 -0.0001999263 0.001956131 0.000506669

8 7 0 -6020.9674565248 -0.0000774582 0.001192708 0.000334949

9 8 0 -6020.9674705741 -0.0000140493 0.000427037 0.000192914

10 9 0 -6020.9674744413 -0.0000038672 0.000212980 0.000050432

11 10 0 -6020.9674748367 -0.0000003955 0.000094646 0.000025993

12 11 0 -6020.9674749900 -0.0000001533 0.000063487 0.000010792

13 12 0 -6020.9674750194 -0.0000000294 0.000061771 0.000011020

14 13 0 -6020.9674750453 -0.0000000259 0.000057654 0.000008848

15 14 0 -6020.9674750616 -0.0000000163 0.000024053 0.000004126

16 15 0 -6020.9674750681 -0.0000000065 0.000018570 0.000002803

17 16 0 -6020.9674750711 -0.0000000030 0.000019866 0.000001903

18 17 0 -6020.9674750730 -0.0000000018 0.000017102 0.000001509

19 18 0 -6020.9674750740 -0.0000000010 0.000009810 0.000001414

20 19 0 -6020.9674750743 -0.0000000004 0.000004845 0.000000682

-----------------

DENSITY CONVERGED

-----------------

TIME TO FORM FOCK OPERATORS= 1852.7 SECONDS ( 92.6 SEC/ITER)

TIME TO SOLVE SCF EQUATIONS= 91.7 SECONDS ( 4.6 SEC/ITER)

FINAL RHF ENERGY IS -6020.9674750743 AFTER 20 ITERATIONS

Page 75: Computational Modeling of Functionalized Carbon Nanotubes

66

5,5 armchair nanotube (300 carbons)

--------------------------

RHF SCF CALCULATION

--------------------------

NUCLEAR ENERGY = 95027.2984997236

MAXIT = 200 NPUNCH= 2

EXTRAP=T DAMP=F SHIFT=F RSTRCT=F DIIS=T DEM=F SOSCF=F

DENSITY MATRIX CONV= 1.00E-05

MEMORY REQUIRED FOR RHF ITERS= 15821640 WORDS.

ITER EX DEM TOTAL ENERGY E CHANGE DENSITY CHANGE DIIS ERROR

* * * INITIATING DIIS PROCEDURE * * *

1 0 0 -11205.3730623968-11205.3730623968 0.963875581 0.866893127

2 1 0 -11017.2265659896 188.1464964072 5.242714513 0.859438525

3 2 0 -6228.7956332200 4788.4309327696 4.986144373 1.906505730

4 3 0 -10382.4452478309 -4153.6496146110 4.235800263 1.059366818

5 4 0 -11205.7857824362 -823.3405346053 1.543962220 0.283310933

6 5 0 -10834.0750266238 371.7107558124 1.897295989 0.829310932

7 6 0 -10815.1595444538 18.9154821700 1.116072127 0.882769260

8 7 0 -11218.7642479504 -403.6047034965 0.366744043 0.186490198

9 8 0 -11219.4350632106 -0.6708152603 0.348505689 0.135065049

10 9 0 -11220.4519243536 -1.0168611429 0.240830342 0.100250258

11 10 0 -11220.7673614107 -0.3154370572 0.056863729 0.066272370

12 11 0 -11220.8874616831 -0.1201002724 0.041684951 0.043989614

13 12 0 -11220.9371610958 -0.0496994127 0.041513841 0.020227729

14 13 0 -11220.9628410325 -0.0256799368 0.007997069 0.005700181

15 14 0 -11220.9653515149 -0.0025104824 0.006451779 0.003825774

16 15 0 -11220.9663718460 -0.0010203310 0.006070224 0.001817600

17 16 0 -11220.9669949484 -0.0006231024 0.003518524 0.001140710

18 17 0 -11220.9671623932 -0.0001674448 0.002490879 0.000522747

19 18 0 -11220.9672213634 -0.0000589702 0.002583799 0.000533743

20 19 0 -11220.9672557681 -0.0000344046 0.002014301 0.000287903

21 20 0 -11220.9672747034 -0.0000189353 0.002863830 0.000199073

22 21 0 -11220.9672964883 -0.0000217849 0.002654594 0.000157296

23 22 0 -11220.9673117296 -0.0000152412 0.001833907 0.000139883

24 23 0 -11220.9673213913 -0.0000096617 0.002416469 0.000111516

25 24 0 -11220.9673309950 -0.0000096037 0.001688439 0.000094999

26 25 0 -11220.9673365301 -0.0000055351 0.000257165 0.000096051

27 26 0 -11220.9673378165 -0.0000012864 0.000384252 0.000095303

28 27 0 -11220.9673395522 -0.0000017357 0.000328427 0.000096346

29 28 0 -11220.9673411190 -0.0000015668 0.000338337 0.000097452

30 29 0 -11220.9673429036 -0.0000017846 0.000582447 0.000099483

31 30 0 -11220.9673457374 -0.0000028338 0.000369049 0.000102379

32 31 0 -11220.9673477755 -0.0000020381 0.000224919 0.000105134

33 32 0 -11220.9673490705 -0.0000012951 0.000030843 0.000106924

34 33 0 -11220.9673488835 0.0000001871 0.000596659 0.000106661

35 34 0 -11220.9673451187 0.0000037648 0.000670403 0.000101739

36 35 0 -11220.9673407882 0.0000043305 0.001207684 0.000096303

37 36 0 -11220.9673333960 0.0000073923 0.001223487 0.000087262

38 37 0 -11220.9673263098 0.0000070862 0.001722656 0.000077062

39 38 0 -11220.9673174137 0.0000088961 0.001443660 0.000064023

40 39 0 -11220.9673111222 0.0000062915 0.001620066 0.000060054

Page 76: Computational Modeling of Functionalized Carbon Nanotubes

67

41 40 0 -11220.9673057624 0.0000053598 0.001268625 0.000054014

42 41 0 -11220.9673029468 0.0000028156 0.000999354 0.000050210

43 42 0 -11220.9673019764 0.0000009704 0.000870414 0.000045554

44 43 0 -11220.9673013364 0.0000006400 0.001057281 0.000041623

45 44 0 -11220.9673015789 -0.0000002425 0.001065924 0.000034844

46 45 0 -11220.9673018716 -0.0000002927 0.000878027 0.000027616

47 46 0 -11220.9673024736 -0.0000006020 0.000436076 0.000022675

48 47 0 -11220.9673028056 -0.0000003320 0.000462199 0.000021529

49 48 0 -11220.9673032111 -0.0000004055 0.000337395 0.000022177

50 49 0 -11220.9673035532 -0.0000003421 0.000260492 0.000021710

51 50 0 -11220.9673038246 -0.0000002713 0.000236382 0.000020298

52 51 0 -11220.9673040244 -0.0000001998 0.000221674 0.000019300

53 52 0 -11220.9673042131 -0.0000001887 0.000182142 0.000016807

54 53 0 -11220.9673043441 -0.0000001310 0.000237164 0.000014972

55 54 0 -11220.9673044636 -0.0000001194 0.000188117 0.000015397

56 55 0 -11220.9673044975 -0.0000000340 0.000176425 0.000015277

57 56 0 -11220.9673045079 -0.0000000104 0.000070011 0.000014938

58 57 0 -11220.9673045238 -0.0000000159 0.000027607 0.000014883

59 58 0 -11220.9673045247 -0.0000000009 0.000020520 0.000014841

60 59 0 -11220.9673045299 -0.0000000052 0.000020035 0.000014862

61 60 0 -11220.9673045353 -0.0000000053 0.000015959 0.000014908

62 61 0 -11220.9673045422 -0.0000000069 0.000017809 0.000015001

63 62 0 -11220.9673045492 -0.0000000070 0.000038216 0.000015063

64 63 0 -11220.9673045375 0.0000000117 0.000077092 0.000014957

65 64 0 -11220.9673045173 0.0000000202 0.000002965 0.000014830

66 65 0 -11220.9673045176 -0.0000000003 0.000013653 0.000014843

67 66 0 -11220.9673045102 0.0000000074 0.000038273 0.000014705

68 67 0 -11220.9673044782 0.0000000320 0.000059024 0.000014201

69 68 0 -11220.9673044272 0.0000000510 0.000133632 0.000013477

70 69 0 -11220.9673043151 0.0000001121 0.000143246 0.000012034

71 70 0 -11220.9673042004 0.0000001147 0.000173926 0.000010611

72 71 0 -11220.9673041068 0.0000000936 0.000288123 0.000009275

73 72 0 -11220.9673039512 0.0000001556 0.000216324 0.000006754

74 73 0 -11220.9673038730 0.0000000781 0.000175625 0.000005719

75 74 0 -11220.9673038071 0.0000000659 0.000091816 0.000005844

76 75 0 -11220.9673037746 0.0000000325 0.000187887 0.000005558

77 76 0 -11220.9673037212 0.0000000534 0.000149386 0.000004894

78 77 0 -11220.9673037037 0.0000000175 0.000101816 0.000003896

79 78 0 -11220.9673037005 0.0000000032 0.000101709 0.000003161

80 79 0 -11220.9673037018 -0.0000000013 0.000067023 0.000002196

81 80 0 -11220.9673037043 -0.0000000025 0.000021957 0.000001583

82 81 0 -11220.9673037056 -0.0000000013 0.000021276 0.000001593

83 82 0 -11220.9673037078 -0.0000000022 0.000017989 0.000001556

84 83 0 -11220.9673037101 -0.0000000022 0.000007781 0.000001617

85 84 0 -11220.9673037101 -0.0000000000 0.000015925 0.000001580

----------------

ENERGY CONVERGED

----------------

TIME TO FORM FOCK OPERATORS= 23380.0 SECONDS ( 275.1 SEC/ITER)

TIME TO SOLVE SCF EQUATIONS= 5370.4 SECONDS ( 63.2 SEC/ITER)

FINAL RHF ENERGY IS -11220.9673037101 AFTER 85 ITERATIONS

Page 77: Computational Modeling of Functionalized Carbon Nanotubes

68

5,5 Graphene Sheet (300 carbons)

-------------------

RHF SCF CALCULATION

-------------------

NUCLEAR ENERGY = 82580.7746022311

MAXIT = 200 NPUNCH= 2

EXTRAP=T DAMP=F SHIFT=F RSTRCT=F DIIS=T DEM=F SOSCF=F

DENSITY CONV= 1.00E-05

MEMORY REQUIRED FOR RHF STEP= 15781179 WORDS.

ITER EX DEM TOTAL ENERGY E CHANGE DENSITY CHANGE DIIS ERROR

* * * INITIATING DIIS PROCEDURE * * *

1 0 0-11173.486902191-11173.486902191 2.679563981 0.863436750

2 1 0-10172.841472662 1000.645429529 2.579554050 2.261559349

3 2 0-11102.031161217 -929.189688555 5.203203585 0.782880006

4 3 0 -9776.097622537 1325.933538680 5.035186036 1.271709791

5 4 0-11205.243423258 -1429.145800721 1.872319005 0.290722733

6 5 0-10359.218908106 846.024515152 1.459834107 0.642392030

7 6 0-11132.874974637 -773.656066531 1.333141963 0.462664535

8 7 0-11210.597098806 -77.722124169 1.151991434 0.195343824

9 8 0-11183.181932954 27.415165852 0.993077585 0.361509478

10 9 0-11205.164877140 -21.982944186 0.961732957 0.412351641

11 10 0-11208.710643423 -3.545766284 0.867946012 0.356588842

12 11 0-11213.258354340 -4.547710917 0.928006623 0.130476772

13 12 0-11213.338026663 -0.079672323 0.757317089 0.179739048

14 13 0-11216.247946562 -2.909919899 0.646808333 0.057513824

15 14 0-11215.932224355 0.315722207 0.654784858 0.086055570

16 15 0-11216.622690298 -0.690465943 0.558786832 0.024803933

17 16 0-11216.558486142 0.064204155 0.659564736 0.053337520

18 17 0-11216.697835852 -0.139349710 0.395162314 0.033137824

19 18 0-11216.830473893 -0.132638041 0.126051226 0.023292656

20 19 0-11216.833076413 -0.002602520 0.172194474 0.025980529

21 20 0-11216.882226803 -0.049150390 0.069906181 0.018302956

22 21 0-11216.917779589 -0.035552786 0.054386374 0.012823309

23 22 0-11216.953358179 -0.035578590 0.064376539 0.008095045

24 23 0-11216.976563976 -0.023205797 0.053589439 0.004499108

25 24 0-11216.989305799 -0.012741823 0.039752833 0.002517599

26 25 0-11216.994296143 -0.004990344 0.028201593 0.001930249

27 26 0-11216.997165386 -0.002869243 0.030310300 0.001723993

28 27 0-11216.999433925 -0.002268539 0.017272523 0.001065792

29 28 0-11217.000477783 -0.001043859 0.018619397 0.000988286

30 29 0-11217.001486464 -0.001008680 0.010909080 0.000924309

31 30 0-11217.002025408 -0.000538945 0.024580516 0.000790960

32 31 0-11217.003077273 -0.001051865 0.020127828 0.000659276

33 32 0-11217.003801504 -0.000724231 0.027062094 0.000678057

34 33 0-11217.004718394 -0.000916890 0.020424519 0.000519761

35 34 0-11217.005305087 -0.000586693 0.032926454 0.000528524

36 35 0-11217.006169358 -0.000864271 0.014319735 0.000462864

37 36 0-11217.006541211 -0.000371853 0.024500248 0.000394410

38 37 0-11217.007092184 -0.000550973 0.033143218 0.000399016

39 38 0-11217.007724355 -0.000632171 0.010166800 0.000404188

40 39 0-11217.007908185 -0.000183829 0.023801984 0.000359731

Page 78: Computational Modeling of Functionalized Carbon Nanotubes

69

41 40 0-11217.008273012 -0.000364828 0.015878576 0.000315067

42 41 0-11217.008494376 -0.000221363 0.028463891 0.000314322

43 42 0-11217.008861949 -0.000367573 0.029741470 0.000283144

44 43 0-11217.009185469 -0.000323520 0.016533818 0.000207132

45 44 0-11217.009337226 -0.000151757 0.018434878 0.000190848

46 45 0-11217.009479625 -0.000142399 0.021506923 0.000171085

47 46 0-11217.009591753 -0.000112128 0.001903000 0.000205313

48 47 0-11217.009606437 -0.000014685 0.013789100 0.000131328

49 48 0-11217.009663867 -0.000057429 0.005388365 0.000113312

50 49 0-11217.009684519 -0.000020652 0.008648178 0.000104162

51 50 0-11217.009713412 -0.000028893 0.007281201 0.000062730

52 51 0-11217.009729851 -0.000016439 0.002843363 0.000064236

53 52 0-11217.009737980 -0.000008130 0.003479876 0.000064323

54 53 0-11217.009743255 -0.000005275 0.001209960 0.000038396

55 54 0-11217.009745565 -0.000002310 0.001731961 0.000034078

56 55 0-11217.009747674 -0.000002109 0.002333448 0.000026386

57 56 0-11217.009749272 -0.000001598 0.000426514 0.000019293

58 57 0-11217.009749593 -0.000000322 0.001266742 0.000015184

59 58 0-11217.009750093 -0.000000499 0.000243592 0.000013597

60 59 0-11217.009750223 -0.000000131 0.000648984 0.000011245

61 60 0-11217.009750434 -0.000000211 0.000660336 0.000007831

62 61 0-11217.009750600 -0.000000166 0.000273719 0.000005871

63 62 0-11217.009750656 -0.000000055 0.000337703 0.000004241

64 63 0-11217.009750709 -0.000000053 0.000201539 0.000003070

65 64 0-11217.009750733 -0.000000024 0.000152330 0.000004023

66 65 0-11217.009750751 -0.000000018 0.000129979 0.000003023

67 66 0-11217.009750764 -0.000000013 0.000109885 0.000002558

68 67 0-11217.009750774 -0.000000009 0.000061619 0.000002189

69 68 0-11217.009750780 -0.000000006 0.000061564 0.000002334

70 69 0-11217.009750783 -0.000000003 0.000020802 0.000001414

71 70 0-11217.009750784 -0.000000001 0.000070161 0.000001559

72 71 0-11217.009750787 -0.000000003 0.000045631 0.000000887

73 72 0-11217.009750788 -0.000000001 0.000029137 0.000000665

74 73 0-11217.009750789 -0.000000001 0.000013579 0.000000525

75 74 0-11217.009750790 -0.000000001 0.000020413 0.000000481

76 75 0-11217.009750791 -0.000000001 0.000009314 0.000000414

77 76 0-11217.009750790 0.000000001 0.000014572 0.000000383

----------------

ENERGY CONVERGED

----------------

TIME TO FORM FOCK OPERATORS= 4065.9 SECONDS ( 52.8 SEC/ITER)

TIME TO SOLVE SCF EQUATIONS= 1175.9 SECONDS ( 15.3 SEC/ITER)

FINAL ENERGY IS -11217.0097507900 AFTER 77 ITERATIONS

Page 79: Computational Modeling of Functionalized Carbon Nanotubes

70

n-succinimidyl-1-pyrenebutanoate

-------------------

RHF SCF CALCULATION

-------------------

NUCLEAR ENERGY = 2445.1740550380

MAXIT = 200 NPUNCH= 2

EXTRAP=T DAMP=F SHIFT=F RSTRCT=F DIIS=T DEM=F SOSCF=F

DENSITY CONV= 1.00E-05

MEMORY REQUIRED FOR RHF STEP= 198248 WORDS.

ITER EX DEM TOTAL ENERGY E CHANGE DENSITY CHANGE DIIS ERROR

* * * INITIATING DIIS PROCEDURE * * *

1 0 0 -1256.077264984 -1256.077264984 0.697586751 0.751535548

2 1 0 -1257.567351479 -1.490086495 0.395854087 0.264271792

3 2 0 -1257.776678594 -0.209327115 0.182394442 0.179434606

4 3 0 -1257.879630717 -0.102952123 0.031166605 0.012044597

5 4 0 -1257.881911866 -0.002281149 0.007543615 0.006048800

6 5 0 -1257.882166762 -0.000254896 0.004965380 0.002254822

7 6 0 -1257.882217216 -0.000050454 0.001196914 0.000535266

8 7 0 -1257.882221261 -0.000004044 0.000456875 0.000185959

9 8 0 -1257.882221761 -0.000000501 0.000216908 0.000086964

10 9 0 -1257.882221874 -0.000000113 0.000080582 0.000030912

11 10 0 -1257.882221896 -0.000000022 0.000044307 0.000015892

12 11 0 -1257.882221902 -0.000000006 0.000020502 0.000006294

13 12 0 -1257.882221903 -0.000000001 0.000008959 0.000002409

14 13 0 -1257.882221903 0.000000000 0.000003196 0.000000946

-----------------

DENSITY CONVERGED

-----------------

TIME TO FORM FOCK OPERATORS= 7.7 SECONDS ( 0.6 SEC/ITER)

TIME TO SOLVE SCF EQUATIONS= 0.7 SECONDS ( 0.1 SEC/ITER)

FINAL ENERGY IS -1257.8822219029 AFTER 14 ITERATIONS

Page 80: Computational Modeling of Functionalized Carbon Nanotubes

71

5-nm diameter nanotube segment

-------------------

RHF SCF CALCULATION

-------------------

NUCLEAR ENERGY = 82646.7950871668

MAXIT = 200 NPUNCH= 2

EXTRAP=T DAMP=F SHIFT=F RSTRCT=F DIIS=T DEM=F SOSCF=F

DENSITY CONV= 1.00E-05

MEMORY REQUIRED FOR RHF STEP= 15781179 WORDS.

ITER EX DEM TOTAL ENERGY E CHANGE DENSITY CHANGE DIIS ERROR

* * * INITIATING DIIS PROCEDURE * * *

1 0 0-11173.475256509-11173.475256509 2.689029786 0.835728731

2 1 0-10167.336713246 1006.138543263 2.648980813 2.256447242

3 2 0-11021.412891869 -854.076178622 5.227521565 0.781166312

4 3 0-10213.659793842 807.753098027 5.048456125 1.267706051

5 4 0-11135.854153026 -922.194359184 4.637263466 0.542904048

6 5 0 -9973.493405960 1162.360747067 4.579591730 1.183979501

7 6 0-11102.766909299 -1129.273503339 1.959537506 0.529465427

8 7 0-11174.490102841 -71.723193542 2.028148235 0.398799167

9 8 0-11113.985983774 60.504119067 1.798616304 0.354997468

10 9 0-11137.032091366 -23.046107592 1.565862722 0.401408909

11 10 0-11146.896414969 -9.864323603 1.076477015 0.359659865

12 11 0-11181.391932362 -34.495517393 1.034096727 0.279605201

13 12 0-11179.113316617 2.278615745 1.024763039 0.447526468

14 13 0-11208.649230410 -29.535913792 0.940987850 0.243210395

15 14 0-11196.144897504 12.504332905 0.866257121 0.395670598

16 15 0-11213.287922744 -17.143025239 0.831185786 0.123933049

17 16 0-11213.747195475 -0.459272732 0.894417178 0.171681025

18 17 0-11215.274760692 -1.527565217 0.766443161 0.082860379

19 18 0-11215.821433085 -0.546672392 0.806173625 0.087947034

20 19 0-11216.640548392 -0.819115307 0.279866982 0.037754918

21 20 0-11216.888768574 -0.248220182 0.094524415 0.025782025

22 21 0-11216.963719758 -0.074951184 0.087991313 0.013173753

23 22 0-11217.006473463 -0.042753705 0.060178019 0.006703635

24 23 0-11217.036044204 -0.029570741 0.039591367 0.004590363

25 24 0-11217.046382245 -0.010338041 0.038299528 0.003140064

26 25 0-11217.053730821 -0.007348576 0.035359856 0.002224489

27 26 0-11217.058214867 -0.004484045 0.027179248 0.001293192

28 27 0-11217.060119808 -0.001904942 0.015453981 0.000873058

29 28 0-11217.061062393 -0.000942585 0.011631307 0.000714493

30 29 0-11217.061565213 -0.000502820 0.010562971 0.000678605

31 30 0-11217.061943429 -0.000378217 0.010917485 0.000526964

32 31 0-11217.062331469 -0.000388040 0.012751393 0.000440142

33 32 0-11217.062710922 -0.000379453 0.010388637 0.000376120

34 33 0-11217.062954193 -0.000243270 0.010337198 0.000309013

35 34 0-11217.063125986 -0.000171794 0.009316775 0.000259181

36 35 0-11217.063261840 -0.000135854 0.008657701 0.000202987

37 36 0-11217.063361602 -0.000099762 0.006296432 0.000169323

38 37 0-11217.063424658 -0.000063055 0.006662411 0.000150910

39 38 0-11217.063485885 -0.000061227 0.007516198 0.000117163

40 39 0-11217.063534578 -0.000048693 0.006271481 0.000086667

Page 81: Computational Modeling of Functionalized Carbon Nanotubes

72

41 40 0-11217.063566786 -0.000032208 0.004952239 0.000064461

42 41 0-11217.063583401 -0.000016616 0.002876032 0.000057384

43 42 0-11217.063590261 -0.000006859 0.001923900 0.000045355

44 43 0-11217.063594895 -0.000004634 0.002580667 0.000054821

45 44 0-11217.063598262 -0.000003367 0.001321153 0.000039609

46 45 0-11217.063599957 -0.000001695 0.000871208 0.000035685

47 46 0-11217.063600831 -0.000000874 0.000786331 0.000034386

48 47 0-11217.063601484 -0.000000653 0.000713029 0.000023712

49 48 0-11217.063601931 -0.000000447 0.000430266 0.000020426

50 49 0-11217.063602177 -0.000000245 0.000358277 0.000015646

51 50 0-11217.063602298 -0.000000122 0.000230905 0.000011166

52 51 0-11217.063602399 -0.000000101 0.000151253 0.000009768

53 52 0-11217.063602479 -0.000000080 0.000190498 0.000006953

54 53 0-11217.063602518 -0.000000039 0.000102457 0.000005559

55 54 0-11217.063602570 -0.000000051 0.000104948 0.000004765

56 55 0-11217.063602602 -0.000000032 0.000115681 0.000004337

57 56 0-11217.063602635 -0.000000033 0.000108062 0.000003896

58 57 0-11217.063602664 -0.000000029 0.000124520 0.000003326

59 58 0-11217.063602689 -0.000000024 0.000100213 0.000002793

60 59 0-11217.063602705 -0.000000017 0.000115008 0.000002479

61 60 0-11217.063602722 -0.000000017 0.000119313 0.000002269

62 61 0-11217.063602736 -0.000000014 0.000095931 0.000001663

63 62 0-11217.063602745 -0.000000009 0.000062365 0.000001597

64 63 0-11217.063602749 -0.000000004 0.000069697 0.000001105

65 64 0-11217.063602753 -0.000000004 0.000063173 0.000001183

66 65 0-11217.063602755 -0.000000002 0.000041471 0.000000986

67 66 0-11217.063602757 -0.000000001 0.000026820 0.000000755

68 67 0-11217.063602758 -0.000000001 0.000020828 0.000000767

69 68 0-11217.063602757 0.000000001 0.000015284 0.000000626

70 69 0-11217.063602758 -0.000000001 0.000014153 0.000000553

71 70 0-11217.063602757 0.000000001 0.000009404 0.000000496

72 71 0-11217.063602757 0.000000000 0.000007251 0.000000348

-----------------

DENSITY CONVERGED

-----------------

TIME TO FORM FOCK OPERATORS= 6264.9 SECONDS ( 87.0 SEC/ITER)

TIME TO SOLVE SCF EQUATIONS= 1083.5 SECONDS ( 15.0 SEC/ITER)

FINAL ENERGY IS -11217.0636027572 AFTER 72 ITERATIONS

Page 82: Computational Modeling of Functionalized Carbon Nanotubes

73

5-nm diameter nanotube segment with n-succinimidyl-1-

pyrenebutanoate

-------------------

RHF SCF CALCULATION

-------------------

NUCLEAR ENERGY = 102224.6859737769

MAXIT = 200 NPUNCH= 2

EXTRAP=T DAMP=F SHIFT=F RSTRCT=F DIIS=T DEM=F SOSCF=F

DENSITY CONV= 1.00E-05

MEMORY REQUIRED FOR RHF STEP= 19415747 WORDS.

ITER EX DEM TOTAL ENERGY E CHANGE DENSITY CHANGE DIIS ERROR

* * * INITIATING DIIS PROCEDURE * * *

1 0 0-12429.598328494-12429.598328494 2.778972413 0.829754950

2 1 0-11420.700513094 1008.897815401 2.747234247 2.250269629

3 2 0-12230.255353317 -809.554840224 5.206525087 0.818864583

4 3 0-11465.740470566 764.514882751 5.022312474 1.249638171

5 4 0-12360.246484124 -894.506013558 4.813636070 0.537658141

6 5 0-10621.983587654 1738.262896470 4.758414718 1.849981265

7 6 0-12255.616327357 -1633.632739703 2.020084647 0.541650789

8 7 0-12176.052544916 79.563782441 1.993180511 0.700484193

9 8 0-12036.805066202 139.247478713 1.870401957 0.861528735

10 9 0-12388.519135646 -351.714069444 1.925771254 0.364810454

11 10 0-12205.018610370 183.500525276 1.874855784 0.586087905

12 11 0-12461.443760568 -256.425150198 1.848116682 0.200914620

13 12 0-12354.660303321 106.783457247 1.756083678 0.352662028

14 13 0-12461.682752616 -107.022449295 1.050355073 0.185370729

15 14 0-12453.929192471 7.753560146 1.112781851 0.256538559

16 15 0-12472.246448630 -18.317256159 0.940560553 0.084173481

17 16 0-12465.995489459 6.250959171 0.928651558 0.191041617

18 17 0-12473.953069343 -7.957579884 0.533862114 0.075788426

19 18 0-12474.484940071 -0.531870729 0.160686647 0.031727054

20 19 0-12474.696021302 -0.211081231 0.067971708 0.025104806

21 20 0-12474.774183322 -0.078162020 0.059623919 0.019973456

22 21 0-12474.845489249 -0.071305927 0.063143285 0.014110757

23 22 0-12474.903587800 -0.058098551 0.051600975 0.006080335

24 23 0-12474.921685696 -0.018097896 0.041165129 0.003452482

25 24 0-12474.930816571 -0.009130875 0.020575340 0.002203044

26 25 0-12474.933813802 -0.002997231 0.026080563 0.001664054

27 26 0-12474.936607413 -0.002793611 0.014445460 0.000768802

28 27 0-12474.937623512 -0.001016099 0.012235829 0.000704973

29 28 0-12474.938100036 -0.000476524 0.006931569 0.000379090

30 29 0-12474.938333722 -0.000233687 0.007949288 0.000308710

31 30 0-12474.938538606 -0.000204883 0.007603053 0.000297490

32 31 0-12474.938693736 -0.000155130 0.009891677 0.000259967

33 32 0-12474.938838095 -0.000144359 0.009836291 0.000223940

34 33 0-12474.938945353 -0.000107258 0.007360215 0.000188602

35 34 0-12474.939013242 -0.000067889 0.008713378 0.000164032

36 35 0-12474.939075596 -0.000062354 0.006083047 0.000138485

37 36 0-12474.939117604 -0.000042008 0.007436048 0.000115213

38 37 0-12474.939158639 -0.000041035 0.006993087 0.000094067

39 38 0-12474.939190329 -0.000031690 0.006275186 0.000079430

Page 83: Computational Modeling of Functionalized Carbon Nanotubes

74

40 39 0-12474.939215470 -0.000025141 0.007064344 0.000055323

41 40 0-12474.939231902 -0.000016431 0.004071140 0.000032674

42 41 0-12474.939237953 -0.000006051 0.001675926 0.000033955

43 42 0-12474.939239756 -0.000001803 0.001487344 0.000036130

44 43 0-12474.939240940 -0.000001185 0.001328836 0.000017006

45 44 0-12474.939241595 -0.000000654 0.000414378 0.000024042

46 45 0-12474.939241906 -0.000000311 0.000582056 0.000015552

47 46 0-12474.939242067 -0.000000161 0.000354848 0.000011892

48 47 0-12474.939242142 -0.000000075 0.000197530 0.000012823

49 48 0-12474.939242197 -0.000000055 0.000267162 0.000008103

50 49 0-12474.939242233 -0.000000037 0.000109030 0.000007520

51 50 0-12474.939242255 -0.000000021 0.000152111 0.000006251

52 51 0-12474.939242282 -0.000000027 0.000140585 0.000003983

53 52 0-12474.939242299 -0.000000017 0.000073335 0.000003929

54 53 0-12474.939242314 -0.000000016 0.000083592 0.000002164

55 54 0-12474.939242328 -0.000000014 0.000073664 0.000001855

56 55 0-12474.939242336 -0.000000008 0.000080577 0.000001630

57 56 0-12474.939242345 -0.000000009 0.000060860 0.000001237

58 57 0-12474.939242349 -0.000000004 0.000052541 0.000001002

59 58 0-12474.939242352 -0.000000003 0.000041576 0.000000831

60 59 0-12474.939242355 -0.000000002 0.000037722 0.000000616

61 60 0-12474.939242356 -0.000000002 0.000025346 0.000000763

62 61 0-12474.939242356 0.000000000 0.000025247 0.000000715

63 62 0-12474.939242358 -0.000000001 0.000017630 0.000000515

64 63 0-12474.939242358 -0.000000001 0.000016427 0.000000587

65 64 0-12474.939242359 0.000000000 0.000012508 0.000000367

----------------

ENERGY CONVERGED

----------------

TIME TO FORM FOCK OPERATORS= 5794.5 SECONDS ( 89.1 SEC/ITER)

TIME TO SOLVE SCF EQUATIONS= 533.5 SECONDS ( 8.2 SEC/ITER)

FINAL ENERGY IS -12474.9392423585 AFTER 65 ITERATIONS

Page 84: Computational Modeling of Functionalized Carbon Nanotubes

75

8-nm diameter nanotube segment

------------------- RHF SCF CALCULATION ------------------- NUCLEAR ENERGY = 82750.2624214494 MAXIT = 200 NPUNCH= 2 EXTRAP=T DAMP=F SHIFT=F RSTRCT=F DIIS=T DEM=F SOSCF=F DENSITY CONV= 1.00E-05 MEMORY REQUIRED FOR RHF STEP= 15781179 WORDS. ITER EX DEM TOTAL ENERGY E CHANGE DENSITY CHANGE DIIS ERROR * * * INITIATING DIIS PROCEDURE * * * 1 0 0-11173.457825105-11173.457825105 2.704344470 0.795745253 2 1 0-10168.550765101 1004.907060004 2.662693682 2.024952147 3 2 0-11026.700915679 -858.150150578 5.199926624 0.804652536 4 3 0-10247.942659077 778.758256602 5.021788706 1.222120916 5 4 0-11154.003688485 -906.061029408 4.674246514 0.428840170 6 5 0 -9823.049523698 1330.954164787 4.623586404 1.141151007 7 6 0-11054.703625288 -1231.654101590 1.892913119 0.584245227 8 7 0-11196.548696764 -141.845071476 1.911844311 0.257544044 9 8 0-10154.939558322 1041.609138441 1.099423140 0.871378896 10 9 0-10982.862241172 -827.922682850 1.772160468 0.560953905 11 10 0-11202.300193684 -219.437952512 0.908578395 0.279917395 12 11 0-11182.172299909 20.127893775 0.913574066 0.386577655 13 12 0-11212.601614899 -30.429314991 0.912918804 0.143406517 14 13 0-11209.718823493 2.882791406 0.877176862 0.156267613 15 14 0-11215.513444024 -5.794620531 0.843558098 0.090891986 16 15 0-11214.847851816 0.665592209 0.550940516 0.083318827 17 16 0-11216.636358005 -1.788506189 0.111416655 0.040067224 18 17 0-11216.803242646 -0.166884641 0.076636964 0.034715977 19 18 0-11216.894581491 -0.091338845 0.067659460 0.024631588 20 19 0-11216.971743035 -0.077161544 0.042889051 0.010773791 21 20 0-11217.003569319 -0.031826284 0.044427436 0.006013964 22 21 0-11217.020999443 -0.017430124 0.039887589 0.003427386 23 22 0-11217.031053752 -0.010054308 0.031409668 0.002271781 24 23 0-11217.035846181 -0.004792429 0.024355538 0.001266678 25 24 0-11217.037735018 -0.001888838 0.015650391 0.000847253 26 25 0-11217.038603988 -0.000868969 0.015423358 0.000637840 27 26 0-11217.039157175 -0.000553188 0.010182950 0.000482068 28 27 0-11217.039449234 -0.000292058 0.010989278 0.000431095 29 28 0-11217.039744606 -0.000295372 0.010090346 0.000391292 30 29 0-11217.039991762 -0.000247156 0.011246742 0.000371443 31 30 0-11217.040210110 -0.000218348 0.014101007 0.000304620 32 31 0-11217.040418647 -0.000208536 0.009697983 0.000247797 33 32 0-11217.040535502 -0.000116856 0.009084820 0.000196745 34 33 0-11217.040624742 -0.000089239 0.008237060 0.000164596 35 34 0-11217.040695619 -0.000070877 0.008743075 0.000125399 36 35 0-11217.040755990 -0.000060371 0.006591604 0.000099688 37 36 0-11217.040793138 -0.000037148 0.005968036 0.000069928 38 37 0-11217.040816996 -0.000023857 0.004688726 0.000057848 39 38 0-11217.040832306 -0.000015311 0.003741102 0.000048056 40 39 0-11217.040839224 -0.000006918 0.002099299 0.000051078 41 40 0-11217.040842464 -0.000003240 0.001600617 0.000042853 42 41 0-11217.040844354 -0.000001890 0.001269536 0.000042774 43 42 0-11217.040845510 -0.000001156 0.001314095 0.000031531 44 43 0-11217.040846231 -0.000000721 0.000630347 0.000032547 45 44 0-11217.040846654 -0.000000423 0.000623698 0.000022287 46 45 0-11217.040846883 -0.000000229 0.000507811 0.000020632 47 46 0-11217.040847058 -0.000000175 0.000259635 0.000016280 48 47 0-11217.040847171 -0.000000112 0.000328581 0.000012474 49 48 0-11217.040847263 -0.000000092 0.000120741 0.000009538 50 49 0-11217.040847317 -0.000000054 0.000159394 0.000007391 51 50 0-11217.040847384 -0.000000068 0.000120236 0.000005232 52 51 0-11217.040847440 -0.000000056 0.000109169 0.000005071 53 52 0-11217.040847489 -0.000000049 0.000114858 0.000004240 54 53 0-11217.040847527 -0.000000038 0.000129501 0.000003698 55 54 0-11217.040847560 -0.000000033 0.000078111 0.000003184 56 55 0-11217.040847576 -0.000000016 0.000102546 0.000002725

Page 85: Computational Modeling of Functionalized Carbon Nanotubes

76

57 56 0-11217.040847594 -0.000000018 0.000108161 0.000002252 58 57 0-11217.040847608 -0.000000014 0.000091318 0.000001821 59 58 0-11217.040847619 -0.000000011 0.000077421 0.000001584 60 59 0-11217.040847626 -0.000000007 0.000076920 0.000001768 61 60 0-11217.040847632 -0.000000006 0.000060660 0.000001603 62 61 0-11217.040847635 -0.000000003 0.000050476 0.000001428 63 62 0-11217.040847637 -0.000000001 0.000055817 0.000001386 64 63 0-11217.040847639 -0.000000002 0.000035686 0.000000982 65 64 0-11217.040847639 -0.000000001 0.000018436 0.000000919 66 65 0-11217.040847640 0.000000000 0.000022475 0.000000682 67 66 0-11217.040847640 0.000000000 0.000008738 0.000000584 68 67 0-11217.040847640 -0.000000001 0.000011657 0.000000468 ---------------- ENERGY CONVERGED ---------------- TIME TO FORM FOCK OPERATORS= 6205.6 SECONDS ( 91.3 SEC/ITER) TIME TO SOLVE SCF EQUATIONS= 1022.3 SECONDS ( 15.0 SEC/ITER) FINAL ENERGY IS -11217.0408476404 AFTER 68 ITERATIONS

Page 86: Computational Modeling of Functionalized Carbon Nanotubes

77

8-nm diameter nanotube segment with n-succinimidyl-1-

pyrenebutanoate

------------------- RHF SCF CALCULATION ------------------- NUCLEAR ENERGY = 101534.1180630069 MAXIT = 200 NPUNCH= 2 EXTRAP=T DAMP=F SHIFT=F RSTRCT=F DIIS=T DEM=F SOSCF=F DENSITY CONV= 1.00E-05 MEMORY REQUIRED FOR RHF STEP= 19415747 WORDS. ITER EX DEM TOTAL ENERGY E CHANGE DENSITY CHANGE DIIS ERROR * * * INITIATING DIIS PROCEDURE * * * 1 0 0-12429.590757922-12429.590757922 2.756511399 0.792796781 2 1 0-11431.127194311 998.463563611 2.722640339 2.052195296 3 2 0-12253.196498493 -822.069304182 5.256929489 0.765771731 4 3 0-11378.573564398 874.622934095 5.068618114 1.383474392 5 4 0-12360.364611992 -981.791047593 4.923848042 0.555708460 6 5 0-10618.280530397 1742.084081595 4.879308306 1.763019809 7 6 0-12299.946999816 -1681.666469419 2.004005170 0.497479861 8 7 0-12234.611408568 65.335591248 2.226023438 0.567068846 9 8 0-11460.679335649 773.932072919 1.655759182 1.218171467 10 9 0-12406.594949926 -945.915614277 2.049906961 0.336038202 11 10 0-12103.043686907 303.551263019 1.498178553 0.678488805 12 11 0-12397.224397935 -294.180711028 1.874271615 0.378925532 13 12 0-12462.366273889 -65.141875954 1.844141851 0.251632073 14 13 0-12285.916936156 176.449337733 1.017632464 0.515756277 15 14 0-12446.901289011 -160.984352855 1.070938316 0.252910169 16 15 0-12470.529057215 -23.627768204 0.951225301 0.120524076 17 16 0-12461.713931272 8.815125944 0.855333578 0.268384211 18 17 0-12473.908676677 -12.194745405 0.483734242 0.091926393 19 18 0-12474.256869468 -0.348192791 0.210175198 0.063286176 20 19 0-12474.672456874 -0.415587406 0.117396755 0.025341183 21 20 0-12474.768721287 -0.096264414 0.066490502 0.023308343 22 21 0-12474.841631050 -0.072909763 0.067039258 0.014202448 23 22 0-12474.883930912 -0.042299862 0.042677147 0.007015406 24 23 0-12474.902030347 -0.018099435 0.030378245 0.003168539 25 24 0-12474.909071479 -0.007041131 0.028831176 0.002504484 26 25 0-12474.914100467 -0.005028988 0.024228858 0.001652323 27 26 0-12474.916823055 -0.002722589 0.016504039 0.000901220 28 27 0-12474.918034930 -0.001211874 0.008660934 0.000906835 29 28 0-12474.918507439 -0.000472510 0.007973244 0.000471836 30 29 0-12474.918829070 -0.000321630 0.008736058 0.000455591 31 30 0-12474.919061582 -0.000232512 0.008988346 0.000356735 32 31 0-12474.919249304 -0.000187722 0.011230976 0.000254337 33 32 0-12474.919415734 -0.000166430 0.009376913 0.000221819 34 33 0-12474.919518110 -0.000102376 0.008306847 0.000175767 35 34 0-12474.919588407 -0.000070297 0.007034069 0.000149669 36 35 0-12474.919638290 -0.000049883 0.006091181 0.000127264 37 36 0-12474.919676245 -0.000037955 0.005649697 0.000109074 38 37 0-12474.919707435 -0.000031191 0.004927245 0.000094713 39 38 0-12474.919731712 -0.000024277 0.008205875 0.000082049 40 39 0-12474.919762949 -0.000031237 0.005489400 0.000061955 41 40 0-12474.919777600 -0.000014651 0.004112874 0.000050587 42 41 0-12474.919784956 -0.000007356 0.002222588 0.000031140 43 42 0-12474.919788271 -0.000003315 0.002034565 0.000035486 44 43 0-12474.919790324 -0.000002053 0.000936038 0.000032086 45 44 0-12474.919791540 -0.000001217 0.001374012 0.000029553 46 45 0-12474.919792443 -0.000000903 0.000649595 0.000026299 47 46 0-12474.919792808 -0.000000365 0.000439037 0.000021060 48 47 0-12474.919793038 -0.000000229 0.000480112 0.000018894 49 48 0-12474.919793140 -0.000000102 0.000230448 0.000012607 50 49 0-12474.919793232 -0.000000092 0.000230302 0.000011791 51 50 0-12474.919793284 -0.000000052 0.000106970 0.000007459 52 51 0-12474.919793339 -0.000000056 0.000147273 0.000006618 53 52 0-12474.919793375 -0.000000036 0.000126675 0.000004529 54 53 0-12474.919793413 -0.000000038 0.000096934 0.000002868

Page 87: Computational Modeling of Functionalized Carbon Nanotubes

78

55 54 0-12474.919793436 -0.000000023 0.000137505 0.000002526 56 55 0-12474.919793461 -0.000000025 0.000113144 0.000002137 57 56 0-12474.919793476 -0.000000015 0.000131534 0.000002004 58 57 0-12474.919793490 -0.000000014 0.000057242 0.000001524 59 58 0-12474.919793495 -0.000000005 0.000075885 0.000001392 60 59 0-12474.919793500 -0.000000006 0.000058822 0.000001189 61 60 0-12474.919793504 -0.000000004 0.000077318 0.000001157 62 61 0-12474.919793507 -0.000000002 0.000036288 0.000000829 63 62 0-12474.919793508 -0.000000001 0.000048196 0.000000797 64 63 0-12474.919793509 -0.000000001 0.000029820 0.000000781 65 64 0-12474.919793511 -0.000000001 0.000029842 0.000000546 66 65 0-12474.919793511 -0.000000001 0.000017111 0.000000533 67 66 0-12474.919793510 0.000000001 0.000010981 0.000000345 68 67 0-12474.919793510 0.000000000 0.000010992 0.000000262 69 68 0-12474.919793510 0.000000000 0.000003637 0.000000241 ----------------- DENSITY CONVERGED ----------------- TIME TO FORM FOCK OPERATORS= 7895.5 SECONDS ( 114.4 SEC/ITER) TIME TO SOLVE SCF EQUATIONS= 1419.4 SECONDS ( 20.6 SEC/ITER) FINAL ENERGY IS -12474.9197935102 AFTER 69 ITERATIONS

Page 88: Computational Modeling of Functionalized Carbon Nanotubes

79

10-nm diameter nanotube segment

------------------- RHF SCF CALCULATION ------------------- NUCLEAR ENERGY = 82623.0045924655 MAXIT = 200 NPUNCH= 2 EXTRAP=T DAMP=F SHIFT=F RSTRCT=F DIIS=T DEM=F SOSCF=F DENSITY CONV= 1.00E-05 MEMORY REQUIRED FOR RHF STEP= 15781179 WORDS. ITER EX DEM TOTAL ENERGY E CHANGE DENSITY CHANGE DIIS ERROR * * * INITIATING DIIS PROCEDURE * * * 1 0 0-11173.479401706-11173.479401706 2.684579771 0.845437119 2 1 0-10167.257734386 1006.221667321 2.644609147 2.263042379 3 2 0-11021.153517670 -853.895783284 5.226893804 0.781769913 4 3 0-10214.199287709 806.954229960 5.048116730 1.269113536 5 4 0-11135.407575938 -921.208288229 4.636788852 0.541566767 6 5 0 -9973.973881132 1161.433694806 4.579592433 1.184363649 7 6 0-11105.779056211 -1131.805175079 1.963993343 0.495928481 8 7 0-11172.627187110 -66.848130899 2.022369787 0.394090260 9 8 0-11129.714781153 42.912405957 1.947333571 0.335803164 10 9 0-11080.188939068 49.525842085 1.821925018 0.397782917 11 10 0-11205.136011016 -124.947071948 1.945496120 0.222272462 12 11 0-11032.416624813 172.719386203 1.595267509 0.451501609 13 12 0-11182.559586424 -150.142961611 0.885522913 0.304619372 14 13 0-11214.526799618 -31.967213194 0.991828180 0.125695330 15 14 0-11203.713374951 10.813424667 0.874605775 0.188965804 16 15 0-11215.809125162 -12.095750212 0.542432149 0.091920460 17 16 0-11216.424789088 -0.615663925 0.197877951 0.057252458 18 17 0-11216.746595829 -0.321806742 0.125381505 0.045009709 19 18 0-11216.872369355 -0.125773525 0.065643761 0.030461754 20 19 0-11216.962034559 -0.089665205 0.080038819 0.020793837 21 20 0-11217.020178902 -0.058144343 0.052159343 0.010874645 22 21 0-11217.041300735 -0.021121833 0.038517050 0.006202861 23 22 0-11217.053869397 -0.012568662 0.029516866 0.003799630 24 23 0-11217.059822402 -0.005953006 0.019510837 0.002128386 25 24 0-11217.062445306 -0.002622903 0.024188388 0.001509337 26 25 0-11217.064481873 -0.002036568 0.023747367 0.000859793 27 26 0-11217.065767334 -0.001285461 0.014332214 0.000656237 28 27 0-11217.066284390 -0.000517056 0.014240291 0.000570411 29 28 0-11217.066734845 -0.000450455 0.015127023 0.000551456 30 29 0-11217.067145991 -0.000411145 0.014926448 0.000501303 31 30 0-11217.067520561 -0.000374570 0.016671511 0.000442204 32 31 0-11217.067873293 -0.000352732 0.018280183 0.000385491 33 32 0-11217.068176990 -0.000303697 0.014254651 0.000287935 34 33 0-11217.068377184 -0.000200194 0.013632997 0.000238522 35 34 0-11217.068531340 -0.000154156 0.015092796 0.000187944 36 35 0-11217.068669146 -0.000137807 0.011366937 0.000139385 37 36 0-11217.068749896 -0.000080750 0.008715490 0.000105886 38 37 0-11217.068792782 -0.000042886 0.005460848 0.000077557 39 38 0-11217.068815448 -0.000022666 0.004842443 0.000065229 40 39 0-11217.068829843 -0.000014395 0.003615938 0.000060534 41 40 0-11217.068837224 -0.000007381 0.002658246 0.000063693 42 41 0-11217.068841178 -0.000003954 0.002025739 0.000054593 43 42 0-11217.068843459 -0.000002281 0.001873373 0.000053134 44 43 0-11217.068844721 -0.000001262 0.001290411 0.000045669 45 44 0-11217.068845314 -0.000000593 0.000722659 0.000036217 46 45 0-11217.068845614 -0.000000300 0.000581996 0.000034534 47 46 0-11217.068845810 -0.000000196 0.000316330 0.000025182 48 47 0-11217.068846022 -0.000000212 0.000382380 0.000022580 49 48 0-11217.068846219 -0.000000197 0.000285264 0.000017473 50 49 0-11217.068846382 -0.000000164 0.000241971 0.000011438 51 50 0-11217.068846475 -0.000000093 0.000203879 0.000009518 52 51 0-11217.068846588 -0.000000113 0.000200358 0.000006964 53 52 0-11217.068846656 -0.000000067 0.000136001 0.000006703 54 53 0-11217.068846720 -0.000000064 0.000143906 0.000005725 55 54 0-11217.068846773 -0.000000053 0.000156706 0.000004934 56 55 0-11217.068846821 -0.000000048 0.000129346 0.000004310

Page 89: Computational Modeling of Functionalized Carbon Nanotubes

80

57 56 0-11217.068846854 -0.000000033 0.000136349 0.000003644 58 57 0-11217.068846883 -0.000000029 0.000157660 0.000003085 59 58 0-11217.068846912 -0.000000029 0.000122744 0.000002972 60 59 0-11217.068846930 -0.000000018 0.000132977 0.000003608 61 60 0-11217.068846946 -0.000000016 0.000120801 0.000003280 62 61 0-11217.068846955 -0.000000009 0.000068356 0.000003088 63 62 0-11217.068846958 -0.000000004 0.000074049 0.000003047 64 63 0-11217.068846963 -0.000000004 0.000059111 0.000002390 65 64 0-11217.068846964 -0.000000002 0.000052816 0.000002267 66 65 0-11217.068846966 -0.000000002 0.000043008 0.000001655 67 66 0-11217.068846967 -0.000000001 0.000018419 0.000001346 68 67 0-11217.068846967 0.000000000 0.000015837 0.000001065 ---------------- ENERGY CONVERGED ---------------- TIME TO FORM FOCK OPERATORS= 6000.4 SECONDS ( 88.2 SEC/ITER) TIME TO SOLVE SCF EQUATIONS= 1030.4 SECONDS ( 15.2 SEC/ITER) FINAL ENERGY IS -11217.0688469671 AFTER 68 ITERATIONS

Page 90: Computational Modeling of Functionalized Carbon Nanotubes

81

10-nm diameter nanotube segment with n-succinimidyl-1-

pyrenebutanoate

------------------- RHF SCF CALCULATION ------------------- NUCLEAR ENERGY = 102499.0299109161 MAXIT = 200 NPUNCH= 2 EXTRAP=T DAMP=F SHIFT=F RSTRCT=F DIIS=T DEM=F SOSCF=F DENSITY CONV= 1.00E-05 MEMORY REQUIRED FOR RHF STEP= 19415747 WORDS. ITER EX DEM TOTAL ENERGY E CHANGE DENSITY CHANGE DIIS ERROR * * * INITIATING DIIS PROCEDURE * * * 1 0 0-12429.594662977-12429.594662977 2.787257300 0.834689385 2 1 0-11410.575847134 1019.018815843 2.753574076 2.267361557 3 2 0-12216.077829394 -805.501982260 5.221844091 0.849190761 4 3 0-11488.415985355 727.661844038 5.044212115 1.187310322 5 4 0-12299.304782343 -810.888796987 4.516385957 0.552698134 6 5 0-11319.850623079 979.454159264 4.472060464 0.994125068 7 6 0-12354.452979857 -1034.602356779 5.171896827 0.628701717 8 7 0 -7644.008790427 4710.444189430 4.952561097 3.057624559 9 8 0-11864.822586564 -4220.813796137 3.892714961 0.967772695 10 9 0-12433.121867700 -568.299281135 2.002935044 0.343337053 11 10 0-11796.086848247 637.035019453 1.830105582 0.965927832 12 11 0-12393.071628407 -596.984780160 1.742927198 0.346279221 13 12 0-12456.722926188 -63.651297780 1.518324581 0.316440356 14 13 0-12431.924405342 24.798520845 1.539061283 0.462268576 15 14 0-12451.350625591 -19.426220249 0.927200870 0.349653346 16 15 0-12468.441125905 -17.090500313 0.843586553 0.182040858 17 16 0-12467.190242405 1.250883500 0.897912119 0.227168785 18 17 0-12472.868764810 -5.678522405 0.700025095 0.078353525 19 18 0-12471.786891170 1.081873640 0.681562879 0.090693532 20 19 0-12474.463587530 -2.676696360 0.437413364 0.030784271 21 20 0-12474.458406880 0.005180650 0.124905087 0.044581225 22 21 0-12474.699296072 -0.240889192 0.073254690 0.025559709 23 22 0-12474.753117226 -0.053821153 0.073087576 0.020982778 24 23 0-12474.842077239 -0.088960013 0.057186501 0.011595899 25 24 0-12474.883930862 -0.041853623 0.084105413 0.006979549 26 25 0-12474.921307031 -0.037376169 0.025613400 0.003310455 27 26 0-12474.927760510 -0.006453479 0.023964435 0.002621198 28 27 0-12474.932261531 -0.004501021 0.026676767 0.001988562 29 28 0-12474.935702729 -0.003441198 0.022850791 0.001490414 30 29 0-12474.937679416 -0.001976687 0.022006384 0.000776291 31 30 0-12474.938714882 -0.001035467 0.012916334 0.000607612 32 31 0-12474.939150503 -0.000435621 0.011824025 0.000554298 33 32 0-12474.939519320 -0.000368817 0.012716990 0.000517942 34 33 0-12474.939836331 -0.000317011 0.013963547 0.000481295 35 34 0-12474.940160256 -0.000323925 0.025755359 0.000431922 36 35 0-12474.940657499 -0.000497243 0.020943769 0.000352752 37 36 0-12474.940965993 -0.000308494 0.020476822 0.000280533 38 37 0-12474.941201112 -0.000235119 0.018117591 0.000215152 39 38 0-12474.941362865 -0.000161753 0.018144806 0.000181268 40 39 0-12474.941488503 -0.000125638 0.011499868 0.000139019 41 40 0-12474.941550528 -0.000062025 0.012065405 0.000106185 42 41 0-12474.941598864 -0.000048336 0.007649138 0.000065940 43 42 0-12474.941621025 -0.000022160 0.003864519 0.000048212 44 43 0-12474.941628826 -0.000007801 0.003841819 0.000038743 45 44 0-12474.941634165 -0.000005340 0.003048313 0.000030414 46 45 0-12474.941637301 -0.000003136 0.002488340 0.000027428 47 46 0-12474.941638983 -0.000001682 0.002076369 0.000022823 48 47 0-12474.941639951 -0.000000968 0.001655303 0.000022120 49 48 0-12474.941640272 -0.000000321 0.000597972 0.000014411 50 49 0-12474.941640452 -0.000000180 0.000570698 0.000014116 51 50 0-12474.941640524 -0.000000072 0.000229944 0.000010447 52 51 0-12474.941640672 -0.000000148 0.000232266 0.000009080 53 52 0-12474.941640791 -0.000000119 0.000247933 0.000008082 54 53 0-12474.941640896 -0.000000104 0.000244877 0.000006669

Page 91: Computational Modeling of Functionalized Carbon Nanotubes

82

55 54 0-12474.941640973 -0.000000078 0.000213827 0.000005775 56 55 0-12474.941641032 -0.000000059 0.000173536 0.000005052 57 56 0-12474.941641073 -0.000000042 0.000194259 0.000004098 58 57 0-12474.941641112 -0.000000038 0.000148370 0.000003446 59 58 0-12474.941641138 -0.000000027 0.000137061 0.000002862 60 59 0-12474.941641158 -0.000000019 0.000103342 0.000002517 61 60 0-12474.941641171 -0.000000013 0.000142345 0.000002282 62 61 0-12474.941641186 -0.000000015 0.000145720 0.000001734 63 62 0-12474.941641198 -0.000000012 0.000146431 0.000001504 64 63 0-12474.941641208 -0.000000010 0.000135468 0.000001662 65 64 0-12474.941641213 -0.000000005 0.000104647 0.000001510 66 65 0-12474.941641216 -0.000000003 0.000071762 0.000001346 67 66 0-12474.941641218 -0.000000002 0.000062003 0.000001433 68 67 0-12474.941641220 -0.000000001 0.000050708 0.000001036 69 68 0-12474.941641221 -0.000000001 0.000025161 0.000000951 70 69 0-12474.941641220 0.000000000 0.000027759 0.000000760 71 70 0-12474.941641221 -0.000000001 0.000015813 0.000000488 72 71 0-12474.941641221 -0.000000001 0.000007643 0.000000438 ----------------- DENSITY CONVERGED ----------------- TIME TO FORM FOCK OPERATORS= 8412.4 SECONDS ( 116.8 SEC/ITER) TIME TO SOLVE SCF EQUATIONS= 1458.5 SECONDS ( 20.3 SEC/ITER) FINAL ENERGY IS -12474.9416412215 AFTER 72 ITERATIONS

Page 92: Computational Modeling of Functionalized Carbon Nanotubes

83

12-nm diameter nanotube segment

-------------------

RHF SCF CALCULATION

-------------------

NUCLEAR ENERGY = 82610.0873595022

MAXIT = 200 NPUNCH= 2

EXTRAP=T DAMP=F SHIFT=F RSTRCT=F DIIS=T DEM=F SOSCF=F

DENSITY CONV= 1.00E-05

MEMORY REQUIRED FOR RHF STEP= 15781179 WORDS.

ITER EX DEM TOTAL ENERGY E CHANGE DENSITY CHANGE DIIS ERROR

* * * INITIATING DIIS PROCEDURE * * *

1 0 0-11173.481620987-11173.481620987 2.682092632 0.850809812

2 1 0-10167.322879904 1006.158741083 2.641904455 2.264075229

3 2 0-11021.872901842 -854.550021938 5.225969800 0.786537898

4 3 0-10215.473135326 806.399766516 5.048035852 1.267511328

5 4 0-11134.152161465 -918.679026139 4.634647389 0.533494260

6 5 0 -9974.096349798 1160.055811666 4.576147913 1.199828386

7 6 0-11086.784032053 -1112.687682255 1.954285608 0.518024781

8 7 0-11174.990810227 -88.206778174 2.018286036 0.393013203

9 8 0-11133.947425472 41.043384755 1.874497904 0.306897830

10 9 0-11107.017769029 26.929656444 1.857030148 0.341818738

11 10 0-11178.885688406 -71.867919377 1.177332913 0.291733605

12 11 0-11127.426717349 51.458971056 1.174450264 0.346730651

13 12 0-11208.468999966 -81.042282616 1.418716915 0.199655434

14 13 0-11183.512935356 24.956064610 1.150037426 0.284983201

15 14 0-11215.816389547 -32.303454191 0.492571592 0.086866221

16 15 0-11215.536523891 0.279865656 0.391460508 0.136911557

17 16 0-11216.619619784 -1.083095893 0.090564163 0.060720735

18 17 0-11216.821290775 -0.201670991 0.070883009 0.034461045

19 18 0-11216.918997483 -0.097706708 0.063396134 0.024724964

20 19 0-11216.995504130 -0.076506647 0.061290444 0.013868810

21 20 0-11217.035139724 -0.039635595 0.047004017 0.005465079

22 21 0-11217.051528300 -0.016388575 0.043007710 0.003973779

23 22 0-11217.060742286 -0.009213986 0.027393940 0.002664397

24 23 0-11217.064880487 -0.004138201 0.025685713 0.002023091

25 24 0-11217.067742594 -0.002862107 0.018220662 0.000953132

26 25 0-11217.068960965 -0.001218370 0.010518799 0.000624830

27 26 0-11217.069472502 -0.000511537 0.009451700 0.000484203

28 27 0-11217.069815496 -0.000342994 0.012940211 0.000460326

29 28 0-11217.070142739 -0.000327243 0.016040830 0.000415237

30 29 0-11217.070505009 -0.000362270 0.015688088 0.000373725

31 30 0-11217.070790196 -0.000285187 0.018046577 0.000327105

32 31 0-11217.071045026 -0.000254830 0.017462857 0.000287297

33 32 0-11217.071249409 -0.000204383 0.015793364 0.000234673

34 33 0-11217.071396694 -0.000147284 0.014762743 0.000197362

35 34 0-11217.071505422 -0.000108728 0.010560898 0.000166502

36 35 0-11217.071571036 -0.000065614 0.008843747 0.000140831

37 36 0-11217.071620265 -0.000049229 0.015657423 0.000106570

38 37 0-11217.071673681 -0.000053416 0.005118257 0.000073051

39 38 0-11217.071687212 -0.000013531 0.004091432 0.000044378

40 39 0-11217.071694315 -0.000007103 0.002784866 0.000042312

Page 93: Computational Modeling of Functionalized Carbon Nanotubes

84

41 40 0-11217.071698455 -0.000004140 0.002462670 0.000047223

42 41 0-11217.071700907 -0.000002452 0.001458305 0.000040749

43 42 0-11217.071702184 -0.000001277 0.001133916 0.000035373

44 43 0-11217.071702783 -0.000000599 0.000611537 0.000028555

45 44 0-11217.071703066 -0.000000282 0.000385285 0.000026660

46 45 0-11217.071703247 -0.000000182 0.000575555 0.000019139

47 46 0-11217.071703356 -0.000000109 0.000197815 0.000016069

48 47 0-11217.071703440 -0.000000084 0.000252721 0.000014101

49 48 0-11217.071703491 -0.000000051 0.000196329 0.000008670

50 49 0-11217.071703528 -0.000000037 0.000132740 0.000006884

51 50 0-11217.071703557 -0.000000030 0.000100052 0.000005147

52 51 0-11217.071703579 -0.000000022 0.000124048 0.000004062

53 52 0-11217.071703605 -0.000000026 0.000123102 0.000003728

54 53 0-11217.071703636 -0.000000032 0.000149091 0.000003125

55 54 0-11217.071703662 -0.000000026 0.000113319 0.000002449

56 55 0-11217.071703678 -0.000000015 0.000114006 0.000002143

57 56 0-11217.071703691 -0.000000013 0.000128307 0.000001781

58 57 0-11217.071703702 -0.000000011 0.000088772 0.000001368

59 58 0-11217.071703707 -0.000000006 0.000119125 0.000001279

60 59 0-11217.071703713 -0.000000006 0.000072535 0.000000899

61 60 0-11217.071703715 -0.000000002 0.000037381 0.000000690

62 61 0-11217.071703716 -0.000000001 0.000040182 0.000000751

63 62 0-11217.071703717 -0.000000001 0.000034990 0.000000441

64 63 0-11217.071703716 0.000000001 0.000014875 0.000000453

65 64 0-11217.071703717 -0.000000001 0.000016138 0.000000281

----------------

ENERGY CONVERGED

----------------

TIME TO FORM FOCK OPERATORS= 4433.6 SECONDS ( 68.2 SEC/ITER)

TIME TO SOLVE SCF EQUATIONS= 404.7 SECONDS ( 6.2 SEC/ITER)

FINAL ENERGY IS -11217.0717037168 AFTER 65 ITERATIONS

Page 94: Computational Modeling of Functionalized Carbon Nanotubes

85

12-nm diameter nanotube segment with n-succinimidyl-1-

pyrenebutanoate

-------------------

RHF SCF CALCULATION

-------------------

NUCLEAR ENERGY = 102695.2740362209

MAXIT = 200 NPUNCH= 2

EXTRAP=T DAMP=F SHIFT=F RSTRCT=F DIIS=T DEM=F SOSCF=F

DENSITY CONV= 1.00E-05

MEMORY REQUIRED FOR RHF STEP= 19415747 WORDS.

ITER EX DEM TOTAL ENERGY E CHANGE DENSITY CHANGE DIIS ERROR

* * * INITIATING DIIS PROCEDURE * * *

1 0 0-12429.588104290-12429.588104290 2.800535302 0.835325979

2 1 0-11408.856648074 1020.731456216 2.765584475 2.268555909

3 2 0-12222.097617584 -813.240969511 5.187228061 0.808725741

4 3 0-11551.006496874 671.091120711 5.019715159 1.123026052

5 4 0-12254.067243356 -703.060746482 1.974030843 0.536991338

6 5 0-11797.165798781 456.901444575 3.320603313 0.691357587

7 6 0-11867.957679791 -70.791881011 3.341794460 1.114585538

8 7 0-11019.483829824 848.473849967 3.251518094 1.788655857

9 8 0-12450.152169044 -1430.668339221 4.564943800 0.270165166

10 9 0-10895.602916267 1554.549252777 4.433389124 1.650301853

11 10 0-11978.505356135 -1082.902439868 1.924441491 0.770782703

12 11 0-12333.968073121 -355.462716986 1.629417657 0.392932222

13 12 0-12470.709644870 -136.741571749 1.010550057 0.120507768

14 13 0-12433.439596101 37.270048768 0.972231157 0.267068147

15 14 0-12472.337824071 -38.898227970 0.932457746 0.094406993

16 15 0-12471.646470737 0.691353335 0.890895245 0.130884414

17 16 0-12473.493360632 -1.846889895 0.699201470 0.083714300

18 17 0-12473.651073028 -0.157712397 0.352107060 0.089357513

19 18 0-12474.117105423 -0.466032394 0.626621559 0.064680972

20 19 0-12474.687910701 -0.570805278 0.263676746 0.018803165

21 20 0-12474.810362177 -0.122451476 0.076093254 0.009743512

22 21 0-12474.853265148 -0.042902971 0.059179715 0.008278110

23 22 0-12474.882183602 -0.028918455 0.107689745 0.005778513

24 23 0-12474.911054753 -0.028871150 0.058369795 0.004473694

25 24 0-12474.926418942 -0.015364189 0.045772441 0.002782569

26 25 0-12474.933009634 -0.006590692 0.035231491 0.002236337

27 26 0-12474.936418568 -0.003408933 0.014749946 0.001344945

28 27 0-12474.937862386 -0.001443818 0.010230936 0.000673133

29 28 0-12474.938581981 -0.000719595 0.013708884 0.000529678

30 29 0-12474.939229335 -0.000647354 0.008181239 0.000440999

31 30 0-12474.939522428 -0.000293093 0.011733282 0.000366159

32 31 0-12474.939844606 -0.000322178 0.013741212 0.000345549

33 32 0-12474.940132590 -0.000287984 0.013462994 0.000303653

34 33 0-12474.940359966 -0.000227376 0.015334842 0.000273858

35 34 0-12474.940542285 -0.000182319 0.009297531 0.000222028

36 35 0-12474.940636514 -0.000094229 0.008426658 0.000177325

37 36 0-12474.940707505 -0.000070991 0.008002796 0.000157379

38 37 0-12474.940767202 -0.000059697 0.008023659 0.000129457

39 38 0-12474.940819868 -0.000052666 0.006839155 0.000094547

Page 95: Computational Modeling of Functionalized Carbon Nanotubes

86

40 39 0-12474.940853624 -0.000033756 0.005339071 0.000077189

41 40 0-12474.940874247 -0.000020623 0.004781823 0.000056854

42 41 0-12474.940887780 -0.000013534 0.002901653 0.000047989

43 42 0-12474.940893569 -0.000005789 0.002512838 0.000034024

44 43 0-12474.940896183 -0.000002614 0.000989546 0.000030785

45 44 0-12474.940897526 -0.000001343 0.000931524 0.000029933

46 45 0-12474.940898067 -0.000000541 0.000534264 0.000025667

47 46 0-12474.940898434 -0.000000366 0.000450182 0.000021618

48 47 0-12474.940898724 -0.000000291 0.000350770 0.000018948

49 48 0-12474.940898925 -0.000000201 0.000265671 0.000012730

50 49 0-12474.940899040 -0.000000115 0.000193473 0.000011588

51 50 0-12474.940899147 -0.000000107 0.000208437 0.000008246

52 51 0-12474.940899233 -0.000000086 0.000127833 0.000005541

53 52 0-12474.940899270 -0.000000037 0.000102905 0.000005103

54 53 0-12474.940899310 -0.000000040 0.000102435 0.000004929

55 54 0-12474.940899341 -0.000000032 0.000130578 0.000004639

56 55 0-12474.940899378 -0.000000036 0.000105693 0.000004109

57 56 0-12474.940899404 -0.000000026 0.000164824 0.000003691

58 57 0-12474.940899436 -0.000000032 0.000086636 0.000002995

59 58 0-12474.940899451 -0.000000015 0.000104601 0.000002674

60 59 0-12474.940899467 -0.000000015 0.000086487 0.000002137

61 60 0-12474.940899476 -0.000000010 0.000101774 0.000001849

62 61 0-12474.940899486 -0.000000010 0.000072336 0.000001929

63 62 0-12474.940899492 -0.000000005 0.000077386 0.000001499

64 63 0-12474.940899496 -0.000000005 0.000064789 0.000001735

65 64 0-12474.940899499 -0.000000003 0.000035595 0.000001166

66 65 0-12474.940899500 -0.000000001 0.000028804 0.000001032

67 66 0-12474.940899501 0.000000000 0.000018939 0.000000748

68 67 0-12474.940899501 -0.000000001 0.000008299 0.000000541

-----------------

DENSITY CONVERGED

-----------------

TIME TO FORM FOCK OPERATORS= 6450.7 SECONDS ( 94.9 SEC/ITER)

TIME TO SOLVE SCF EQUATIONS= 559.9 SECONDS ( 8.2 SEC/ITER)

FINAL ENERGY IS -12474.9408995014 AFTER 68 ITERATIONS

Page 96: Computational Modeling of Functionalized Carbon Nanotubes

87

15-nm diameter nanotube segment

-------------------

RHF SCF CALCULATION

-------------------

NUCLEAR ENERGY = 82599.5327696764

MAXIT = 200 NPUNCH= 2

EXTRAP=T DAMP=F SHIFT=F RSTRCT=F DIIS=T DEM=F SOSCF=F

DENSITY CONV= 1.00E-05

MEMORY REQUIRED FOR RHF STEP= 15781179 WORDS.

ITER EX DEM TOTAL ENERGY E CHANGE DENSITY CHANGE DIIS ERROR

* * * INITIATING DIIS PROCEDURE * * *

1 0 0-11173.483789687-11173.483789687 2.680002456 0.855292184

2 1 0-10167.648929457 1005.834860230 2.639149012 2.264901920

3 2 0-11024.228587742 -856.579658285 5.223811856 0.800388448

4 3 0-10220.838782338 803.389805405 5.047555865 1.259189858

5 4 0-11136.236221036 -915.397438698 4.609427130 0.524493908

6 5 0 -9957.469911621 1178.766309415 4.549621556 1.188881526

7 6 0-11093.684901362 -1136.214989741 1.965012956 0.483723112

8 7 0-11173.520413190 -79.835511828 1.949156281 0.349510693

9 8 0-11106.873482863 66.646930327 1.836212295 0.482458026

10 9 0-10968.101762933 138.771719930 1.280560050 0.553258172

11 10 0-11208.249181598 -240.147418665 1.132668176 0.219723460

12 11 0-11121.082944274 87.166237324 0.957295422 0.344524956

13 12 0-11212.205195919 -91.122251645 0.785785125 0.138424488

14 13 0-11201.439789696 10.765406223 0.823643980 0.314079958

15 14 0-11214.723134143 -13.283344447 0.853176394 0.117795374

16 15 0-11214.548272723 0.174861420 0.697800071 0.106699576

17 16 0-11216.274198666 -1.725925943 0.722424202 0.049625697

18 17 0-11216.326681812 -0.052483145 0.522561047 0.044584178

19 18 0-11216.777762886 -0.451081075 0.119371787 0.030027949

20 19 0-11216.899625535 -0.121862649 0.084276620 0.023426327

21 20 0-11216.977888693 -0.078263158 0.068355611 0.010246388

22 21 0-11217.018198802 -0.040310109 0.049328015 0.006952226

23 22 0-11217.046027902 -0.027829099 0.039254128 0.004385030

24 23 0-11217.058415057 -0.012387156 0.048395969 0.003560740

25 24 0-11217.065873794 -0.007458737 0.030174048 0.002403060

26 25 0-11217.069338378 -0.003464584 0.027556626 0.001578451

27 26 0-11217.071217335 -0.001878957 0.019469667 0.000861058

28 27 0-11217.071950708 -0.000733373 0.013779574 0.000644600

29 28 0-11217.072328249 -0.000377541 0.012552895 0.000484102

30 29 0-11217.072618614 -0.000290364 0.011048820 0.000489360

31 30 0-11217.072859820 -0.000241207 0.014370299 0.000428728

32 31 0-11217.073122978 -0.000263158 0.019398531 0.000353817

33 32 0-11217.073403042 -0.000280065 0.016000342 0.000291259

34 33 0-11217.073585132 -0.000182090 0.017330178 0.000245347

35 34 0-11217.073742437 -0.000157304 0.011709526 0.000196141

36 35 0-11217.073831006 -0.000088570 0.013054651 0.000175714

37 36 0-11217.073911991 -0.000080985 0.010324087 0.000137727

38 37 0-11217.073962280 -0.000050289 0.007947782 0.000105707

39 38 0-11217.073996431 -0.000034151 0.008484757 0.000064637

40 39 0-11217.074017311 -0.000020879 0.004047025 0.000049772

Page 97: Computational Modeling of Functionalized Carbon Nanotubes

88

41 40 0-11217.074025037 -0.000007727 0.002543063 0.000039776

42 41 0-11217.074028830 -0.000003793 0.002631845 0.000038206

43 42 0-11217.074031632 -0.000002802 0.002660333 0.000029911

44 43 0-11217.074033395 -0.000001763 0.001314428 0.000030017

45 44 0-11217.074034177 -0.000000782 0.000963609 0.000022073

46 45 0-11217.074034471 -0.000000294 0.000657086 0.000021022

47 46 0-11217.074034690 -0.000000219 0.000202098 0.000016529

48 47 0-11217.074034857 -0.000000167 0.000330466 0.000015183

49 48 0-11217.074034971 -0.000000114 0.000160404 0.000010355

50 49 0-11217.074035053 -0.000000081 0.000150866 0.000009193

51 50 0-11217.074035122 -0.000000069 0.000161814 0.000006166

52 51 0-11217.074035176 -0.000000054 0.000105867 0.000005154

53 52 0-11217.074035210 -0.000000034 0.000080339 0.000003648

54 53 0-11217.074035235 -0.000000025 0.000097126 0.000003112

55 54 0-11217.074035253 -0.000000019 0.000074256 0.000002761

56 55 0-11217.074035269 -0.000000015 0.000098034 0.000002426

57 56 0-11217.074035284 -0.000000015 0.000080515 0.000001932

58 57 0-11217.074035293 -0.000000009 0.000099536 0.000001575

59 58 0-11217.074035302 -0.000000009 0.000088526 0.000001493

60 59 0-11217.074035308 -0.000000006 0.000085324 0.000001163

61 60 0-11217.074035313 -0.000000004 0.000067227 0.000001774

62 61 0-11217.074035315 -0.000000002 0.000047683 0.000001234

63 62 0-11217.074035317 -0.000000002 0.000042789 0.000001275

64 63 0-11217.074035318 -0.000000002 0.000028274 0.000001026

65 64 0-11217.074035318 0.000000000 0.000025113 0.000000758

66 65 0-11217.074035318 0.000000000 0.000016172 0.000000679

67 66 0-11217.074035319 -0.000000001 0.000010777 0.000000466

68 67 0-11217.074035319 0.000000000 0.000013627 0.000000409

69 68 0-11217.074035319 0.000000000 0.000004996 0.000000307

-----------------

DENSITY CONVERGED

-----------------

TIME TO FORM FOCK OPERATORS= 5851.2 SECONDS ( 84.8 SEC/ITER)

TIME TO SOLVE SCF EQUATIONS= 1038.5 SECONDS ( 15.1 SEC/ITER)

FINAL ENERGY IS -11217.0740353193 AFTER 69 ITERATIONS

Page 98: Computational Modeling of Functionalized Carbon Nanotubes

89

15-nm diameter nanotube segment with n-succinimidyl-1-

pyrenebutanoate

-------------------

RHF SCF CALCULATION

-------------------

NUCLEAR ENERGY = 102902.6730148273

MAXIT = 200 NPUNCH= 2

EXTRAP=T DAMP=F SHIFT=F RSTRCT=F DIIS=T DEM=F SOSCF=F

DENSITY CONV= 1.00E-05

MEMORY REQUIRED FOR RHF STEP= 19415747 WORDS.

ITER EX DEM TOTAL ENERGY E CHANGE DENSITY CHANGE DIIS ERROR

* * * INITIATING DIIS PROCEDURE * * *

1 0 0-12429.574590069-12429.574590069 2.802361073 0.834414067

2 1 0-11409.506317169 1020.068272900 2.802826597 2.233663193

3 2 0-12142.938538673 -733.432221504 5.172242626 0.843559826

4 3 0-11459.120188699 683.818349975 4.986561852 1.281238155

5 4 0-12353.030267814 -893.910079116 4.993370772 0.523316328

6 5 0-10754.988176720 1598.042091094 4.952985582 1.206534533

7 6 0-12293.508824742 -1538.520648022 2.011812133 0.519593969

8 7 0-12137.341051826 156.167772916 1.941018279 0.640837951

9 8 0-12105.988165431 31.352886395 1.869813702 0.833274710

10 9 0-12448.106910749 -342.118745318 2.997672159 0.255007540

11 10 0-11965.139430320 482.967480429 2.156709202 0.866702983

12 11 0-12380.172810552 -415.033380232 1.598237207 0.475267512

13 12 0-12468.877702497 -88.704891945 1.133304801 0.191238400

14 13 0-12434.608529540 34.269172956 0.966876956 0.284911020

15 14 0-12466.278694244 -31.670164703 1.047857636 0.213828054

16 15 0-12461.740449067 4.538245177 0.863799333 0.323763907

17 16 0-12471.781839065 -10.041389997 0.806445006 0.132907757

18 17 0-12472.437422176 -0.655583112 0.804584389 0.101094268

19 18 0-12472.717355726 -0.279933550 0.753668789 0.080169651

20 19 0-12474.327163589 -1.609807863 0.273635950 0.027303403

21 20 0-12474.539728937 -0.212565349 0.126545827 0.027885110

22 21 0-12474.662507126 -0.122778189 0.108153260 0.014187759

23 22 0-12474.732092035 -0.069584909 0.064035306 0.011518246

24 23 0-12474.780488317 -0.048396281 0.046541580 0.006246521

25 24 0-12474.811703691 -0.031215375 0.076926888 0.004146376

26 25 0-12474.841945478 -0.030241787 0.033796855 0.003748231

27 26 0-12474.850610821 -0.008665343 0.039653561 0.002668271

28 27 0-12474.859316778 -0.008705958 0.045573027 0.002823009

29 28 0-12474.867756850 -0.008440071 0.044455758 0.003194757

30 29 0-12474.874312853 -0.006556003 0.049319888 0.003064621

31 30 0-12474.880712556 -0.006399703 0.006145258 0.003205790

32 31 0-12474.881622512 -0.000909956 0.034272235 0.003237377

33 32 0-12474.885508230 -0.003885719 0.043682882 0.003529132

34 33 0-12474.880696904 0.004811327 0.005855487 0.003552323

35 34 0-12474.880713361 -0.000016457 0.072532312 0.003297693

36 35 0-12474.874223217 0.006490144 0.130158231 0.003100759

37 36 0-12474.862511145 0.011712072 0.017815638 0.003137365

38 37 0-12474.864760455 -0.002249310 0.037446738 0.003018445

39 38 0-12474.860979203 0.003781252 0.007152042 0.003172974

Page 99: Computational Modeling of Functionalized Carbon Nanotubes

90

40 39 0-12474.861819717 -0.000840514 0.079045264 0.003144398

41 40 0-12474.869927079 -0.008107362 0.087514128 0.002254199

42 41 0-12474.862905593 0.007021487 0.020377485 0.003553700

43 42 0-12474.864965608 -0.002060015 0.033381823 0.003203598

44 43 0-12474.865462492 -0.000496884 0.086223175 0.003108240

45 44 0-12474.874825345 -0.009362853 0.037306563 0.002104344

46 45 0-12474.873640606 0.001184739 0.046718709 0.001868444

47 46 0-12474.872676607 0.000963998 0.005413139 0.001846979

48 47 0-12474.872439739 0.000236868 0.004441897 0.001829414

49 48 0-12474.872928325 -0.000488586 0.047779314 0.001844189

50 49 0-12474.877429415 -0.004501090 0.008787327 0.002125240

51 50 0-12474.878269005 -0.000839590 0.026531309 0.002155883

52 51 0-12474.875856791 0.002412215 0.075544990 0.002049109

53 52 0-12474.868611425 0.007245366 0.027554713 0.001619537

54 53 0-12474.866726764 0.001884661 0.100816600 0.001510039

55 54 0-12474.859468416 0.007258348 0.009888920 0.002285379

56 55 0-12474.859782627 -0.000314210 0.008491737 0.002143626

57 56 0-12474.859787712 -0.000005085 0.012441017 0.002009065

58 57 0-12474.859893572 -0.000105860 0.020360586 0.001936980

59 58 0-12474.860813015 -0.000919443 0.002518311 0.001911179

60 59 0-12474.860502015 0.000311000 0.069475091 0.002005593

61 60 0-12474.859527018 0.000974997 0.023729950 0.001511498

62 61 0-12474.860454502 -0.000927484 0.021349627 0.000939447

63 62 0-12474.861692203 -0.001237700 0.032275045 0.001061931

64 63 0-12474.863721560 -0.002029357 0.010037875 0.000959838

65 64 0-12474.863747425 -0.000025865 0.013678278 0.000879172

66 65 0-12474.863979718 -0.000232293 0.043821094 0.001009018

67 66 0-12474.864231372 -0.000251654 0.050699759 0.000917684

68 67 0-12474.864286016 -0.000054644 0.027011471 0.000792520

69 68 0-12474.864691596 -0.000405580 0.018216026 0.000793579

70 69 0-12474.865256466 -0.000564869 0.009486434 0.000803375

71 70 0-12474.865549956 -0.000293490 0.011659341 0.000776429

72 71 0-12474.865900006 -0.000350050 0.011427719 0.000736239

73 72 0-12474.866239419 -0.000339413 0.006404771 0.000633369

74 73 0-12474.866421722 -0.000182303 0.007582108 0.000637155

75 74 0-12474.866616607 -0.000194885 0.008277577 0.000597721

76 75 0-12474.866826372 -0.000209766 0.011697479 0.000588279

77 76 0-12474.867165631 -0.000339259 0.013654185 0.000570103

78 77 0-12474.867512721 -0.000347090 0.016572817 0.000530206

79 78 0-12474.867959947 -0.000447226 0.005631582 0.000473408

80 79 0-12474.868086538 -0.000126591 0.003024083 0.000450917

81 80 0-12474.868167297 -0.000080759 0.006144770 0.000449702

82 81 0-12474.867990555 0.000176741 0.008750202 0.000442519

83 82 0-12474.867980544 0.000010012 0.006087414 0.000481762

84 83 0-12474.867983725 -0.000003181 0.010210914 0.000452742

85 84 0-12474.867953748 0.000029977 0.008302003 0.000433688

86 85 0-12474.868028229 -0.000074481 0.022012198 0.000418250

87 86 0-12474.868410357 -0.000382128 0.008323370 0.000336029

88 87 0-12474.868525558 -0.000115201 0.022693107 0.000308448

89 88 0-12474.868825639 -0.000300081 0.017725965 0.000210303

90 89 0-12474.869012406 -0.000186767 0.017770535 0.000187481

91 90 0-12474.869163177 -0.000150772 0.023178315 0.000136808

92 91 0-12474.869312740 -0.000149563 0.011326067 0.000131980

93 92 0-12474.869385325 -0.000072584 0.008274957 0.000094824

Page 100: Computational Modeling of Functionalized Carbon Nanotubes

91

94 93 0-12474.869423195 -0.000037870 0.004125320 0.000102419

95 94 0-12474.869442031 -0.000018836 0.006083312 0.000111193

96 95 0-12474.869468095 -0.000026064 0.003258684 0.000125443

97 96 0-12474.869483137 -0.000015042 0.002645867 0.000137181

98 97 0-12474.869472617 0.000010520 0.000858047 0.000131383

99 98 0-12474.869467655 0.000004962 0.001015670 0.000125342

100 99 0-12474.869464948 0.000002707 0.002284913 0.000118496

101100 0-12474.869457274 0.000007674 0.001432081 0.000108070

102101 0-12474.869452958 0.000004316 0.001664579 0.000098573

103102 0-12474.869446865 0.000006093 0.003380797 0.000091325

104103 0-12474.869453512 -0.000006647 0.000865151 0.000091629

105104 0-12474.869449000 0.000004512 0.001167347 0.000087477

106105 0-12474.869449750 -0.000000750 0.001260280 0.000086333

107106 0-12474.869453371 -0.000003621 0.001976824 0.000088333

108107 0-12474.869456072 -0.000002702 0.001748825 0.000087883

109108 0-12474.869461382 -0.000005310 0.002576627 0.000091164

110109 0-12474.869466414 -0.000005032 0.002147567 0.000092873

111110 0-12474.869476275 -0.000009862 0.000299018 0.000102511

112111 0-12474.869475992 0.000000283 0.000532798 0.000102144

113112 0-12474.869473398 0.000002594 0.001309809 0.000098908

114113 0-12474.869469990 0.000003409 0.001987641 0.000091649

115114 0-12474.869465068 0.000004922 0.003339966 0.000078108

116115 0-12474.869471898 -0.000006831 0.004505448 0.000066677

117116 0-12474.869476901 -0.000005003 0.002946148 0.000056358

118117 0-12474.869475135 0.000001767 0.001440729 0.000042128

119118 0-12474.869474049 0.000001086 0.000943037 0.000033637

120119 0-12474.869475321 -0.000001272 0.001248404 0.000037291

121120 0-12474.869476494 -0.000001172 0.002090647 0.000030166

122121 0-12474.869478417 -0.000001923 0.000843283 0.000030205

123122 0-12474.869479385 -0.000000968 0.001288557 0.000031424

124123 0-12474.869480525 -0.000001140 0.001050746 0.000033000

125124 0-12474.869480926 -0.000000401 0.000689666 0.000033274

126125 0-12474.869481816 -0.000000891 0.000322570 0.000035450

127126 0-12474.869482380 -0.000000564 0.000029497 0.000037516

128127 0-12474.869482347 0.000000033 0.000209732 0.000037417

129128 0-12474.869482111 0.000000236 0.000475600 0.000035980

130129 0-12474.869481627 0.000000484 0.000296336 0.000032769

131130 0-12474.869481907 -0.000000280 0.000824641 0.000032073

132131 0-12474.869482818 -0.000000911 0.000922296 0.000033069

133132 0-12474.869482650 0.000000169 0.002140691 0.000028494

134133 0-12474.869482447 0.000000203 0.000737516 0.000013974

135134 0-12474.869482483 -0.000000036 0.000873927 0.000012655

136135 0-12474.869482663 -0.000000180 0.000564273 0.000010866

137136 0-12474.869482974 -0.000000311 0.000627726 0.000009312

138137 0-12474.869483333 -0.000000358 0.000252753 0.000007161

139138 0-12474.869483429 -0.000000097 0.000472277 0.000007390

140139 0-12474.869483573 -0.000000144 0.000450274 0.000007396

141140 0-12474.869483690 -0.000000117 0.000475961 0.000006499

142141 0-12474.869483785 -0.000000096 0.000329503 0.000006353

143142 0-12474.869483842 -0.000000057 0.000468388 0.000005694

144143 0-12474.869483947 -0.000000105 0.000130523 0.000004123

145144 0-12474.869483973 -0.000000025 0.000065338 0.000004358

146145 0-12474.869483994 -0.000000021 0.000038579 0.000004792

147146 0-12474.869484007 -0.000000014 0.000051281 0.000005061

Page 101: Computational Modeling of Functionalized Carbon Nanotubes

92

148147 0-12474.869484019 -0.000000012 0.000027586 0.000005401

149148 0-12474.869484023 -0.000000003 0.000155088 0.000005433

150149 0-12474.869484013 0.000000010 0.000109627 0.000005065

151150 0-12474.869484000 0.000000013 0.000074090 0.000004719

152151 0-12474.869483994 0.000000006 0.000053066 0.000004608

153152 0-12474.869483992 0.000000002 0.000151680 0.000004597

154153 0-12474.869483966 0.000000026 0.000017902 0.000004224

155154 0-12474.869483971 -0.000000005 0.000041436 0.000004343

156155 0-12474.869483984 -0.000000013 0.000027953 0.000004634

157156 0-12474.869483978 0.000000006 0.000210491 0.000004427

158157 0-12474.869483943 0.000000035 0.000179647 0.000002878

159158 0-12474.869483964 -0.000000021 0.000180409 0.000002240

160159 0-12474.869483983 -0.000000020 0.000063379 0.000001561

161160 0-12474.869483986 -0.000000003 0.000054036 0.000001406

162161 0-12474.869483990 -0.000000004 0.000041382 0.000001162

163162 0-12474.869483993 -0.000000003 0.000028923 0.000000988

164163 0-12474.869483995 -0.000000002 0.000038436 0.000000777

165164 0-12474.869483996 -0.000000002 0.000112654 0.000000737

166165 0-12474.869484000 -0.000000004 0.000045360 0.000000645

167166 0-12474.869484002 -0.000000002 0.000023027 0.000000595

168167 0-12474.869484002 0.000000000 0.000025980 0.000000584

169168 0-12474.869484004 -0.000000002 0.000053671 0.000000630

170169 0-12474.869484004 0.000000000 0.000013900 0.000000730

171170 0-12474.869484005 -0.000000001 0.000001451 0.000000760

-----------------

DENSITY CONVERGED

-----------------

TIME TO FORM FOCK OPERATORS= 20322.9 SECONDS ( 118.8 SEC/ITER)

TIME TO SOLVE SCF EQUATIONS= 3471.2 SECONDS ( 20.3 SEC/ITER)

FINAL ENERGY IS -12474.8694840048 AFTER 171 ITERATIONS

Page 102: Computational Modeling of Functionalized Carbon Nanotubes

93

20-nm diameter nanotube segment

------------------- RHF SCF CALCULATION ------------------- NUCLEAR ENERGY = 82590.3475149403 MAXIT = 200 NPUNCH= 2 EXTRAP=T DAMP=F SHIFT=F RSTRCT=F DIIS=T DEM=F SOSCF=F DENSITY CONV= 1.00E-05 MEMORY REQUIRED FOR RHF STEP= 15781179 WORDS. ITER EX DEM TOTAL ENERGY E CHANGE DENSITY CHANGE DIIS ERROR * * * INITIATING DIIS PROCEDURE * * * 1 0 0-11173.485144149-11173.485144149 2.678538371 0.859259257 2 1 0-10168.431578644 1005.053565505 2.635986739 2.263616451 3 2 0-11033.780593742 -865.349015099 5.173054786 0.847697233 4 3 0-10358.639365009 675.141228734 5.017990914 1.146127298 5 4 0-11074.377234104 -715.737869095 3.210985286 0.577325724 6 5 0-10579.272953113 495.104280991 3.175853241 0.947728203 7 6 0-11191.914845830 -612.641892717 2.431831359 0.257906588 8 7 0-10961.250179572 230.664666258 1.969933505 0.468588863 9 8 0-11177.238247957 -215.988068385 1.916284184 0.323556997 10 9 0-11006.819396715 170.418851243 1.451086075 0.385947385 11 10 0-11210.602224403 -203.782827688 1.352829244 0.137514567 12 11 0-11200.323757170 10.278467233 1.116246964 0.207737486 13 12 0-11210.728101403 -10.404344233 1.037378268 0.156505278 14 13 0-11213.772926677 -3.044825274 0.805779196 0.107309854 15 14 0-11214.632709659 -0.859782982 0.812553176 0.163126353 16 15 0-11214.591251748 0.041457910 0.787827908 0.193112606 17 16 0-11216.420351162 -1.829099413 0.307591060 0.076219891 18 17 0-11216.866873869 -0.446522707 0.112129785 0.028133872 19 18 0-11216.964956183 -0.098082314 0.071291986 0.012482090 20 19 0-11217.006612395 -0.041656212 0.055972047 0.010138091 21 20 0-11217.031433029 -0.024820634 0.065800063 0.005921104 22 21 0-11217.056235054 -0.024802025 0.039949996 0.003926857 23 22 0-11217.065199136 -0.008964083 0.032796221 0.002975072 24 23 0-11217.070478756 -0.005279619 0.029609355 0.002048073 25 24 0-11217.073246560 -0.002767804 0.012003417 0.001039744 26 25 0-11217.074126944 -0.000880384 0.011142395 0.000800327 27 26 0-11217.074735817 -0.000608873 0.008230020 0.000520712 28 27 0-11217.075020048 -0.000284231 0.007254513 0.000393169 29 28 0-11217.075234955 -0.000214907 0.006429624 0.000320089 30 29 0-11217.075418422 -0.000183467 0.008069894 0.000234057 31 30 0-11217.075585303 -0.000166880 0.007654741 0.000209408 32 31 0-11217.075712289 -0.000126987 0.007003059 0.000165611 33 32 0-11217.075805300 -0.000093010 0.004480300 0.000139195 34 33 0-11217.075851517 -0.000046218 0.004501969 0.000120046 35 34 0-11217.075891394 -0.000039877 0.004746722 0.000109542 36 35 0-11217.075927734 -0.000036339 0.005558902 0.000088797 37 36 0-11217.075963049 -0.000035315 0.004576556 0.000073955 38 37 0-11217.075986023 -0.000022974 0.005116854 0.000057071 39 38 0-11217.076003780 -0.000017758 0.003545083 0.000047245 40 39 0-11217.076012773 -0.000008993 0.002554304 0.000036714 41 40 0-11217.076017143 -0.000004370 0.002031651 0.000036035 42 41 0-11217.076019614 -0.000002471 0.001147272 0.000031625 43 42 0-11217.076020853 -0.000001239 0.000884663 0.000028647 44 43 0-11217.076021526 -0.000000673 0.000752312 0.000023814 45 44 0-11217.076021912 -0.000000386 0.000317191 0.000020212 46 45 0-11217.076022099 -0.000000187 0.000326425 0.000015619 47 46 0-11217.076022236 -0.000000137 0.000281415 0.000012065 48 47 0-11217.076022308 -0.000000072 0.000123584 0.000008907 49 48 0-11217.076022350 -0.000000042 0.000143184 0.000006732 50 49 0-11217.076022369 -0.000000019 0.000085949 0.000004958 51 50 0-11217.076022387 -0.000000018 0.000071010 0.000004359 52 51 0-11217.076022405 -0.000000018 0.000090016 0.000002683 53 52 0-11217.076022424 -0.000000019 0.000079862 0.000002489 54 53 0-11217.076022438 -0.000000014 0.000077370 0.000002258 55 54 0-11217.076022453 -0.000000014 0.000058616 0.000002042 56 55 0-11217.076022461 -0.000000008 0.000056309 0.000001815

Page 103: Computational Modeling of Functionalized Carbon Nanotubes

94

57 56 0-11217.076022467 -0.000000007 0.000076915 0.000001563 58 57 0-11217.076022476 -0.000000008 0.000082640 0.000001312 59 58 0-11217.076022483 -0.000000008 0.000058068 0.000001054 60 59 0-11217.076022487 -0.000000004 0.000070547 0.000000891 61 60 0-11217.076022490 -0.000000003 0.000049038 0.000000701 62 61 0-11217.076022492 -0.000000002 0.000033037 0.000000738 63 62 0-11217.076022493 -0.000000001 0.000019890 0.000000545 64 63 0-11217.076022493 -0.000000001 0.000021753 0.000000474 65 64 0-11217.076022493 0.000000000 0.000008026 0.000000292 66 65 0-11217.076022494 -0.000000001 0.000008683 0.000000275 ----------------- DENSITY CONVERGED ----------------- TIME TO FORM FOCK OPERATORS= 4426.6 SECONDS ( 67.1 SEC/ITER) TIME TO SOLVE SCF EQUATIONS= 405.0 SECONDS ( 6.1 SEC/ITER) FINAL ENERGY IS -11217.0760224941 AFTER 66 ITERATIONS

Page 104: Computational Modeling of Functionalized Carbon Nanotubes

95

20-nm diameter nanotube segment with n-succinimidyl-1-

pyrenebutanoate

------------------- RHF SCF CALCULATION ------------------- NUCLEAR ENERGY = 103153.8508173703 MAXIT = 200 NPUNCH= 2 EXTRAP=T DAMP=F SHIFT=F RSTRCT=F DIIS=T DEM=F SOSCF=F DENSITY CONV= 1.00E-05 MEMORY REQUIRED FOR RHF STEP= 19415747 WORDS. ITER EX DEM TOTAL ENERGY E CHANGE DENSITY CHANGE DIIS ERROR * * * INITIATING DIIS PROCEDURE * * * 1 0 0-12429.534334510-12429.534334510 2.827739755 0.831593362 2 1 0-11402.939462082 1026.594872429 2.791447156 2.274025127 3 2 0-12138.018107886 -735.078645804 5.216127584 0.751808352 4 3 0-11256.156866636 881.861241249 5.017760067 1.302964959 5 4 0-12374.425104179 -1118.268237542 5.203781819 0.330495870 6 5 0 -7361.548887904 5012.876216275 4.943531414 1.939972070 7 6 0-11566.618618695 -4205.069730791 4.415119676 0.804323723 8 7 0-12437.635101051 -871.016482356 2.856408264 0.399900760 9 8 0-11973.638019839 463.997081213 2.779113555 0.533317176 10 9 0-12426.933279986 -453.295260147 1.835270663 0.213388936 11 10 0-12385.254564380 41.678715606 1.626701121 0.335478740 12 11 0-12455.955773331 -70.701208952 0.898613386 0.249504884 13 12 0-12467.700245306 -11.744471975 1.056793880 0.286235339 14 13 0-12443.672994562 24.027250744 1.070953266 0.426344514 15 14 0-12468.660537366 -24.987542804 0.807096099 0.132441921 16 15 0-12469.225274690 -0.564737324 0.798819947 0.195331357 17 16 0-12471.495712074 -2.270437384 0.789994681 0.121040171 18 17 0-12473.234596759 -1.738884685 0.698058100 0.084529040 19 18 0-12473.398320164 -0.163723405 0.706775857 0.100755605 20 19 0-12474.604061655 -1.205741490 0.135854486 0.027323770 21 20 0-12474.734589447 -0.130527792 0.132384634 0.018864678 22 21 0-12474.803916673 -0.069327226 0.077188507 0.011448092 23 22 0-12474.847299539 -0.043382866 0.056119067 0.006355149 24 23 0-12474.880457687 -0.033158149 0.055986856 0.004975571 25 24 0-12474.895526325 -0.015068637 0.043713275 0.003802249 26 25 0-12474.904977933 -0.009451608 0.042931734 0.002950254 27 26 0-12474.910507662 -0.005529729 0.024042205 0.001504455 28 27 0-12474.912446276 -0.001938614 0.017344515 0.000841884 29 28 0-12474.913489719 -0.001043443 0.012294273 0.000699948 30 29 0-12474.913954571 -0.000464852 0.008645013 0.000422748 31 30 0-12474.914199321 -0.000244750 0.011175066 0.000386818 32 31 0-12474.914477570 -0.000278249 0.011263706 0.000324117 33 32 0-12474.914714811 -0.000237241 0.010638313 0.000262151 34 33 0-12474.914903288 -0.000188477 0.010433027 0.000216342 35 34 0-12474.915041686 -0.000138398 0.009211216 0.000174410 36 35 0-12474.915136620 -0.000094934 0.007188354 0.000141171 37 36 0-12474.915198788 -0.000062168 0.004837407 0.000124268 38 37 0-12474.915235181 -0.000036393 0.004776323 0.000106632 39 38 0-12474.915269600 -0.000034420 0.003600456 0.000084827 40 39 0-12474.915293271 -0.000023671 0.004443762 0.000070486 41 40 0-12474.915315555 -0.000022284 0.004024808 0.000055273 42 41 0-12474.915330138 -0.000014583 0.003365272 0.000047234 43 42 0-12474.915338969 -0.000008831 0.003243702 0.000046335 44 43 0-12474.915345203 -0.000006233 0.002445445 0.000032068 45 44 0-12474.915348699 -0.000003497 0.002633469 0.000036092 46 45 0-12474.915351328 -0.000002629 0.002363577 0.000024686 47 46 0-12474.915352792 -0.000001464 0.000777392 0.000020818 48 47 0-12474.915353207 -0.000000415 0.000755375 0.000021659 49 48 0-12474.915353476 -0.000000268 0.000678063 0.000014840 50 49 0-12474.915353676 -0.000000200 0.000327716 0.000012709 51 50 0-12474.915353812 -0.000000136 0.000240674 0.000010118 52 51 0-12474.915353877 -0.000000065 0.000192010 0.000006597 53 52 0-12474.915353918 -0.000000041 0.000182692 0.000006283 54 53 0-12474.915353978 -0.000000060 0.000164068 0.000004189

Page 105: Computational Modeling of Functionalized Carbon Nanotubes

96

55 54 0-12474.915354010 -0.000000032 0.000159857 0.000003697 56 55 0-12474.915354050 -0.000000040 0.000175808 0.000003401 57 56 0-12474.915354088 -0.000000038 0.000156524 0.000002456 58 57 0-12474.915354114 -0.000000026 0.000104103 0.000002090 59 58 0-12474.915354128 -0.000000014 0.000100583 0.000001750 60 59 0-12474.915354139 -0.000000011 0.000128074 0.000001303 61 60 0-12474.915354149 -0.000000010 0.000096534 0.000000981 62 61 0-12474.915354154 -0.000000004 0.000091980 0.000001192 63 62 0-12474.915354157 -0.000000003 0.000065160 0.000000774 64 63 0-12474.915354158 -0.000000001 0.000027489 0.000001017 65 64 0-12474.915354159 -0.000000001 0.000023153 0.000000657 66 65 0-12474.915354160 0.000000000 0.000028575 0.000000583 67 66 0-12474.915354160 -0.000000001 0.000009334 0.000000473 68 67 0-12474.915354160 0.000000000 0.000006659 0.000000285 ----------------- DENSITY CONVERGED ----------------- TIME TO FORM FOCK OPERATORS= 7694.2 SECONDS ( 113.2 SEC/ITER) TIME TO SOLVE SCF EQUATIONS= 1359.2 SECONDS ( 20.0 SEC/ITER) FINAL ENERGY IS -12474.9153541597 AFTER 68 ITERATIONS

Page 106: Computational Modeling of Functionalized Carbon Nanotubes

97

30-nm diameter nanotube segment

------------------- RHF SCF CALCULATION ------------------- NUCLEAR ENERGY = 103121.6072924879 MAXIT = 200 NPUNCH= 2 EXTRAP=T DAMP=F SHIFT=F RSTRCT=F DIIS=T DEM=F SOSCF=F DENSITY CONV= 1.00E-05 MEMORY REQUIRED FOR RHF STEP= 19415747 WORDS. ITER EX DEM TOTAL ENERGY E CHANGE DENSITY CHANGE DIIS ERROR * * * INITIATING DIIS PROCEDURE * * * 1 0 0-12429.541850413-12429.541850413 2.824776015 0.832076414 2 1 0-11404.373992857 1025.167857557 2.791322835 2.281304603 3 2 0-12145.392236906 -741.018244049 5.192120117 0.758992475 4 3 0-11367.911995996 777.480240910 5.002042052 1.240146399 5 4 0-12381.365536367 -1013.453540371 5.117337944 0.471891759 6 5 0-10091.224649024 2290.140887342 5.067773240 1.044223290 7 6 0-12311.750583103 -2220.525934078 2.065898806 0.444082770 8 7 0-12225.671738476 86.078844627 1.902241273 0.504601621 9 8 0-12351.966731890 -126.294993415 1.934117290 0.426769973 10 9 0-12008.383008179 343.583723712 1.526170587 0.726923623 11 10 0-12464.404193266 -456.021185088 1.254136543 0.309084130 12 11 0-12387.213768119 77.190425147 1.275034887 0.312677415 13 12 0-12456.834236660 -69.620468541 0.920772200 0.201565427 14 13 0-12440.889515615 15.944721046 0.911443606 0.228313889 15 14 0-12470.353736251 -29.464220636 0.957867635 0.114771650 16 15 0-12460.698893828 9.654842423 0.863490191 0.318828182 17 16 0-12472.296740946 -11.597847119 0.864184855 0.135507833 18 17 0-12472.556640292 -0.259899346 0.762868805 0.125493707 19 18 0-12474.378137082 -1.821496790 0.614390216 0.050548787 20 19 0-12474.173971608 0.204165474 0.587705941 0.060501060 21 20 0-12474.706319526 -0.532347918 0.105548409 0.030702218 22 21 0-12474.788310801 -0.081991275 0.080316236 0.021553071 23 22 0-12474.847474898 -0.059164098 0.086443523 0.009639308 24 23 0-12474.881297606 -0.033822707 0.059039603 0.007428365 25 24 0-12474.903933802 -0.022636196 0.028690355 0.003711207 26 25 0-12474.910389743 -0.006455941 0.025362429 0.002209499 27 26 0-12474.914480394 -0.004090651 0.017441442 0.001442711 28 27 0-12474.916717534 -0.002237140 0.017891333 0.000908461 29 28 0-12474.918135816 -0.001418282 0.008163966 0.000639906 30 29 0-12474.918483478 -0.000347661 0.006793578 0.000410367 31 30 0-12474.918671288 -0.000187811 0.007562891 0.000363897 32 31 0-12474.918833076 -0.000161788 0.007077287 0.000305819 33 32 0-12474.918963269 -0.000130193 0.007573836 0.000297508 34 33 0-12474.919075734 -0.000112465 0.011941918 0.000275288 35 34 0-12474.919219634 -0.000143899 0.011331090 0.000212249 36 35 0-12474.919324189 -0.000104556 0.009547011 0.000200021 37 36 0-12474.919390800 -0.000066611 0.008623641 0.000165111 38 37 0-12474.919442085 -0.000051285 0.007108319 0.000134382 39 38 0-12474.919476551 -0.000034466 0.005738209 0.000112357 40 39 0-12474.919500128 -0.000023577 0.007056725 0.000092935 41 40 0-12474.919524332 -0.000024204 0.006667006 0.000069547 42 41 0-12474.919540086 -0.000015755 0.004806928 0.000044931 43 42 0-12474.919547182 -0.000007095 0.002783445 0.000036013 44 43 0-12474.919549975 -0.000002793 0.001412623 0.000022718 45 44 0-12474.919551185 -0.000001210 0.001495408 0.000031608 46 45 0-12474.919551955 -0.000000770 0.001170547 0.000021429 47 46 0-12474.919552492 -0.000000536 0.000556082 0.000021125 48 47 0-12474.919552720 -0.000000228 0.000591456 0.000018005 49 48 0-12474.919552874 -0.000000154 0.000411953 0.000014219 50 49 0-12474.919552958 -0.000000084 0.000253814 0.000012817 51 50 0-12474.919553042 -0.000000083 0.000302531 0.000008982 52 51 0-12474.919553068 -0.000000026 0.000094546 0.000006987 53 52 0-12474.919553097 -0.000000029 0.000112381 0.000005971 54 53 0-12474.919553123 -0.000000026 0.000107546 0.000003853 55 54 0-12474.919553145 -0.000000022 0.000087906 0.000003565 56 55 0-12474.919553166 -0.000000021 0.000135097 0.000003014

Page 107: Computational Modeling of Functionalized Carbon Nanotubes

98

57 56 0-12474.919553192 -0.000000026 0.000110909 0.000002444 58 57 0-12474.919553209 -0.000000017 0.000115311 0.000002160 59 58 0-12474.919553221 -0.000000013 0.000077309 0.000001594 60 59 0-12474.919553227 -0.000000006 0.000074916 0.000001407 61 60 0-12474.919553232 -0.000000004 0.000066828 0.000001076 62 61 0-12474.919553234 -0.000000003 0.000061327 0.000000907 63 62 0-12474.919553238 -0.000000004 0.000062553 0.000000845 64 63 0-12474.919553240 -0.000000002 0.000045516 0.000000927 65 64 0-12474.919553241 -0.000000001 0.000028996 0.000000608 66 65 0-12474.919553241 0.000000000 0.000037565 0.000000752 67 66 0-12474.919553241 -0.000000001 0.000018938 0.000000514 68 67 0-12474.919553242 -0.000000001 0.000014124 0.000000447 ---------------- ENERGY CONVERGED ---------------- TIME TO FORM FOCK OPERATORS= 8291.2 SECONDS ( 121.9 SEC/ITER) TIME TO SOLVE SCF EQUATIONS= 1365.0 SECONDS ( 20.1 SEC/ITER) FINAL ENERGY IS -12474.9195532419 AFTER 68 ITERATIONS

Page 108: Computational Modeling of Functionalized Carbon Nanotubes

99

30-nm diameter nanotube segment with n-succinimidyl-1-

pyrenebutanoate

-------------------

RHF SCF CALCULATION

-------------------

NUCLEAR ENERGY = 103121.6072924879

MAXIT = 200 NPUNCH= 2

EXTRAP=T DAMP=F SHIFT=F RSTRCT=F DIIS=T DEM=F SOSCF=F

DENSITY CONV= 1.00E-05

MEMORY REQUIRED FOR RHF STEP= 19415747 WORDS.

ITER EX DEM TOTAL ENERGY E CHANGE DENSITY CHANGE DIIS ERROR

* * * INITIATING DIIS PROCEDURE * * *

1 0 0-12429.541850413-12429.541850413 2.824776015 0.832076414

2 1 0-11404.373992857 1025.167857557 2.791322835 2.281304603

3 2 0-12145.392236906 -741.018244049 5.192120117 0.758992475

4 3 0-11367.911995996 777.480240910 5.002042052 1.240146399

5 4 0-12381.365536367 -1013.453540371 5.117337944 0.471891759

6 5 0-10091.224649024 2290.140887342 5.067773240 1.044223290

7 6 0-12311.750583103 -2220.525934078 2.065898806 0.444082770

8 7 0-12225.671738476 86.078844627 1.902241273 0.504601621

9 8 0-12351.966731890 -126.294993415 1.934117290 0.426769973

10 9 0-12008.383008179 343.583723712 1.526170587 0.726923623

11 10 0-12464.404193266 -456.021185088 1.254136543 0.309084130

12 11 0-12387.213768119 77.190425147 1.275034887 0.312677415

13 12 0-12456.834236660 -69.620468541 0.920772200 0.201565427

14 13 0-12440.889515615 15.944721046 0.911443606 0.228313889

15 14 0-12470.353736251 -29.464220636 0.957867635 0.114771650

16 15 0-12460.698893828 9.654842423 0.863490191 0.318828182

17 16 0-12472.296740946 -11.597847119 0.864184855 0.135507833

18 17 0-12472.556640292 -0.259899346 0.762868805 0.125493707

19 18 0-12474.378137082 -1.821496790 0.614390216 0.050548787

20 19 0-12474.173971608 0.204165474 0.587705941 0.060501060

21 20 0-12474.706319526 -0.532347918 0.105548409 0.030702218

22 21 0-12474.788310801 -0.081991275 0.080316236 0.021553071

23 22 0-12474.847474898 -0.059164098 0.086443523 0.009639308

24 23 0-12474.881297606 -0.033822707 0.059039603 0.007428365

25 24 0-12474.903933802 -0.022636196 0.028690355 0.003711207

26 25 0-12474.910389743 -0.006455941 0.025362429 0.002209499

27 26 0-12474.914480394 -0.004090651 0.017441442 0.001442711

28 27 0-12474.916717534 -0.002237140 0.017891333 0.000908461

29 28 0-12474.918135816 -0.001418282 0.008163966 0.000639906

30 29 0-12474.918483478 -0.000347661 0.006793578 0.000410367

31 30 0-12474.918671288 -0.000187811 0.007562891 0.000363897

32 31 0-12474.918833076 -0.000161788 0.007077287 0.000305819

33 32 0-12474.918963269 -0.000130193 0.007573836 0.000297508

34 33 0-12474.919075734 -0.000112465 0.011941918 0.000275288

35 34 0-12474.919219634 -0.000143899 0.011331090 0.000212249

36 35 0-12474.919324189 -0.000104556 0.009547011 0.000200021

37 36 0-12474.919390800 -0.000066611 0.008623641 0.000165111

38 37 0-12474.919442085 -0.000051285 0.007108319 0.000134382

39 38 0-12474.919476551 -0.000034466 0.005738209 0.000112357

Page 109: Computational Modeling of Functionalized Carbon Nanotubes

100

40 39 0-12474.919500128 -0.000023577 0.007056725 0.000092935

41 40 0-12474.919524332 -0.000024204 0.006667006 0.000069547

42 41 0-12474.919540086 -0.000015755 0.004806928 0.000044931

43 42 0-12474.919547182 -0.000007095 0.002783445 0.000036013

44 43 0-12474.919549975 -0.000002793 0.001412623 0.000022718

45 44 0-12474.919551185 -0.000001210 0.001495408 0.000031608

46 45 0-12474.919551955 -0.000000770 0.001170547 0.000021429

47 46 0-12474.919552492 -0.000000536 0.000556082 0.000021125

48 47 0-12474.919552720 -0.000000228 0.000591456 0.000018005

49 48 0-12474.919552874 -0.000000154 0.000411953 0.000014219

50 49 0-12474.919552958 -0.000000084 0.000253814 0.000012817

51 50 0-12474.919553042 -0.000000083 0.000302531 0.000008982

52 51 0-12474.919553068 -0.000000026 0.000094546 0.000006987

53 52 0-12474.919553097 -0.000000029 0.000112381 0.000005971

54 53 0-12474.919553123 -0.000000026 0.000107546 0.000003853

55 54 0-12474.919553145 -0.000000022 0.000087906 0.000003565

56 55 0-12474.919553166 -0.000000021 0.000135097 0.000003014

57 56 0-12474.919553192 -0.000000026 0.000110909 0.000002444

58 57 0-12474.919553209 -0.000000017 0.000115311 0.000002160

59 58 0-12474.919553221 -0.000000013 0.000077309 0.000001594

60 59 0-12474.919553227 -0.000000006 0.000074916 0.000001407

61 60 0-12474.919553232 -0.000000004 0.000066828 0.000001076

62 61 0-12474.919553234 -0.000000003 0.000061327 0.000000907

63 62 0-12474.919553238 -0.000000004 0.000062553 0.000000845

64 63 0-12474.919553240 -0.000000002 0.000045516 0.000000927

65 64 0-12474.919553241 -0.000000001 0.000028996 0.000000608

66 65 0-12474.919553241 0.000000000 0.000037565 0.000000752

67 66 0-12474.919553241 -0.000000001 0.000018938 0.000000514

68 67 0-12474.919553242 -0.000000001 0.000014124 0.000000447

----------------

ENERGY CONVERGED

----------------

TIME TO FORM FOCK OPERATORS= 8291.2 SECONDS ( 121.9 SEC/ITER)

TIME TO SOLVE SCF EQUATIONS= 1365.0 SECONDS ( 20.1 SEC/ITER)

FINAL ENERGY IS -12474.9195532419 AFTER 68 ITERATIONS

Page 110: Computational Modeling of Functionalized Carbon Nanotubes

101

50-nm diameter nanotube segment

-------------------

RHF SCF CALCULATION

-------------------

NUCLEAR ENERGY = 82582.4586982044

MAXIT = 200 NPUNCH= 2

EXTRAP=T DAMP=F SHIFT=F RSTRCT=F DIIS=T DEM=F SOSCF=F

DENSITY CONV= 1.00E-05

MEMORY REQUIRED FOR RHF STEP= 15781179 WORDS.

ITER EX DEM TOTAL ENERGY E CHANGE DENSITY CHANGE DIIS ERROR

* * * INITIATING DIIS PROCEDURE * * *

1 0 0-11173.486482921-11173.486482921 2.678791577 0.862694665

2 1 0-10171.458593867 1002.027889054 2.579365983 2.261980333

3 2 0-11099.018896803 -927.560302936 5.188798040 0.782446337

4 3 0 -9878.956852369 1220.062044434 5.028890540 1.331686067

5 4 0-11203.115102883 -1324.158250514 1.869961775 0.282220612

6 5 0-10098.878767243 1104.236335640 1.223175730 0.719750221

7 6 0-11051.700252409 -952.821485166 1.730769371 0.559904679

8 7 0-11211.504369001 -159.804116593 1.816196261 0.194574643

9 8 0-11136.896122717 74.608246284 1.378515291 0.321295366

10 9 0-11207.533675908 -70.637553191 0.874902692 0.196581160

11 10 0-11208.899600669 -1.365924760 0.919121252 0.187389575

12 11 0-11214.999830958 -6.100230289 0.717160063 0.091640948

13 12 0-11214.041710953 0.958120005 0.781638408 0.174209807

14 13 0-11215.536806391 -1.495095438 0.681654641 0.085499333

15 14 0-11216.480368853 -0.943562462 0.670828578 0.055076235

16 15 0-11215.809135867 0.671232986 0.627415659 0.092041942

17 16 0-11216.850475701 -1.041339835 0.112996497 0.029155503

18 17 0-11216.949026415 -0.098550714 0.089167181 0.012749475

19 18 0-11216.989990096 -0.040963681 0.057926117 0.008853058

20 19 0-11217.018475409 -0.028485313 0.061118736 0.007268746

21 20 0-11217.043384014 -0.024908604 0.049508099 0.004732457

22 21 0-11217.060172902 -0.016788889 0.032164349 0.002526102

23 22 0-11217.065189004 -0.005016102 0.028328088 0.002311769

24 23 0-11217.068767886 -0.003578882 0.027848133 0.001596015

25 24 0-11217.070985934 -0.002218048 0.020897395 0.001107185

26 25 0-11217.072204876 -0.001218941 0.023373664 0.000940568

27 26 0-11217.073334804 -0.001129929 0.017806265 0.000709847

28 27 0-11217.074017862 -0.000683057 0.023773720 0.000644420

29 28 0-11217.074816479 -0.000798618 0.024058661 0.000556498

30 29 0-11217.075590373 -0.000773894 0.025516148 0.000531599

31 30 0-11217.076251761 -0.000661388 0.018836750 0.000410631

32 31 0-11217.076715494 -0.000463734 0.018432186 0.000351325

33 32 0-11217.077062254 -0.000346760 0.015036751 0.000273058

34 33 0-11217.077277051 -0.000214797 0.015550794 0.000221664

35 34 0-11217.077447928 -0.000170877 0.014916604 0.000204936

36 35 0-11217.077571079 -0.000123151 0.012919410 0.000164929

37 36 0-11217.077652403 -0.000081324 0.011209757 0.000116968

38 37 0-11217.077702361 -0.000049958 0.009458123 0.000131140

39 38 0-11217.077735698 -0.000033337 0.007213582 0.000081560

40 39 0-11217.077753301 -0.000017603 0.004429858 0.000071062

Page 111: Computational Modeling of Functionalized Carbon Nanotubes

102

41 40 0-11217.077763074 -0.000009774 0.004932613 0.000052192

42 41 0-11217.077769499 -0.000006425 0.003411068 0.000037956

43 42 0-11217.077772476 -0.000002977 0.001119694 0.000024867

44 43 0-11217.077773351 -0.000000875 0.000834744 0.000026428

45 44 0-11217.077773904 -0.000000553 0.000618912 0.000017626

46 45 0-11217.077774272 -0.000000368 0.000540794 0.000016084

47 46 0-11217.077774610 -0.000000338 0.000362535 0.000011723

48 47 0-11217.077774847 -0.000000237 0.000323168 0.000009366

49 48 0-11217.077774971 -0.000000124 0.000257777 0.000008819

50 49 0-11217.077775117 -0.000000146 0.000234027 0.000007964

51 50 0-11217.077775207 -0.000000090 0.000224651 0.000007756

52 51 0-11217.077775284 -0.000000077 0.000256136 0.000007237

53 52 0-11217.077775367 -0.000000083 0.000265455 0.000006461

54 53 0-11217.077775442 -0.000000076 0.000316342 0.000005418

55 54 0-11217.077775524 -0.000000082 0.000234991 0.000004351

56 55 0-11217.077775571 -0.000000047 0.000229180 0.000003421

57 56 0-11217.077775609 -0.000000037 0.000150841 0.000002245

58 57 0-11217.077775626 -0.000000017 0.000125986 0.000001864

59 58 0-11217.077775637 -0.000000011 0.000109573 0.000002150

60 59 0-11217.077775644 -0.000000007 0.000063266 0.000002212

61 60 0-11217.077775648 -0.000000004 0.000061143 0.000001824

62 61 0-11217.077775651 -0.000000003 0.000049196 0.000001829

63 62 0-11217.077775652 -0.000000001 0.000034000 0.000001519

64 63 0-11217.077775653 -0.000000001 0.000025028 0.000001246

65 64 0-11217.077775653 0.000000000 0.000015102 0.000001140

66 65 0-11217.077775654 -0.000000001 0.000013931 0.000000847

----------------

ENERGY CONVERGED

----------------

TIME TO FORM FOCK OPERATORS= 4990.6 SECONDS ( 75.6 SEC/ITER)

TIME TO SOLVE SCF EQUATIONS= 994.0 SECONDS ( 15.1 SEC/ITER)

FINAL ENERGY IS -11217.0777756536 AFTER 66 ITERATIONS

Page 112: Computational Modeling of Functionalized Carbon Nanotubes

103

50-nm diameter nanotube segment with n-succinimidyl-1-

pyrenebutanoate

-------------------

RHF SCF CALCULATION

-------------------

NUCLEAR ENERGY = 103545.8971110649

MAXIT = 200 NPUNCH= 2

EXTRAP=T DAMP=F SHIFT=F RSTRCT=F DIIS=T DEM=F SOSCF=F

DENSITY CONV= 1.00E-05

MEMORY REQUIRED FOR RHF STEP= 19415747 WORDS.

ITER EX DEM TOTAL ENERGY E CHANGE DENSITY CHANGE DIIS ERROR

* * * INITIATING DIIS PROCEDURE * * *

1 0 0-12429.263508269-12429.263508269 2.917875494 0.677330153

2 1 0-11362.176248747 1067.087259522 2.887139823 2.212355284

3 2 0-12227.623820233 -865.447571487 5.230455969 0.587884640

4 3 0-10443.818274210 1783.805546023 5.008638146 1.406993856

5 4 0-12424.720585741 -1980.902311531 5.208315888 0.266861310

6 5 0 -4720.687899502 7704.032686239 4.749223244 1.716767358

7 6 0 -9667.061923676 -4946.374024173 4.806813913 1.262047876

8 7 0-12001.222893994 -2334.160970318 1.772077327 0.543320792

9 8 0-12461.910697957 -460.687803963 1.874313263 0.254281205

10 9 0-12243.435291556 218.475406401 1.792462699 0.462703261

11 10 0-12456.939411513 -213.504119957 1.420840147 0.228660032

12 11 0-12443.715160193 13.224251320 1.528734257 0.213192089

13 12 0-12470.432643494 -26.717483301 0.947218754 0.113411761

14 13 0-12470.726682006 -0.294038511 0.849644266 0.092640921

15 14 0-12471.655848013 -0.929166007 0.832140794 0.103908583

16 15 0-12472.054808054 -0.398960041 0.724435289 0.121283401

17 16 0-12474.111678354 -2.056870300 0.747032826 0.032285363

18 17 0-12474.318257651 -0.206579297 0.746038056 0.036370582

19 18 0-12474.312673499 0.005584152 0.661411082 0.034632734

20 19 0-12474.542563575 -0.229890076 0.072231740 0.025963899

21 20 0-12474.633802411 -0.091238836 0.057253603 0.015174356

22 21 0-12474.688143197 -0.054340786 0.059333008 0.011623907

23 22 0-12474.716837571 -0.028694374 0.054049623 0.005979698

24 23 0-12474.735240065 -0.018402494 0.049673949 0.005023053

25 24 0-12474.746639280 -0.011399215 0.060470337 0.003501328

26 25 0-12474.754037490 -0.007398211 0.049331338 0.002950647

27 26 0-12474.757763843 -0.003726353 0.034867397 0.002137618

28 27 0-12474.759527502 -0.001763659 0.044066142 0.001476749

29 28 0-12474.761207670 -0.001680168 0.025319521 0.000972465

30 29 0-12474.762126578 -0.000918908 0.022527856 0.000964721

31 30 0-12474.762836543 -0.000709966 0.037925505 0.000793222

32 31 0-12474.763923710 -0.001087166 0.030336328 0.000597180

33 32 0-12474.764640625 -0.000716916 0.030013242 0.000540687

34 33 0-12474.765308808 -0.000668183 0.019118576 0.000513508

35 34 0-12474.765690348 -0.000381540 0.037738418 0.000430616

36 35 0-12474.766267300 -0.000576952 0.020441648 0.000351200

37 36 0-12474.766512512 -0.000245211 0.025120030 0.000281673

38 37 0-12474.766745018 -0.000232507 0.017228930 0.000241073

39 38 0-12474.766869075 -0.000124057 0.009608574 0.000216529

Page 113: Computational Modeling of Functionalized Carbon Nanotubes

104

40 39 0-12474.766929863 -0.000060788 0.015599804 0.000121845

41 40 0-12474.766985320 -0.000055456 0.005347613 0.000151982

42 41 0-12474.767005335 -0.000020016 0.006690666 0.000080103

43 42 0-12474.767020230 -0.000014895 0.002774279 0.000066179

44 43 0-12474.767025347 -0.000005117 0.003768296 0.000047264

45 44 0-12474.767030620 -0.000005273 0.002038413 0.000031981

46 45 0-12474.767032237 -0.000001617 0.001885535 0.000021917

47 46 0-12474.767033471 -0.000001233 0.001609173 0.000024747

48 47 0-12474.767034029 -0.000000558 0.000261060 0.000014351

49 48 0-12474.767034293 -0.000000264 0.001000661 0.000017002

50 49 0-12474.767034576 -0.000000283 0.000771349 0.000009310

51 50 0-12474.767034711 -0.000000135 0.000305659 0.000007470

52 51 0-12474.767034846 -0.000000134 0.000313102 0.000006688

53 52 0-12474.767034896 -0.000000050 0.000172732 0.000005674

54 53 0-12474.767034955 -0.000000059 0.000127425 0.000004491

55 54 0-12474.767034996 -0.000000042 0.000131219 0.000004122

56 55 0-12474.767035035 -0.000000039 0.000117294 0.000003488

57 56 0-12474.767035065 -0.000000030 0.000132225 0.000002887

58 57 0-12474.767035094 -0.000000029 0.000129422 0.000002324

59 58 0-12474.767035114 -0.000000020 0.000091554 0.000001884

60 59 0-12474.767035125 -0.000000011 0.000094730 0.000002041

61 60 0-12474.767035133 -0.000000008 0.000060462 0.000001286

62 61 0-12474.767035137 -0.000000004 0.000083105 0.000001039

63 62 0-12474.767035141 -0.000000004 0.000026179 0.000000890

64 63 0-12474.767035143 -0.000000002 0.000042143 0.000000689

65 64 0-12474.767035144 -0.000000001 0.000028429 0.000000624

66 65 0-12474.767035145 -0.000000002 0.000017976 0.000000469

67 66 0-12474.767035145 0.000000000 0.000016975 0.000000457

68 67 0-12474.767035146 -0.000000001 0.000016264 0.000000363

----------------

ENERGY CONVERGED

----------------

TIME TO FORM FOCK OPERATORS= 7864.0 SECONDS ( 115.6 SEC/ITER)

TIME TO SOLVE SCF EQUATIONS= 556.5 SECONDS ( 8.2 SEC/ITER)

FINAL ENERGY IS -12474.7670351459 AFTER 68 ITERATIONS

Page 114: Computational Modeling of Functionalized Carbon Nanotubes

105

80-nm diameter nanotube segment

------------------- RHF SCF CALCULATION ------------------- NUCLEAR ENERGY = 82581.4320589213 MAXIT = 200 NPUNCH= 2 EXTRAP=T DAMP=F SHIFT=F RSTRCT=F DIIS=T DEM=F SOSCF=F DENSITY CONV= 1.00E-05 MEMORY REQUIRED FOR RHF STEP= 15781179 WORDS. ITER EX DEM TOTAL ENERGY E CHANGE DENSITY CHANGE DIIS ERROR * * * INITIATING DIIS PROCEDURE * * * 1 0 0-11173.486753266-11173.486753266 2.679204458 0.863148857 2 1 0-10172.248270324 1001.238482941 2.579420168 2.262594125 3 2 0-11100.926596456 -928.678326132 5.196960070 0.783210534 4 3 0 -9820.957790456 1279.968806000 5.032079223 1.368744363 5 4 0-11203.002706561 -1382.044916105 1.873923544 0.288329655 6 5 0-10054.956133057 1148.046573504 1.270949704 0.758025193 7 6 0-11068.342093405 -1013.385960348 1.661244743 0.535822424 8 7 0-11212.317694787 -143.975601382 1.704383730 0.158893908 9 8 0-11145.174745769 67.142949017 1.326777408 0.324656322 10 9 0-11213.085620765 -67.910874996 0.888905381 0.148852532 11 10 0-11207.173478197 5.912142569 0.912437683 0.188042633 12 11 0-11215.996654497 -8.823176301 0.819513295 0.066780412 13 12 0-11215.312918007 0.683736491 0.844024525 0.093819230 14 13 0-11216.553017253 -1.240099247 0.575131391 0.057690134 15 14 0-11216.757477156 -0.204459903 0.297200828 0.030625817 16 15 0-11216.863184954 -0.105707798 0.183095419 0.023544456 17 16 0-11216.920366742 -0.057181788 0.071933705 0.009531639 18 17 0-11216.960704157 -0.040337415 0.048080487 0.004436431 19 18 0-11216.975967431 -0.015263273 0.039876494 0.003502552 20 19 0-11216.986568125 -0.010600694 0.037989776 0.002912934 21 20 0-11216.994830774 -0.008262649 0.027877272 0.002088343 22 21 0-11216.999170715 -0.004339942 0.032666577 0.001384320 23 22 0-11217.003101650 -0.003930934 0.022581729 0.001373607 24 23 0-11217.005402977 -0.002301327 0.020344503 0.001256181 25 24 0-11217.007374608 -0.001971631 0.004064117 0.001348255 26 25 0-11217.007030767 0.000343840 0.038642956 0.001314197 27 26 0-11217.003735653 0.003295114 0.052401517 0.001143224 28 27 0-11217.000945122 0.002790531 0.036939009 0.001313646 29 28 0-11216.999943831 0.001001291 0.007310305 0.001194729 30 29 0-11216.999805713 0.000138118 0.037640972 0.001180492 31 30 0-11216.999974173 -0.000168460 0.040126443 0.001115274 32 31 0-11217.000530758 -0.000556585 0.035564256 0.001049591 33 32 0-11217.001683590 -0.001152832 0.027117061 0.000947105 34 33 0-11217.002737765 -0.001054175 0.035254258 0.000819094 35 34 0-11217.003890051 -0.001152286 0.010282586 0.000832804 36 35 0-11217.004049882 -0.000159832 0.037317140 0.000754890 37 36 0-11217.005123471 -0.001073589 0.029897155 0.000784579 38 37 0-11217.005907632 -0.000784161 0.021597151 0.000667022 39 38 0-11217.006434337 -0.000526705 0.017317137 0.000537987 40 39 0-11217.006953297 -0.000518960 0.022274717 0.000589642 41 40 0-11217.007489750 -0.000536454 0.014870327 0.000502402 42 41 0-11217.007902287 -0.000412537 0.013162298 0.000416207 43 42 0-11217.008255604 -0.000353317 0.002087819 0.000374901 44 43 0-11217.008291367 -0.000035763 0.001969624 0.000401657 45 44 0-11217.008275523 0.000015844 0.004860402 0.000405010 46 45 0-11217.008335760 -0.000060237 0.017827524 0.000406040 47 46 0-11217.008342226 -0.000006467 0.027724476 0.000405247 48 47 0-11217.008594997 -0.000252771 0.021409535 0.000270833 49 48 0-11217.008770675 -0.000175677 0.009587631 0.000242289 50 49 0-11217.008846695 -0.000076020 0.013422656 0.000226956 51 50 0-11217.008922552 -0.000075857 0.010177188 0.000156991 52 51 0-11217.008971131 -0.000048579 0.004129682 0.000097458 53 52 0-11217.008990077 -0.000018946 0.004421847 0.000078572 54 53 0-11217.009005244 -0.000015166 0.004780392 0.000068121 55 54 0-11217.009019793 -0.000014549 0.002342643 0.000053422 56 55 0-11217.009025457 -0.000005664 0.002355197 0.000051662

Page 115: Computational Modeling of Functionalized Carbon Nanotubes

106

57 56 0-11217.009031558 -0.000006102 0.001099564 0.000048023 58 57 0-11217.009034784 -0.000003226 0.000167747 0.000050635 59 58 0-11217.009035299 -0.000000515 0.000580958 0.000051371 60 59 0-11217.009036733 -0.000001434 0.000583343 0.000053136 61 60 0-11217.009035546 0.000001187 0.000242790 0.000052135 62 61 0-11217.009035156 0.000000389 0.000756666 0.000052090 63 62 0-11217.009036261 -0.000001104 0.005962664 0.000051575 64 63 0-11217.009041281 -0.000005020 0.001248912 0.000044175 65 64 0-11217.009040538 0.000000743 0.003500935 0.000036340 66 65 0-11217.009042031 -0.000001493 0.002571692 0.000033267 67 66 0-11217.009042024 0.000000007 0.000880848 0.000028963 68 67 0-11217.009042275 -0.000000251 0.002283628 0.000036128 69 68 0-11217.009043267 -0.000000992 0.000670997 0.000021575 70 69 0-11217.009043318 -0.000000052 0.001915983 0.000020286 71 70 0-11217.009043908 -0.000000590 0.000614554 0.000012108 72 71 0-11217.009044233 -0.000000325 0.000781334 0.000009898 73 72 0-11217.009044344 -0.000000111 0.000120903 0.000009353 74 73 0-11217.009044403 -0.000000060 0.000507601 0.000009008 75 74 0-11217.009044419 -0.000000016 0.000288109 0.000008237 76 75 0-11217.009044534 -0.000000115 0.000153086 0.000006519 77 76 0-11217.009044562 -0.000000028 0.000277605 0.000006209 78 77 0-11217.009044620 -0.000000058 0.000341546 0.000005478 79 78 0-11217.009044721 -0.000000101 0.000091211 0.000005324 80 79 0-11217.009044760 -0.000000039 0.000170658 0.000005645 81 80 0-11217.009044805 -0.000000046 0.000198955 0.000005846 82 81 0-11217.009044855 -0.000000050 0.000063442 0.000006407 83 82 0-11217.009044880 -0.000000025 0.000046685 0.000006798 84 83 0-11217.009044875 0.000000005 0.000125546 0.000006667 85 84 0-11217.009044871 0.000000004 0.000129672 0.000006389 86 85 0-11217.009044878 -0.000000006 0.000376355 0.000006392 87 86 0-11217.009044890 -0.000000013 0.000277258 0.000006396 88 87 0-11217.009044899 -0.000000009 0.000073178 0.000006451 89 88 0-11217.009044894 0.000000005 0.000014143 0.000006455 90 89 0-11217.009044892 0.000000001 0.000105257 0.000006416 91 90 0-11217.009044908 -0.000000016 0.000146980 0.000006609 92 91 0-11217.009044946 -0.000000037 0.000112600 0.000007200 93 92 0-11217.009044926 0.000000020 0.000086738 0.000007012 94 93 0-11217.009044903 0.000000023 0.000066204 0.000006726 95 94 0-11217.009044886 0.000000017 0.000063260 0.000006556 96 95 0-11217.009044891 -0.000000004 0.000049882 0.000006601 97 96 0-11217.009044891 0.000000000 0.000121966 0.000006587 98 97 0-11217.009044915 -0.000000024 0.000104296 0.000006977 99 98 0-11217.009044934 -0.000000019 0.000537112 0.000007010 100 99 0-11217.009044868 0.000000066 0.000396858 0.000003953 101100 0-11217.009044891 -0.000000023 0.000162798 0.000005600 102101 0-11217.009044894 -0.000000003 0.000482005 0.000003029 103102 0-11217.009044894 0.000000000 0.000139437 0.000002675 104103 0-11217.009044896 -0.000000002 0.000485253 0.000002672 105104 0-11217.009044893 0.000000003 0.000090421 0.000001532 106105 0-11217.009044890 0.000000003 0.000062001 0.000000962 107106 0-11217.009044892 -0.000000002 0.000120412 0.000000997 108107 0-11217.009044889 0.000000003 0.000065098 0.000000833 109108 0-11217.009044892 -0.000000003 0.000063863 0.000000973 110109 0-11217.009044892 -0.000000001 0.000069953 0.000000663 111110 0-11217.009044894 -0.000000002 0.000050801 0.000000494 112111 0-11217.009044894 0.000000000 0.000023520 0.000000522 113112 0-11217.009044895 -0.000000001 0.000059156 0.000000505 114113 0-11217.009044895 0.000000000 0.000020290 0.000000499 115114 0-11217.009044895 0.000000000 0.000020032 0.000000371 116115 0-11217.009044895 0.000000000 0.000011664 0.000000219 117116 0-11217.009044896 -0.000000001 0.000006319 0.000000240 ----------------- DENSITY CONVERGED ----------------- TIME TO FORM FOCK OPERATORS= 8962.0 SECONDS ( 76.6 SEC/ITER) TIME TO SOLVE SCF EQUATIONS= 1765.9 SECONDS ( 15.1 SEC/ITER) FINAL ENERGY IS -11217.0090448960 AFTER 117 ITERATIONS

Page 116: Computational Modeling of Functionalized Carbon Nanotubes

107

80-nm diameter nanotube segment with n-succinimidyl-1-

pyrenebutanoate

-------------------

RHF SCF CALCULATION

-------------------

NUCLEAR ENERGY = 103658.1981671946

MAXIT = 200 NPUNCH= 2

EXTRAP=T DAMP=F SHIFT=F RSTRCT=F DIIS=T DEM=F SOSCF=F

DENSITY CONV= 1.00E-05

MEMORY REQUIRED FOR RHF STEP= 19415747 WORDS.

ITER EX DEM TOTAL ENERGY E CHANGE DENSITY CHANGE DIIS ERROR

* * * INITIATING DIIS PROCEDURE * * *

1 0 0-12430.080016930-12430.080016930 3.462483321 0.610310160

2 1 0-11383.452038900 1046.627978030 3.571035547 1.611963200

3 2 0-11902.379215053 -518.927176153 4.538298708 0.812693519

4 3 0-11673.219275661 229.159939393 4.292606205 0.903475016

5 4 0-12094.711516989 -421.492241328 5.060868136 0.851454053

6 5 0 -7457.812067941 4636.899449048 4.990449534 1.308721736

7 6 0-12130.979973641 -4673.167905700 4.718610400 0.399249641

8 7 0-11303.200315641 827.779658000 4.530328428 0.745978112

9 8 0-12368.898378193 -1065.698062553 2.041962854 0.332155235

10 9 0-12236.281397009 132.616981184 1.786816217 0.521981005

11 10 0-12442.329576876 -206.048179867 1.701694715 0.277417408

12 11 0-12346.954081204 95.375495673 1.584446700 0.338210693

13 12 0-12455.144698466 -108.190617263 1.440893052 0.245400796

14 13 0-12397.649315611 57.495382855 1.390271325 0.309161609

15 14 0-12470.877590859 -73.228275247 1.086327030 0.158340775

16 15 0-12447.138165062 23.739425797 1.060218275 0.358736047

17 16 0-12470.893951431 -23.755786369 1.055942483 0.115567148

18 17 0-12463.851523180 7.042428251 1.062142265 0.150553264

19 18 0-12473.564729986 -9.713206807 0.425453581 0.041099985

20 19 0-12474.296291086 -0.731561099 0.115330860 0.019021008

21 20 0-12474.439814129 -0.143523043 0.111067497 0.012130523

22 21 0-12474.501076541 -0.061262412 0.068399073 0.011005096

23 22 0-12474.548996079 -0.047919538 0.086937188 0.007405901

24 23 0-12474.593936132 -0.044940053 0.081858231 0.006860708

25 24 0-12474.631778844 -0.037842712 0.037932032 0.003460438

26 25 0-12474.641553015 -0.009774172 0.035202148 0.002667396

27 26 0-12474.648321058 -0.006768043 0.026403500 0.001917281

28 27 0-12474.652118196 -0.003797138 0.019525600 0.001227406

29 28 0-12474.654046707 -0.001928511 0.017991268 0.000762552

30 29 0-12474.655293546 -0.001246839 0.008342481 0.000562356

31 30 0-12474.655635514 -0.000341967 0.007318634 0.000515662

32 31 0-12474.655887350 -0.000251836 0.004245638 0.000327033

33 32 0-12474.656024678 -0.000137328 0.007706419 0.000354917

34 33 0-12474.656209863 -0.000185185 0.007126611 0.000207108

35 34 0-12474.656353797 -0.000143934 0.006429223 0.000173647

36 35 0-12474.656444416 -0.000090618 0.004448191 0.000158479

37 36 0-12474.656495549 -0.000051134 0.005496487 0.000135480

38 37 0-12474.656544629 -0.000049079 0.003755283 0.000114706

39 38 0-12474.656573192 -0.000028563 0.004458510 0.000121372

Page 117: Computational Modeling of Functionalized Carbon Nanotubes

108

40 39 0-12474.656601879 -0.000028687 0.004043250 0.000100330

41 40 0-12474.656624531 -0.000022652 0.005235908 0.000076994

42 41 0-12474.656647521 -0.000022990 0.004364577 0.000064993

43 42 0-12474.656662894 -0.000015373 0.003706712 0.000046275

44 43 0-12474.656672259 -0.000009365 0.003202001 0.000031525

45 44 0-12474.656677777 -0.000005518 0.002017851 0.000041788

46 45 0-12474.656680927 -0.000003150 0.002045046 0.000031538

47 46 0-12474.656683039 -0.000002112 0.001294462 0.000032198

48 47 0-12474.656684186 -0.000001146 0.001231523 0.000025904

49 48 0-12474.656685043 -0.000000858 0.000912447 0.000026497

50 49 0-12474.656685464 -0.000000420 0.000427465 0.000018572

51 50 0-12474.656685668 -0.000000205 0.000357484 0.000014235

52 51 0-12474.656685786 -0.000000118 0.000144444 0.000014477

53 52 0-12474.656685841 -0.000000055 0.000214135 0.000007127

54 53 0-12474.656685895 -0.000000054 0.000091849 0.000006860

55 54 0-12474.656685911 -0.000000016 0.000108734 0.000004009

56 55 0-12474.656685932 -0.000000021 0.000095176 0.000002948

57 56 0-12474.656685945 -0.000000012 0.000039885 0.000002057

58 57 0-12474.656685949 -0.000000005 0.000054254 0.000001768

59 58 0-12474.656685954 -0.000000005 0.000047085 0.000001801

60 59 0-12474.656685959 -0.000000005 0.000041497 0.000001390

61 60 0-12474.656685961 -0.000000002 0.000049049 0.000001091

62 61 0-12474.656685964 -0.000000003 0.000042043 0.000000941

63 62 0-12474.656685966 -0.000000002 0.000028773 0.000000832

64 63 0-12474.656685967 -0.000000001 0.000035493 0.000000705

65 64 0-12474.656685968 -0.000000001 0.000033669 0.000000610

66 65 0-12474.656685969 -0.000000001 0.000045351 0.000000540

67 66 0-12474.656685970 -0.000000001 0.000038987 0.000000402

68 67 0-12474.656685971 -0.000000001 0.000028176 0.000000313

69 68 0-12474.656685971 0.000000000 0.000018594 0.000000351

70 69 0-12474.656685971 0.000000000 0.000012393 0.000000202

----------------

ENERGY CONVERGED

----------------

TIME TO FORM FOCK OPERATORS= 6615.6 SECONDS ( 94.5 SEC/ITER)

TIME TO SOLVE SCF EQUATIONS= 575.7 SECONDS ( 8.2 SEC/ITER)

FINAL ENERGY IS -12474.6566859707 AFTER 70 ITERATIONS

Page 118: Computational Modeling of Functionalized Carbon Nanotubes

109

90-nm diameter nanotube segment

-------------------

RHF SCF CALCULATION

-------------------

NUCLEAR ENERGY = 82581.2981800539

MAXIT = 200 NPUNCH= 2

EXTRAP=T DAMP=F SHIFT=F RSTRCT=F DIIS=T DEM=F SOSCF=F

DENSITY CONV= 1.00E-05

MEMORY REQUIRED FOR RHF STEP= 15781179 WORDS.

ITER EX DEM TOTAL ENERGY E CHANGE DENSITY CHANGE DIIS ERROR

* * * INITIATING DIIS PROCEDURE * * *

1 0 0-11173.486751185-11173.486751185 2.679218615 0.863206534

2 1 0-10172.348580106 1001.138171079 2.579385785 2.263272586

3 2 0-11101.165512942 -928.816932836 5.197038810 0.783188997

4 3 0 -9818.465102945 1282.700409997 5.031669834 1.377463299

5 4 0-11203.103270716 -1384.638167771 1.872480103 0.291681937

6 5 0-10059.207677297 1143.895593419 1.266631987 0.755943366

7 6 0-11061.879281099 -1002.671603803 1.841035522 0.539150563

8 7 0-11212.081162543 -150.201881443 1.909011468 0.186687220

9 8 0-11095.365972049 116.715190494 1.735889378 0.455825966

10 9 0-11210.693697346 -115.327725297 0.910150399 0.171861005

11 10 0-11207.884775838 2.808921508 0.968813701 0.196561902

12 11 0-11216.068501415 -8.183725577 0.717426632 0.054022323

13 12 0-11215.406825379 0.661676036 0.724207124 0.095077525

14 13 0-11216.350182727 -0.943357348 0.360655965 0.079057305

15 14 0-11216.760489549 -0.410306823 0.161008346 0.032717717

16 15 0-11216.892299976 -0.131810427 0.059181489 0.020569575

17 16 0-11216.957722243 -0.065422267 0.071513567 0.012438606

18 17 0-11217.006113897 -0.048391654 0.055077186 0.008975860

19 18 0-11217.034472379 -0.028358482 0.046053817 0.005158309

20 19 0-11217.051099737 -0.016627358 0.045043517 0.004249784

21 20 0-11217.063220701 -0.012120964 0.032450610 0.002533661

22 21 0-11217.068916249 -0.005695548 0.030638826 0.001854246

23 22 0-11217.072014925 -0.003098677 0.025749587 0.001129872

24 23 0-11217.073643700 -0.001628775 0.013715107 0.000745986

25 24 0-11217.074369710 -0.000726010 0.017188614 0.000600743

26 25 0-11217.075065253 -0.000695543 0.020556030 0.000548273

27 26 0-11217.075776054 -0.000710801 0.017432181 0.000523123

28 27 0-11217.076330324 -0.000554270 0.020128158 0.000445963

29 28 0-11217.076855746 -0.000525422 0.016104024 0.000364282

30 29 0-11217.077221504 -0.000365758 0.011195837 0.000312876

31 30 0-11217.077442192 -0.000220689 0.011709388 0.000272679

32 31 0-11217.077614427 -0.000172235 0.011731158 0.000231338

33 32 0-11217.077751286 -0.000136859 0.012657719 0.000212328

34 33 0-11217.077866780 -0.000115494 0.013297997 0.000148013

35 34 0-11217.077953086 -0.000086306 0.008557465 0.000112327

36 35 0-11217.077994479 -0.000041393 0.007387427 0.000095273

37 36 0-11217.078021568 -0.000027089 0.007280777 0.000072075

38 37 0-11217.078039770 -0.000018203 0.004446722 0.000066543

39 38 0-11217.078048939 -0.000009169 0.003253102 0.000053960

40 39 0-11217.078054304 -0.000005365 0.003489284 0.000039204

Page 119: Computational Modeling of Functionalized Carbon Nanotubes

110

41 40 0-11217.078057376 -0.000003071 0.001395956 0.000032594

42 41 0-11217.078058814 -0.000001438 0.001045137 0.000024480

43 42 0-11217.078059607 -0.000000793 0.000630854 0.000023020

44 43 0-11217.078060001 -0.000000395 0.000552622 0.000015521

45 44 0-11217.078060393 -0.000000392 0.000410786 0.000015291

46 45 0-11217.078060626 -0.000000233 0.000279318 0.000009602

47 46 0-11217.078060741 -0.000000114 0.000237439 0.000008248

48 47 0-11217.078060859 -0.000000118 0.000209616 0.000007430

49 48 0-11217.078060955 -0.000000096 0.000242271 0.000006073

50 49 0-11217.078061031 -0.000000077 0.000145550 0.000005427

51 50 0-11217.078061077 -0.000000046 0.000153029 0.000005319

52 51 0-11217.078061112 -0.000000035 0.000141913 0.000004709

53 52 0-11217.078061143 -0.000000031 0.000140097 0.000004081

54 53 0-11217.078061173 -0.000000030 0.000163119 0.000003419

55 54 0-11217.078061202 -0.000000029 0.000158572 0.000002652

56 55 0-11217.078061225 -0.000000023 0.000137683 0.000002038

57 56 0-11217.078061240 -0.000000015 0.000122856 0.000001570

58 57 0-11217.078061250 -0.000000010 0.000095655 0.000001835

59 58 0-11217.078061255 -0.000000005 0.000044779 0.000001799

60 59 0-11217.078061258 -0.000000003 0.000051893 0.000001495

61 60 0-11217.078061259 -0.000000001 0.000031134 0.000001398

62 61 0-11217.078061260 -0.000000001 0.000015721 0.000001076

63 62 0-11217.078061260 0.000000000 0.000015437 0.000000929

64 63 0-11217.078061261 -0.000000001 0.000012982 0.000000719

----------------

ENERGY CONVERGED

----------------

TIME TO FORM FOCK OPERATORS= 4804.0 SECONDS ( 75.1 SEC/ITER)

TIME TO SOLVE SCF EQUATIONS= 963.5 SECONDS ( 15.1 SEC/ITER)

FINAL ENERGY IS -11217.0780612609 AFTER 64 ITERATIONS

Page 120: Computational Modeling of Functionalized Carbon Nanotubes

111

90-nm diameter nanotube segment with n-succinimidyl-1-

pyrenebutanoate

-------------------

RHF SCF CALCULATION

-------------------

NUCLEAR ENERGY = 103679.2772432673

MAXIT = 200 NPUNCH= 2

EXTRAP=T DAMP=F SHIFT=F RSTRCT=F DIIS=T DEM=F SOSCF=F

DENSITY CONV= 1.00E-05

MEMORY REQUIRED FOR RHF STEP= 19415747 WORDS.

ITER EX DEM TOTAL ENERGY E CHANGE DENSITY CHANGE DIIS ERROR

* * * INITIATING DIIS PROCEDURE * * *

1 0 0-12429.884433987-12429.884433987 3.610960495 0.606140467

2 1 0-11362.760416383 1067.124017604 3.725729486 1.447983622

3 2 0-11890.051913914 -527.291497531 4.434214921 0.707223539

4 3 0-11676.045865584 214.006048330 4.206328230 0.910931942

5 4 0-11712.127476298 -36.081610713 3.500359373 0.741627956

6 5 0-11914.179480684 -202.052004386 3.453520637 0.649973564

7 6 0-10934.213167340 979.966313344 3.355830591 0.980948505

8 7 0-12417.817327522 -1483.604160183 3.468079430 0.243754461

9 8 0 -9636.325079994 2781.492247528 3.464661807 1.025273358

10 9 0-11694.102620007 -2057.777540013 1.662270846 0.536743969

11 10 0-12430.920777594 -736.818157586 2.019087760 0.332990549

12 11 0-12401.859332048 29.061445546 1.565399318 0.302132158

13 12 0-12445.190270136 -43.330938088 1.598946566 0.331352746

14 13 0-12409.147426300 36.042843835 0.974246954 0.379435779

15 14 0-12463.532066390 -54.384640090 1.004552141 0.184223838

16 15 0-12441.520116636 22.011949754 0.839672901 0.376592999

17 16 0-12471.906472972 -30.386356337 0.827104843 0.098205372

18 17 0-12464.279503340 7.626969632 0.858584732 0.133605445

19 18 0-12473.399360828 -9.119857489 0.590408930 0.052336751

20 19 0-12474.132692157 -0.733331328 0.260732900 0.033221095

21 20 0-12474.351896369 -0.219204212 0.142828751 0.022406419

22 21 0-12474.460681731 -0.108785362 0.072476923 0.018161346

23 22 0-12474.515682740 -0.055001009 0.077574837 0.012355462

24 23 0-12474.574118275 -0.058435535 0.057763834 0.007632199

25 24 0-12474.606940228 -0.032821953 0.037203740 0.004176080

26 25 0-12474.617499972 -0.010559745 0.031214374 0.003552377

27 26 0-12474.623402444 -0.005902471 0.023468894 0.001679814

28 27 0-12474.626559573 -0.003157129 0.017988997 0.001003729

29 28 0-12474.628172361 -0.001612788 0.013367086 0.000531181

30 29 0-12474.628782871 -0.000610510 0.006528554 0.000422419

31 30 0-12474.629002417 -0.000219546 0.004742260 0.000378544

32 31 0-12474.629153462 -0.000151045 0.005487157 0.000274632

33 32 0-12474.629296177 -0.000142715 0.006897001 0.000265720

34 33 0-12474.629432649 -0.000136472 0.008187354 0.000200726

35 34 0-12474.629568144 -0.000135495 0.008685228 0.000177870

36 35 0-12474.629671328 -0.000103184 0.006805076 0.000141090

37 36 0-12474.629739242 -0.000067914 0.006552210 0.000121011

38 37 0-12474.629792884 -0.000053642 0.006102716 0.000105400

39 38 0-12474.629834675 -0.000041791 0.004169360 0.000084365

Page 121: Computational Modeling of Functionalized Carbon Nanotubes

112

40 39 0-12474.629860852 -0.000026177 0.005193322 0.000076377

41 40 0-12474.629888145 -0.000027293 0.005704519 0.000063207

42 41 0-12474.629912135 -0.000023990 0.006074148 0.000044799

43 42 0-12474.629929068 -0.000016933 0.003127922 0.000032274

44 43 0-12474.629934311 -0.000005243 0.002245244 0.000036699

45 44 0-12474.629936778 -0.000002467 0.001213933 0.000030760

46 45 0-12474.629937897 -0.000001120 0.000977927 0.000026105

47 46 0-12474.629938398 -0.000000501 0.000528349 0.000029276

48 47 0-12474.629938725 -0.000000327 0.000391353 0.000017028

49 48 0-12474.629938892 -0.000000167 0.000277741 0.000020774

50 49 0-12474.629938992 -0.000000100 0.000269447 0.000014285

51 50 0-12474.629939097 -0.000000105 0.000313634 0.000011608

52 51 0-12474.629939125 -0.000000028 0.000175296 0.000010464

53 52 0-12474.629939191 -0.000000066 0.000138044 0.000006634

54 53 0-12474.629939202 -0.000000011 0.000124731 0.000006221

55 54 0-12474.629939244 -0.000000043 0.000085766 0.000004290

56 55 0-12474.629939272 -0.000000028 0.000128119 0.000003684

57 56 0-12474.629939307 -0.000000035 0.000130435 0.000003363

58 57 0-12474.629939336 -0.000000029 0.000169341 0.000002820

59 58 0-12474.629939366 -0.000000029 0.000143612 0.000002295

60 59 0-12474.629939387 -0.000000021 0.000111269 0.000001809

61 60 0-12474.629939398 -0.000000011 0.000087720 0.000001422

62 61 0-12474.629939406 -0.000000008 0.000106326 0.000001314

63 62 0-12474.629939414 -0.000000008 0.000070540 0.000001708

64 63 0-12474.629939418 -0.000000004 0.000085954 0.000001515

65 64 0-12474.629939423 -0.000000005 0.000059014 0.000001448

66 65 0-12474.629939425 -0.000000002 0.000040208 0.000001385

67 66 0-12474.629939426 -0.000000001 0.000038235 0.000001058

68 67 0-12474.629939427 -0.000000001 0.000029320 0.000001102

69 68 0-12474.629939427 -0.000000001 0.000011390 0.000000725

70 69 0-12474.629939427 0.000000000 0.000007790 0.000000728

-----------------

DENSITY CONVERGED

-----------------

TIME TO FORM FOCK OPERATORS= 7918.7 SECONDS ( 113.1 SEC/ITER)

TIME TO SOLVE SCF EQUATIONS= 573.4 SECONDS ( 8.2 SEC/ITER)

FINAL ENERGY IS -12474.6299394272 AFTER 70 ITERATIONS

Page 122: Computational Modeling of Functionalized Carbon Nanotubes

113

100-nm diameter nanotube segment

-------------------

RHF SCF CALCULATION

-------------------

NUCLEAR ENERGY = 82581.3298314813

MAXIT = 200 NPUNCH= 2

EXTRAP=T DAMP=F SHIFT=F RSTRCT=F DIIS=T DEM=F SOSCF=F

DENSITY CONV= 1.00E-05

MEMORY REQUIRED FOR RHF STEP= 15781179 WORDS.

ITER EX DEM TOTAL ENERGY E CHANGE DENSITY CHANGE DIIS ERROR

* * * INITIATING DIIS PROCEDURE * * *

1 0 0-11173.496894798-11173.496894798 2.679726306 0.863351344

2 1 0-10175.461164893 998.035729904 2.580680930 2.260094330

3 2 0-11099.801832608 -924.340667715 5.195002591 0.784532509

4 3 0 -9873.936149414 1225.865683193 5.035736937 1.300802925

5 4 0-11197.954770983 -1324.018621569 3.123314390 0.350808937

6 5 0 -9580.895721247 1617.059049736 3.157470415 0.902874569

7 6 0-11040.145010087 -1459.249288839 1.604716411 0.651784546

8 7 0-11212.326295718 -172.181285631 1.192401232 0.184827537

9 8 0-11140.635331416 71.690964302 1.078289352 0.338015625

10 9 0-11213.417320723 -72.781989307 0.902347477 0.150447547

11 10 0-11205.690019274 7.727301449 0.916532154 0.199547219

12 11 0-11216.136370672 -10.446351399 0.698390790 0.111549772

13 12 0-11214.742377729 1.393992943 0.741028166 0.144255921

14 13 0-11215.980326215 -1.237948486 0.530004410 0.078801330

15 14 0-11216.731907980 -0.751581765 0.114886876 0.048812405

16 15 0-11216.880108051 -0.148200071 0.062702768 0.035861733

17 16 0-11216.960082164 -0.079974113 0.078741755 0.021960861

18 17 0-11217.025584872 -0.065502708 0.042712140 0.007694388

19 18 0-11217.049723144 -0.024138273 0.041433299 0.004388802

20 19 0-11217.062737630 -0.013014485 0.039495263 0.003658012

21 20 0-11217.071931674 -0.009194044 0.028014886 0.002053057

22 21 0-11217.075436591 -0.003504917 0.021651696 0.001564838

23 22 0-11217.077356903 -0.001920312 0.010991660 0.000783168

24 23 0-11217.077923820 -0.000566916 0.007013896 0.000462123

25 24 0-11217.078226909 -0.000303090 0.006951885 0.000349424

26 25 0-11217.078429670 -0.000202760 0.006666563 0.000335243

27 26 0-11217.078583141 -0.000153471 0.004222462 0.000207668

28 27 0-11217.078667731 -0.000084590 0.004724444 0.000192377

29 28 0-11217.078735145 -0.000067414 0.003890226 0.000155940

30 29 0-11217.078773331 -0.000038186 0.003115015 0.000134392

31 30 0-11217.078794284 -0.000020953 0.001902368 0.000112857

32 31 0-11217.078805876 -0.000011592 0.002371963 0.000089911

33 32 0-11217.078816495 -0.000010619 0.002209240 0.000074335

34 33 0-11217.078825585 -0.000009090 0.001751322 0.000062357

35 34 0-11217.078832285 -0.000006700 0.002942200 0.000057682

36 35 0-11217.078840614 -0.000008329 0.002827409 0.000044461

37 36 0-11217.078846796 -0.000006182 0.001946959 0.000036718

38 37 0-11217.078850084 -0.000003288 0.001924374 0.000032350

39 38 0-11217.078852294 -0.000002210 0.001112279 0.000023934

40 39 0-11217.078853390 -0.000001096 0.001138783 0.000020157

Page 123: Computational Modeling of Functionalized Carbon Nanotubes

114

41 40 0-11217.078854260 -0.000000870 0.000820096 0.000016333

42 41 0-11217.078854828 -0.000000568 0.000829232 0.000013264

43 42 0-11217.078855244 -0.000000416 0.000462297 0.000014063

44 43 0-11217.078855468 -0.000000224 0.000538559 0.000010571

45 44 0-11217.078855645 -0.000000177 0.000417817 0.000009089

46 45 0-11217.078855754 -0.000000110 0.000265571 0.000007777

47 46 0-11217.078855811 -0.000000057 0.000219833 0.000006207

48 47 0-11217.078855840 -0.000000029 0.000165249 0.000003279

49 48 0-11217.078855858 -0.000000018 0.000060308 0.000003884

50 49 0-11217.078855865 -0.000000007 0.000064915 0.000002950

51 50 0-11217.078855869 -0.000000005 0.000057736 0.000001576

52 51 0-11217.078855873 -0.000000004 0.000046846 0.000001761

53 52 0-11217.078855875 -0.000000002 0.000036597 0.000000856

54 53 0-11217.078855876 -0.000000001 0.000016377 0.000000901

55 54 0-11217.078855877 -0.000000001 0.000015825 0.000000628

56 55 0-11217.078855877 0.000000000 0.000012094 0.000000435

----------------

ENERGY CONVERGED

----------------

TIME TO FORM FOCK OPERATORS= 4149.7 SECONDS ( 74.1 SEC/ITER)

TIME TO SOLVE SCF EQUATIONS= 850.1 SECONDS ( 15.2 SEC/ITER)

FINAL ENERGY IS -11217.0788558769 AFTER 56 ITERATIONS

Page 124: Computational Modeling of Functionalized Carbon Nanotubes

115

100-nm diameter nanotube segment with n-succinimidyl-1-

pyrenebutanoate

-------------------

RHF SCF CALCULATION

-------------------

NUCLEAR ENERGY = 103696.2010456511

MAXIT = 200 NPUNCH= 2

EXTRAP=T DAMP=F SHIFT=F RSTRCT=F DIIS=T DEM=F SOSCF=F

DENSITY CONV= 1.00E-05

MEMORY REQUIRED FOR RHF STEP= 19415747 WORDS.

ITER EX DEM TOTAL ENERGY E CHANGE DENSITY CHANGE DIIS ERROR

* * * INITIATING DIIS PROCEDURE * * *

1 0 0-12429.729060441-12429.729060441 3.781069391 0.601987720

2 1 0-11346.709113266 1083.019947175 3.861118973 1.344023678

3 2 0-11894.514330243 -547.805216976 4.670102181 0.704185519

4 3 0-11413.393239098 481.121091145 4.354881375 1.053233899

5 4 0-12289.885337279 -876.492098181 5.211499747 0.475235524

6 5 0 -3291.147131974 8998.738205305 5.003626266 1.657279592

7 6 0 -9785.247885811 -6494.100753837 4.974548678 1.058870063

8 7 0-12377.926166280 -2592.678280470 2.651049709 0.303096253

9 8 0-11933.278323891 444.647842389 2.042951979 0.590194859

10 9 0-12348.489103814 -415.210779923 1.976669062 0.323313793

11 10 0-12364.631491764 -16.142387950 1.949566297 0.350734825

12 11 0-12438.427823379 -73.796331615 1.979119255 0.298029683

13 12 0-12400.946742175 37.481081205 1.852052876 0.351319207

14 13 0-12471.511270015 -70.564527840 1.276299387 0.098367261

15 14 0-12449.587874867 21.923395148 1.153707542 0.350476724

16 15 0-12472.683099994 -23.095225127 1.219068245 0.082376674

17 16 0-12469.932579918 2.750520075 1.295125436 0.109911194

18 17 0-12473.845501959 -3.912922041 0.498941512 0.049237755

19 18 0-12474.222231598 -0.376729639 0.117854161 0.033379519

20 19 0-12474.420959912 -0.198728315 0.062976878 0.016138807

21 20 0-12474.486593108 -0.065633195 0.055909302 0.012590059

22 21 0-12474.537418392 -0.050825284 0.058444304 0.007488857

23 22 0-12474.568517617 -0.031099226 0.041823553 0.006165684

24 23 0-12474.584727098 -0.016209481 0.046633958 0.003420065

25 24 0-12474.594249245 -0.009522147 0.032308158 0.001923675

26 25 0-12474.598992261 -0.004743016 0.023419869 0.001526063

27 26 0-12474.600944668 -0.001952407 0.020822812 0.001011580

28 27 0-12474.602128007 -0.001183339 0.016281531 0.000797406

29 28 0-12474.602851928 -0.000723922 0.016907991 0.000728340

30 29 0-12474.603487349 -0.000635421 0.018798561 0.000685777

31 30 0-12474.604113987 -0.000626638 0.024359727 0.000625288

32 31 0-12474.604825856 -0.000711869 0.026811999 0.000535989

33 32 0-12474.605506495 -0.000680639 0.021929324 0.000422282

34 33 0-12474.605931930 -0.000425436 0.019438771 0.000342680

35 34 0-12474.606227644 -0.000295714 0.019750345 0.000283078

36 35 0-12474.606462951 -0.000235307 0.020305091 0.000218056

37 36 0-12474.606638573 -0.000175622 0.011791740 0.000178268

38 37 0-12474.606720489 -0.000081916 0.011756344 0.000118684

39 38 0-12474.606778158 -0.000057669 0.009588718 0.000084404

Page 125: Computational Modeling of Functionalized Carbon Nanotubes

116

40 39 0-12474.606811722 -0.000033564 0.005377558 0.000070682

41 40 0-12474.606824651 -0.000012929 0.003555837 0.000061661

42 41 0-12474.606831854 -0.000007203 0.002973355 0.000053763

43 42 0-12474.606836522 -0.000004667 0.002731343 0.000053821

44 43 0-12474.606839518 -0.000002996 0.001927998 0.000038254

45 44 0-12474.606841245 -0.000001727 0.002039722 0.000039424

46 45 0-12474.606841980 -0.000000735 0.000612907 0.000023403

47 46 0-12474.606842524 -0.000000544 0.000719497 0.000025509

48 47 0-12474.606842970 -0.000000446 0.000578643 0.000014505

49 48 0-12474.606843319 -0.000000349 0.000356878 0.000013909

50 49 0-12474.606843624 -0.000000305 0.000303782 0.000012031

51 50 0-12474.606843856 -0.000000232 0.000343887 0.000010483

52 51 0-12474.606844055 -0.000000199 0.000320638 0.000008813

53 52 0-12474.606844224 -0.000000169 0.000255213 0.000007164

54 53 0-12474.606844331 -0.000000108 0.000249493 0.000006148

55 54 0-12474.606844409 -0.000000077 0.000193659 0.000004824

56 55 0-12474.606844464 -0.000000055 0.000241935 0.000004223

57 56 0-12474.606844515 -0.000000052 0.000221486 0.000003352

58 57 0-12474.606844556 -0.000000041 0.000212228 0.000002417

59 58 0-12474.606844587 -0.000000031 0.000192349 0.000002265

60 59 0-12474.606844609 -0.000000022 0.000121426 0.000001871

61 60 0-12474.606844618 -0.000000009 0.000111580 0.000002586

62 61 0-12474.606844625 -0.000000007 0.000097982 0.000001870

63 62 0-12474.606844631 -0.000000006 0.000074355 0.000001707

64 63 0-12474.606844633 -0.000000002 0.000041184 0.000001711

65 64 0-12474.606844634 -0.000000001 0.000054036 0.000000938

66 65 0-12474.606844637 -0.000000002 0.000021921 0.000001108

67 66 0-12474.606844637 0.000000000 0.000017978 0.000000688

68 67 0-12474.606844637 0.000000000 0.000010336 0.000000639

----------------

ENERGY CONVERGED

----------------

TIME TO FORM FOCK OPERATORS= 8065.1 SECONDS ( 118.6 SEC/ITER)

TIME TO SOLVE SCF EQUATIONS= 1417.0 SECONDS ( 20.8 SEC/ITER)

FINAL ENERGY IS -12474.6068446368 AFTER 68 ITERATIONS

Page 126: Computational Modeling of Functionalized Carbon Nanotubes

117

1000-nm diameter nanotube segment

------------------- RHF SCF CALCULATION ------------------- NUCLEAR ENERGY = 82580.7802048852 MAXIT = 200 NPUNCH= 2 EXTRAP=T DAMP=F SHIFT=F RSTRCT=F DIIS=T DEM=F SOSCF=F DENSITY CONV= 1.00E-05 MEMORY REQUIRED FOR RHF STEP= 15781179 WORDS. ITER EX DEM TOTAL ENERGY E CHANGE DENSITY CHANGE DIIS ERROR * * * INITIATING DIIS PROCEDURE * * * 1 0 0-11173.486991373-11173.486991373 2.679550053 0.863436516 2 1 0-10172.858714822 1000.628276551 2.579542253 2.261399197 3 2 0-11102.027046974 -929.168332153 5.203215304 0.782892450 4 3 0 -9776.586084265 1325.440962710 5.035160259 1.272127072 5 4 0-11205.281440349 -1428.695356084 1.870324205 0.290020900 6 5 0-10365.725782051 839.555658299 1.497829614 0.636179035 7 6 0-11137.637700049 -771.911917998 1.318126318 0.457584306 8 7 0-11209.964483399 -72.326783350 1.167439826 0.195596232 9 8 0-11189.456577859 20.507905540 1.099289438 0.405867959 10 9 0-11192.493635990 -3.037058131 0.936699669 0.523602298 11 10 0-11214.107374920 -21.613738930 0.828952636 0.136362249 12 11 0-11209.003632726 5.103742194 0.817852550 0.176324642 13 12 0-11215.294153332 -6.290520606 0.796430365 0.077215799 14 13 0-11215.787328673 -0.493175341 0.839239030 0.064807086 15 14 0-11216.143498916 -0.356170243 0.776880463 0.077779734 16 15 0-11216.350682469 -0.207183554 0.661474728 0.047418339 17 16 0-11216.603426059 -0.252743590 0.106977508 0.075641796 18 17 0-11216.747620750 -0.144194690 0.116743934 0.063313077 19 18 0-11216.833242151 -0.085621401 0.105320420 0.037660660 20 19 0-11216.887212061 -0.053969910 0.061410136 0.013843861 21 20 0-11216.920165002 -0.032952940 0.052064251 0.007395998 22 21 0-11216.938041700 -0.017876698 0.050422517 0.005283330 23 22 0-11216.955183824 -0.017142124 0.056421078 0.003015711 24 23 0-11216.966713169 -0.011529345 0.041497438 0.002677749 25 24 0-11216.972230901 -0.005517732 0.021931143 0.001861953 26 25 0-11216.974377610 -0.002146710 0.026097936 0.001800298 27 26 0-11216.976852722 -0.002475111 0.026840740 0.002139340 28 27 0-11216.979174531 -0.002321810 0.018704283 0.001827102 29 28 0-11216.980697217 -0.001522685 0.042515170 0.001825605 30 29 0-11216.983870789 -0.003173572 0.043394367 0.001771565 31 30 0-11216.986885969 -0.003015180 0.020145356 0.001558577 32 31 0-11216.988158050 -0.001272081 0.036570787 0.001488437 33 32 0-11216.990499718 -0.002341668 0.042724424 0.001309757 34 33 0-11216.992893795 -0.002394077 0.027555979 0.001232618 35 34 0-11216.994431007 -0.001537212 0.051952521 0.001156441 36 35 0-11216.997179249 -0.002748242 0.030016418 0.001186193 37 36 0-11216.995864079 0.001315170 0.054323334 0.001495788 38 37 0-11216.998707268 -0.002843189 0.051193809 0.000982282 39 38 0-11217.001061230 -0.002353962 0.021523136 0.001133045 40 39 0-11217.001935856 -0.000874625 0.043270540 0.001123795 41 40 0-11217.003569589 -0.001633733 0.009807823 0.000965383 42 41 0-11217.003526879 0.000042710 0.009177024 0.000968264 43 42 0-11217.003123405 0.000403474 0.013399202 0.001114030 44 43 0-11217.003689446 -0.000566041 0.003059671 0.001006715 45 44 0-11217.003602946 0.000086500 0.007007755 0.000981602 46 45 0-11217.003501607 0.000101339 0.026502412 0.001281847 47 46 0-11217.004655691 -0.001154085 0.013501082 0.000906541 48 47 0-11217.005206237 -0.000550546 0.007477186 0.000880414 49 48 0-11217.005172145 0.000034092 0.014004514 0.000891213 50 49 0-11217.004561540 0.000610605 0.030700282 0.000903207 51 50 0-11217.004179661 0.000381879 0.010130761 0.001113575 52 51 0-11217.003848865 0.000330796 0.003109333 0.001009786 53 52 0-11217.003846161 0.000002704 0.006748230 0.001038997 54 53 0-11217.003744191 0.000101970 0.004691929 0.000992512 55 54 0-11217.003904503 -0.000160312 0.016702052 0.000960418 56 55 0-11217.004448626 -0.000544123 0.018621648 0.000829475

Page 127: Computational Modeling of Functionalized Carbon Nanotubes

118

57 56 0-11217.005040473 -0.000591847 0.038209689 0.000814480 58 57 0-11217.006168722 -0.001128249 0.007496857 0.000821338 59 58 0-11217.006270645 -0.000101923 0.075756839 0.000659049 60 59 0-11217.008039055 -0.001768411 0.019935108 0.000603885 61 60 0-11217.008358705 -0.000319649 0.028630184 0.000305814 62 61 0-11217.008700435 -0.000341730 0.023147349 0.000304601 63 62 0-11217.008882201 -0.000181767 0.006189919 0.000475334 64 63 0-11217.008924315 -0.000042114 0.018351019 0.000167514 65 64 0-11217.009030305 -0.000105990 0.023950670 0.000239256 66 65 0-11217.009130703 -0.000100398 0.006140704 0.000150025 67 66 0-11217.009152144 -0.000021441 0.007291087 0.000077013 68 67 0-11217.009168932 -0.000016788 0.001959988 0.000059092 69 68 0-11217.009170155 -0.000001223 0.009526083 0.000073668 70 69 0-11217.009183867 -0.000013712 0.000985468 0.000060446 71 70 0-11217.009185816 -0.000001949 0.000846107 0.000040448 72 71 0-11217.009186821 -0.000001005 0.000548985 0.000043440 73 72 0-11217.009187638 -0.000000816 0.001212851 0.000046427 74 73 0-11217.009189538 -0.000001901 0.000835178 0.000050658 75 74 0-11217.009188246 0.000001293 0.003303853 0.000047463 76 75 0-11217.009182449 0.000005796 0.001227366 0.000032299 77 76 0-11217.009182205 0.000000245 0.002019124 0.000023949 78 77 0-11217.009183126 -0.000000921 0.003603502 0.000023169 79 78 0-11217.009185381 -0.000002255 0.001893702 0.000016240 80 79 0-11217.009186180 -0.000000799 0.001242949 0.000013014 81 80 0-11217.009186654 -0.000000474 0.002136913 0.000010025 82 81 0-11217.009187207 -0.000000553 0.000618388 0.000007182 83 82 0-11217.009187314 -0.000000107 0.000416822 0.000006397 84 83 0-11217.009187415 -0.000000101 0.000315581 0.000005709 85 84 0-11217.009187493 -0.000000079 0.000126103 0.000005582 86 85 0-11217.009187534 -0.000000040 0.000175760 0.000004751 87 86 0-11217.009187580 -0.000000046 0.000140962 0.000004315 88 87 0-11217.009187617 -0.000000037 0.000305912 0.000004069 89 88 0-11217.009187644 -0.000000028 0.000014828 0.000004448 90 89 0-11217.009187649 -0.000000005 0.000050981 0.000004548 91 90 0-11217.009187647 0.000000002 0.000038225 0.000004522 92 91 0-11217.009187644 0.000000003 0.000109257 0.000004456 93 92 0-11217.009187642 0.000000002 0.000052822 0.000004423 94 93 0-11217.009187650 -0.000000009 0.000034140 0.000004700 95 94 0-11217.009187644 0.000000007 0.000079024 0.000004520 96 95 0-11217.009187632 0.000000012 0.000113070 0.000004113 97 96 0-11217.009187612 0.000000019 0.000067022 0.000003770 98 97 0-11217.009187612 0.000000000 0.000098426 0.000003716 99 98 0-11217.009187614 -0.000000002 0.000207845 0.000003555 100 99 0-11217.009187646 -0.000000031 0.000392819 0.000003437 101100 0-11217.009187686 -0.000000041 0.000103145 0.000003530 102101 0-11217.009187690 -0.000000004 0.000059761 0.000003459 103102 0-11217.009187694 -0.000000004 0.000193869 0.000003492 104103 0-11217.009187684 0.000000010 0.000177408 0.000003178 105104 0-11217.009187673 0.000000011 0.000108236 0.000002861 106105 0-11217.009187667 0.000000006 0.000035513 0.000002703 107106 0-11217.009187668 0.000000000 0.000013619 0.000002848 108107 0-11217.009187670 -0.000000002 0.000053723 0.000002916 109108 0-11217.009187663 0.000000007 0.000107060 0.000002621 110109 0-11217.009187649 0.000000014 0.000026754 0.000002656 111110 0-11217.009187649 0.000000000 0.000068283 0.000002295 112111 0-11217.009187654 -0.000000005 0.000134874 0.000002430 113112 0-11217.009187662 -0.000000008 0.000296474 0.000002218 114113 0-11217.009187678 -0.000000016 0.000193255 0.000001766 115114 0-11217.009187684 -0.000000007 0.000147499 0.000001535 116115 0-11217.009187688 -0.000000003 0.000079494 0.000001592 117116 0-11217.009187689 -0.000000001 0.000048144 0.000001355 118117 0-11217.009187689 0.000000000 0.000023484 0.000001280 119118 0-11217.009187690 -0.000000001 0.000030876 0.000001130 120119 0-11217.009187691 -0.000000001 0.000015142 0.000000907 121120 0-11217.009187691 0.000000000 0.000043952 0.000000863 122121 0-11217.009187692 -0.000000001 0.000041522 0.000000520 123122 0-11217.009187694 -0.000000001 0.000061151 0.000000558 124123 0-11217.009187694 -0.000000001 0.000040644 0.000000325 125124 0-11217.009187694 0.000000000 0.000032264 0.000000306 126125 0-11217.009187694 0.000000000 0.000018199 0.000000296

Page 128: Computational Modeling of Functionalized Carbon Nanotubes

119

127126 0-11217.009187694 0.000000000 0.000004879 0.000000311 ----------------- DENSITY CONVERGED ----------------- TIME TO FORM FOCK OPERATORS= 6929.6 SECONDS ( 54.6 SEC/ITER) TIME TO SOLVE SCF EQUATIONS= 790.3 SECONDS ( 6.2 SEC/ITER) FINAL ENERGY IS -11217.0091876944 AFTER 127 ITERATIONS

Page 129: Computational Modeling of Functionalized Carbon Nanotubes

120

1000-nm diameter nanotube segment with n-succinimidyl-1-

pyrenebutanoate

-------------------

RHF SCF CALCULATION

-------------------

NUCLEAR ENERGY = 103835.3023243810

MAXIT = 200 NPUNCH= 2

EXTRAP=T DAMP=F SHIFT=F RSTRCT=F DIIS=T DEM=F SOSCF=F

DENSITY CONV= 1.00E-04

MEMORY REQUIRED FOR RHF STEP= 19415747 WORDS.

ITER EX DEM TOTAL ENERGY E CHANGE DENSITY CHANGE DIIS ERROR

* * * INITIATING DIIS PROCEDURE * * *

1 0 0-12428.714310334-12428.714310334 4.894046800 0.501883158

2 1 0-10962.759748200 1465.954562133 4.848364569 1.391153158

3 2 0-11993.243043094 -1030.483294894 5.387648402 0.540363764

4 3 0 -8668.642594217 3324.600448877 5.256237812 1.216952898

5 4 0-12412.513082892 -3743.870488675 5.204630075 0.236037599

6 5 0 -6689.878983964 5722.634098927 5.030953262 1.235856357

7 6 0-11322.495000126 -4632.616016161 4.991213016 0.623943800

8 7 0-12416.878638763 -1094.383638637 1.975183655 0.334418038

9 8 0-12317.584528609 99.294110154 1.951596735 0.431731550

10 9 0-12402.491510712 -84.906982103 1.743913599 0.412930744

11 10 0-12423.564596247 -21.073085535 1.199090919 0.318285957

12 11 0-12464.399297518 -40.834701271 1.241829228 0.165257159

13 12 0-12422.216883122 42.182414397 1.136009325 0.260573195

14 13 0-12468.518978725 -46.302095604 1.101821150 0.113889818

15 14 0-12464.010287156 4.508691569 0.942890913 0.117091277

16 15 0-12465.836447182 -1.826160026 0.968508628 0.133873992

17 16 0-12468.597003829 -2.760556647 0.929587244 0.165251490

18 17 0-12473.015158597 -4.418154768 1.018639599 0.055421384

19 18 0-12471.827333623 1.187824974 1.041958392 0.128901950

20 19 0-12473.228631824 -1.401298201 0.681377461 0.048512950

21 20 0-12473.884450772 -0.655818947 0.239857948 0.023824699

22 21 0-12474.048088126 -0.163637355 0.097394950 0.010966046

23 22 0-12474.117062190 -0.068974064 0.073514975 0.007774787

24 23 0-12474.153569627 -0.036507436 0.065592571 0.005925910

25 24 0-12474.177559842 -0.023990215 0.037621146 0.003567692

26 25 0-12474.189347803 -0.011787961 0.055857984 0.002841118

27 26 0-12474.201057594 -0.011709791 0.040695094 0.002294756

28 27 0-12474.207896955 -0.006839361 0.038682339 0.001830514

29 28 0-12474.212982911 -0.005085955 0.025077269 0.002175710

30 29 0-12474.215577638 -0.002594727 0.008104643 0.002327600

31 30 0-12474.216442754 -0.000865116 0.032031292 0.002385878

32 31 0-12474.213221715 0.003221039 0.074197281 0.002148656

33 32 0-12474.207445724 0.005775991 0.059084145 0.001566489

34 33 0-12474.204796466 0.002649258 0.036374708 0.001160115

35 34 0-12474.204195839 0.000600628 0.042850329 0.000924644

36 35 0-12474.203687463 0.000508376 0.054850055 0.000634481

37 36 0-12474.203926264 -0.000238802 0.017421964 0.000724514

38 37 0-12474.204453458 -0.000527194 0.003896225 0.000486288

39 38 0-12474.204616248 -0.000162790 0.009493813 0.000537077

Page 130: Computational Modeling of Functionalized Carbon Nanotubes

121

40 39 0-12474.204916637 -0.000300389 0.006031827 0.000645036

41 40 0-12474.205045650 -0.000129013 0.006284731 0.000686586

42 41 0-12474.205211187 -0.000165537 0.002650981 0.000748747

43 42 0-12474.205246506 -0.000035319 0.004665326 0.000773659

44 43 0-12474.205210887 0.000035619 0.010375890 0.000737788

45 44 0-12474.205155868 0.000055019 0.003287416 0.000659186

46 45 0-12474.205164844 -0.000008976 0.000824890 0.000639842

47 46 0-12474.205155632 0.000009212 0.000349554 0.000634972

48 47 0-12474.205159325 -0.000003693 0.001633776 0.000635497

49 48 0-12474.205182752 -0.000023427 0.002823873 0.000641361

50 49 0-12474.205231208 -0.000048456 0.005246747 0.000648716

51 50 0-12474.205346169 -0.000114961 0.002182165 0.000693467

52 51 0-12474.205403602 -0.000057433 0.019775281 0.000715496

53 52 0-12474.205013865 0.000389737 0.020200551 0.000513992

54 53 0-12474.204846538 0.000167327 0.009376081 0.000346240

55 54 0-12474.204915912 -0.000069374 0.003692693 0.000303452

56 55 0-12474.204952736 -0.000036823 0.007432551 0.000300010

57 56 0-12474.205055995 -0.000103259 0.003291419 0.000335051

58 57 0-12474.205126618 -0.000070624 0.001753311 0.000355659

59 58 0-12474.205162095 -0.000035477 0.000103860 0.000366336

60 59 0-12474.205164083 -0.000001988 0.003594780 0.000367276

61 60 0-12474.205115204 0.000048880 0.009511128 0.000345142

62 61 0-12474.204995111 0.000120092 0.004213937 0.000290068

63 62 0-12474.204975714 0.000019397 0.003875012 0.000270334

64 63 0-12474.205015648 -0.000039934 0.009638829 0.000283310

65 64 0-12474.205073677 -0.000058029 0.004174116 0.000321408

66 65 0-12474.205136780 -0.000063103 0.002318137 0.000356969

67 66 0-12474.205157629 -0.000020849 0.001507199 0.000368482

68 67 0-12474.205130429 0.000027201 0.007896329 0.000351952

69 68 0-12474.205007999 0.000122429 0.004385497 0.000267178

70 69 0-12474.205045324 -0.000037325 0.002835326 0.000295356

71 70 0-12474.205028467 0.000016857 0.005883442 0.000288220

72 71 0-12474.205095245 -0.000066778 0.002108541 0.000313603

73 72 0-12474.205118197 -0.000022952 0.004814055 0.000319875

74 73 0-12474.205186596 -0.000068399 0.001488937 0.000366970

75 74 0-12474.205202317 -0.000015721 0.000469948 0.000375848

76 75 0-12474.205202329 -0.000000012 0.002043237 0.000380329

77 76 0-12474.205206572 -0.000004243 0.001324846 0.000376204

78 77 0-12474.205216723 -0.000010151 0.001052387 0.000374719

79 78 0-12474.205205490 0.000011233 0.001948618 0.000372215

80 79 0-12474.205219390 -0.000013900 0.005931208 0.000368897

81 80 0-12474.205210834 0.000008556 0.005983004 0.000317845

82 81 0-12474.205242634 -0.000031800 0.006363481 0.000301323

83 82 0-12474.205281907 -0.000039273 0.002676799 0.000296989

84 83 0-12474.205295288 -0.000013381 0.011474189 0.000295030

85 84 0-12474.205338306 -0.000043018 0.002726884 0.000302534

86 85 0-12474.205362044 -0.000023737 0.001008867 0.000311657

87 86 0-12474.205352679 0.000009365 0.004615062 0.000308431

88 87 0-12474.205347053 0.000005625 0.002216385 0.000329449

89 88 0-12474.205342327 0.000004726 0.001449970 0.000317570

90 89 0-12474.205328997 0.000013330 0.002077145 0.000294624

91 90 0-12474.205314498 0.000014499 0.001037296 0.000271660

92 91 0-12474.205315022 -0.000000524 0.000835049 0.000268983

93 92 0-12474.205312019 0.000003003 0.000723686 0.000272418

Page 131: Computational Modeling of Functionalized Carbon Nanotubes

122

94 93 0-12474.205310682 0.000001336 0.000847875 0.000273819

95 94 0-12474.205310608 0.000000074 0.003465337 0.000274811

96 95 0-12474.205336181 -0.000025573 0.000090650 0.000283013

97 96 0-12474.205336324 -0.000000142 0.002177376 0.000282932

98 97 0-12474.205312932 0.000023392 0.005867711 0.000264405

99 98 0-12474.205257490 0.000055441 0.005414804 0.000223452

100 99 0-12474.205224044 0.000033446 0.011150462 0.000181655

101100 0-12474.205209728 0.000014316 0.003161689 0.000116950

102101 0-12474.205201421 0.000008307 0.001978729 0.000093155

103102 0-12474.205208497 -0.000007076 0.002337934 0.000093070

104103 0-12474.205215579 -0.000007081 0.004047512 0.000096474

105104 0-12474.205234422 -0.000018843 0.000842454 0.000112704

106105 0-12474.205239494 -0.000005072 0.000481105 0.000121138

107106 0-12474.205241165 -0.000001671 0.001415062 0.000124615

108107 0-12474.205237127 0.000004038 0.001118151 0.000113872

109108 0-12474.205243309 -0.000006182 0.000822408 0.000117799

110109 0-12474.205246144 -0.000002835 0.000453242 0.000120574

111110 0-12474.205249023 -0.000002880 0.000228174 0.000125099

112111 0-12474.205249255 -0.000000232 0.000512360 0.000124123

113112 0-12474.205248262 0.000000993 0.001545971 0.000118339

114113 0-12474.205251007 -0.000002745 0.007227043 0.000098648

115114 0-12474.205280047 -0.000029040 0.004607067 0.000083477

116115 0-12474.205295979 -0.000015932 0.002394822 0.000080372

117116 0-12474.205302120 -0.000006141 0.004648117 0.000070538

118117 0-12474.205312364 -0.000010244 0.003846144 0.000052324

119118 0-12474.205321168 -0.000008803 0.002704545 0.000044372

120119 0-12474.205327412 -0.000006245 0.002250579 0.000040893

121120 0-12474.205332867 -0.000005455 0.003723279 0.000048481

122121 0-12474.205340471 -0.000007604 0.000387131 0.000059151

123122 0-12474.205341233 -0.000000762 0.000691515 0.000063447

124123 0-12474.205339637 0.000001597 0.001511361 0.000056630

125124 0-12474.205338721 0.000000916 0.001364275 0.000041279

126125 0-12474.205340045 -0.000001324 0.001416865 0.000037387

127126 0-12474.205340328 -0.000000283 0.000704405 0.000031955

128127 0-12474.205340364 -0.000000036 0.000868718 0.000028952

129128 0-12474.205339778 0.000000586 0.000364309 0.000028560

130129 0-12474.205340632 -0.000000854 0.000753413 0.000032032

131130 0-12474.205341645 -0.000001013 0.000571856 0.000034542

132131 0-12474.205340834 0.000000811 0.001077008 0.000032357

133132 0-12474.205339019 0.000001815 0.001078395 0.000029960

134133 0-12474.205338092 0.000000927 0.000202515 0.000030260

135134 0-12474.205338065 0.000000027 0.000293940 0.000028819

136135 0-12474.205337663 0.000000402 0.000155381 0.000027895

137136 0-12474.205337505 0.000000158 0.000335575 0.000026540

138137 0-12474.205337071 0.000000433 0.000174771 0.000026388

139138 0-12474.205337266 -0.000000194 0.000457431 0.000024980

140139 0-12474.205336675 0.000000591 0.000603440 0.000026608

141140 0-12474.205337697 -0.000001022 0.000316164 0.000027837

142141 0-12474.205338188 -0.000000491 0.000497761 0.000026115

143142 0-12474.205339010 -0.000000822 0.000493467 0.000025918

144143 0-12474.205339674 -0.000000665 0.000202906 0.000026203

145144 0-12474.205339727 -0.000000053 0.000312217 0.000026096

146145 0-12474.205339827 -0.000000100 0.000245521 0.000025212

147146 0-12474.205340174 -0.000000347 0.000339573 0.000026479

Page 132: Computational Modeling of Functionalized Carbon Nanotubes

123

148147 0-12474.205340827 -0.000000653 0.000375629 0.000029204

149148 0-12474.205340370 0.000000457 0.000637701 0.000025448

150149 0-12474.205339282 0.000001087 0.000923299 0.000023462

151150 0-12474.205337989 0.000001294 0.000425972 0.000026553

152151 0-12474.205338202 -0.000000213 0.000245090 0.000024784

153152 0-12474.205338156 0.000000046 0.000164813 0.000023991

154153 0-12474.205338180 -0.000000024 0.000148801 0.000023980

155154 0-12474.205338282 -0.000000103 0.000614705 0.000023886

156155 0-12474.205338517 -0.000000235 0.000179303 0.000023728

157156 0-12474.205338580 -0.000000062 0.000082243 0.000023673

158157 0-12474.205338559 0.000000021 0.000343254 0.000023295

159158 0-12474.205338540 0.000000019 0.000442072 0.000024762

160159 0-12474.205339235 -0.000000695 0.000245206 0.000023770

161160 0-12474.205338794 0.000000441 0.000619237 0.000024448

162161 0-12474.205337799 0.000000995 0.000544709 0.000024475

163162 0-12474.205337568 0.000000231 0.000553753 0.000024780

164163 0-12474.205338232 -0.000000664 0.000765298 0.000026196

165164 0-12474.205339062 -0.000000831 0.000954396 0.000022162

166165 0-12474.205340129 -0.000001067 0.001141984 0.000020681

167166 0-12474.205341149 -0.000001020 0.001119491 0.000020448

168167 0-12474.205341792 -0.000000644 0.000899026 0.000019787

169168 0-12474.205342517 -0.000000724 0.000063837 0.000022704

170169 0-12474.205342593 -0.000000077 0.000160689 0.000023571

171170 0-12474.205342771 -0.000000178 0.000203007 0.000024640

172171 0-12474.205342595 0.000000176 0.000225905 0.000024101

173172 0-12474.205342498 0.000000098 0.000115579 0.000024064

174173 0-12474.205342599 -0.000000101 0.000037055 0.000024786

175174 0-12474.205342612 -0.000000013 0.000211481 0.000024765

176175 0-12474.205342495 0.000000118 0.000049705 0.000024622

177176 0-12474.205342560 -0.000000066 0.000040300 0.000025098

178177 0-12474.205342531 0.000000029 0.000195114 0.000024814

179178 0-12474.205342704 -0.000000173 0.000130134 0.000025668

180179 0-12474.205342642 0.000000062 0.000047918 0.000025964

181180 0-12474.205342643 -0.000000001 0.000115640 0.000025514

182181 0-12474.205342536 0.000000107 0.000256431 0.000024418

183182 0-12474.205342729 -0.000000193 0.000228682 0.000024000

184183 0-12474.205342904 -0.000000175 0.000063019 0.000024170

185184 0-12474.205342876 0.000000028 0.000060688 0.000024141

186185 0-12474.205342873 0.000000003 0.000670617 0.000023968

187186 0-12474.205343345 -0.000000472 0.000433623 0.000024646

188187 0-12474.205343756 -0.000000411 0.000102683 0.000026775

189188 0-12474.205343857 -0.000000101 0.000084719 0.000027445

190189 0-12474.205343920 -0.000000063 0.000388144 0.000027751

191190 0-12474.205343630 0.000000291 0.000195980 0.000026479

192191 0-12474.205343538 0.000000092 0.000029760 0.000026156

193192 0-12474.205343526 0.000000012 0.000089980 0.000026218

----------------- DENSITY CONVERGED ----------------- TIME TO FORM FOCK OPERATORS= 21512.2 SECONDS ( 107.6 SEC/ITER)

TIME TO SOLVE SCF EQUATIONS= 4039.3 SECONDS ( 20.2 SEC/ITER)

FINAL ENERGY IS -12474.205343526 AFTER 193 ITERATIONS

Page 133: Computational Modeling of Functionalized Carbon Nanotubes

124

Graphene (d = ∞) before n-succinimidyl-1-pyrenebutanoate

------------------- RHF SCF CALCULATION ------------------- NUCLEAR ENERGY = 82590.1102223000 MAXIT = 200 NPUNCH= 2 EXTRAP=T DAMP=F SHIFT=F RSTRCT=F DIIS=T DEM=F SOSCF=F DENSITY CONV= 1.00E-05 MEMORY REQUIRED FOR RHF STEP= 15781179 WORDS. ITER EX DEM TOTAL ENERGY E CHANGE DENSITY CHANGE DIIS ERROR * * * INITIATING DIIS PROCEDURE * * * 1 0 0-11173.499529366-11173.499529366 2.678672142 0.863067134 2 1 0-10179.510656977 993.988872389 2.639690150 2.255488701 3 2 0-11028.347907303 -848.837250326 5.204244695 0.836479455 4 3 0-10238.805021399 789.542885904 5.016785739 1.250152761 5 4 0-11154.101705021 -915.296683622 5.018065983 0.375946584 6 5 0 -8681.326402272 2472.775302748 4.953719392 1.016487138 7 6 0-10996.165981316 -2314.839579044 1.898630481 0.569634282 8 7 0-11197.157688281 -200.991706965 1.344557618 0.323325157 9 8 0-11129.133053449 68.024634832 1.177540027 0.389464971 10 9 0-11188.214466399 -59.081412951 1.292587774 0.272848273 11 10 0-11095.631146494 92.583319905 0.854097324 0.358668464 12 11 0-11210.382653518 -114.751507024 0.979334127 0.226663994 13 12 0-11205.120181783 5.262471735 0.984903122 0.286830133 14 13 0-11209.556533335 -4.436351552 0.893360173 0.244704790 15 14 0-11212.249522605 -2.692989271 0.801451721 0.135906990 16 15 0-11215.328357919 -3.078835314 0.732924934 0.081051246 17 16 0-11215.152259118 0.176098801 0.768256354 0.137472638 18 17 0-11215.890399361 -0.738140242 0.801872403 0.077856848 19 18 0-11216.354852092 -0.464452731 0.497522009 0.069102561 20 19 0-11216.737502991 -0.382650899 0.114327898 0.043972462 21 20 0-11216.880303391 -0.142800400 0.070454340 0.028234013 22 21 0-11216.955237581 -0.074934190 0.067687540 0.014573810 23 22 0-11217.000946765 -0.045709183 0.066503019 0.010453592 24 23 0-11217.035769485 -0.034822720 0.065738705 0.007411912 25 24 0-11217.059649369 -0.023879884 0.052623610 0.004117158 26 25 0-11217.070237833 -0.010588464 0.023710230 0.002376453 27 26 0-11217.073550253 -0.003312420 0.036822873 0.001879544 28 27 0-11217.076959227 -0.003408974 0.022121954 0.000979367 29 28 0-11217.077964146 -0.001004919 0.012407711 0.000649055 30 29 0-11217.078370315 -0.000406169 0.012536725 0.000582859 31 30 0-11217.078677230 -0.000306915 0.010893801 0.000528616 32 31 0-11217.078914821 -0.000237591 0.014400273 0.000491239 33 32 0-11217.079174437 -0.000259616 0.013013936 0.000376755 34 33 0-11217.079371561 -0.000197123 0.011900895 0.000271309 35 34 0-11217.079524030 -0.000152469 0.008856983 0.000250209 36 35 0-11217.079615241 -0.000091211 0.013215736 0.000215158 37 36 0-11217.079726032 -0.000110791 0.008978555 0.000176918 38 37 0-11217.079791153 -0.000065122 0.008318873 0.000145313 39 38 0-11217.079842532 -0.000051379 0.008687404 0.000124635 40 39 0-11217.079884198 -0.000041665 0.009205361 0.000107493 41 40 0-11217.079920769 -0.000036571 0.006367688 0.000067756 42 41 0-11217.079937423 -0.000016654 0.004050190 0.000052764 43 42 0-11217.079945719 -0.000008295 0.003428340 0.000042379 44 43 0-11217.079950756 -0.000005038 0.002960025 0.000032208 45 44 0-11217.079953821 -0.000003064 0.001946682 0.000022818 46 45 0-11217.079955200 -0.000001379 0.001543375 0.000029711 47 46 0-11217.079955960 -0.000000760 0.001109761 0.000018083 48 47 0-11217.079956312 -0.000000352 0.000744402 0.000017940 49 48 0-11217.079956469 -0.000000157 0.000317940 0.000014076 50 49 0-11217.079956586 -0.000000116 0.000455772 0.000011871 51 50 0-11217.079956649 -0.000000063 0.000144008 0.000009733 52 51 0-11217.079956727 -0.000000078 0.000135674 0.000007678 53 52 0-11217.079956790 -0.000000064 0.000113338 0.000006503 54 53 0-11217.079956837 -0.000000046 0.000130311 0.000005645 55 54 0-11217.079956882 -0.000000045 0.000142128 0.000005366

Page 134: Computational Modeling of Functionalized Carbon Nanotubes

125

56 55 0-11217.079956923 -0.000000042 0.000144968 0.000004887 57 56 0-11217.079956957 -0.000000034 0.000202918 0.000004618 58 57 0-11217.079956995 -0.000000038 0.000186370 0.000003730 59 58 0-11217.079957025 -0.000000030 0.000186179 0.000003117 60 59 0-11217.079957047 -0.000000022 0.000130968 0.000002756 61 60 0-11217.079957062 -0.000000015 0.000135132 0.000002317 62 61 0-11217.079957073 -0.000000011 0.000146817 0.000001762 63 62 0-11217.079957082 -0.000000009 0.000097404 0.000001284 64 63 0-11217.079957087 -0.000000005 0.000079836 0.000001840 65 64 0-11217.079957090 -0.000000003 0.000089044 0.000001494 66 65 0-11217.079957093 -0.000000003 0.000050514 0.000001352 67 66 0-11217.079957094 -0.000000001 0.000037712 0.000001365 68 67 0-11217.079957094 -0.000000001 0.000048175 0.000000966 69 68 0-11217.079957095 0.000000000 0.000016491 0.000000934 70 69 0-11217.079957095 -0.000000001 0.000011446 0.000000560 ---------------- ENERGY CONVERGED ---------------- TIME TO FORM FOCK OPERATORS= 3668.5 SECONDS ( 52.4 SEC/ITER) TIME TO SOLVE SCF EQUATIONS= 1034.6 SECONDS ( 14.8 SEC/ITER) FINAL ENERGY IS -11217.0799570954 AFTER 70 ITERATIONS

Page 135: Computational Modeling of Functionalized Carbon Nanotubes

126

Graphene (d = ∞) with n-succinimidyl-1-pyrenebutanoate

-------------------

RHF SCF CALCULATION

-------------------

NUCLEAR ENERGY = 103835.3023243810

MAXIT = 200 NPUNCH= 2

EXTRAP=T DAMP=F SHIFT=F RSTRCT=F DIIS=T DEM=F SOSCF=F

DENSITY CONV= 1.00E-04

MEMORY REQUIRED FOR RHF STEP= 19415747 WORDS.

ITER EX DEM TOTAL ENERGY E CHANGE DENSITY CHANGE DIIS ERROR

* * * INITIATING DIIS PROCEDURE * * *

1 0 0-12428.714310334-12428.714310334 4.894046800 0.501883158

2 1 0-10962.759748200 1465.954562133 4.848364569 1.391153158

3 2 0-11993.243043094 -1030.483294894 5.387648402 0.540363764

4 3 0 -8668.642594217 3324.600448877 5.256237812 1.216952898

5 4 0-12412.513082892 -3743.870488675 5.204630075 0.236037599

6 5 0 -6689.878983964 5722.634098927 5.030953262 1.235856357

7 6 0-11322.495000126 -4632.616016161 4.991213016 0.623943800

8 7 0-12416.878638763 -1094.383638637 1.975183655 0.334418038

9 8 0-12317.584528609 99.294110154 1.951596735 0.431731550

10 9 0-12402.491510712 -84.906982103 1.743913599 0.412930744

11 10 0-12423.564596247 -21.073085535 1.199090919 0.318285957

12 11 0-12464.399297518 -40.834701271 1.241829228 0.165257159

13 12 0-12422.216883122 42.182414397 1.136009325 0.260573195

14 13 0-12468.518978725 -46.302095604 1.101821150 0.113889818

15 14 0-12464.010287156 4.508691569 0.942890913 0.117091277

16 15 0-12465.836447182 -1.826160026 0.968508628 0.133873992

17 16 0-12468.597003829 -2.760556647 0.929587244 0.165251490

18 17 0-12473.015158597 -4.418154768 1.018639599 0.055421384

19 18 0-12471.827333623 1.187824974 1.041958392 0.128901950

20 19 0-12473.228631824 -1.401298201 0.681377461 0.048512950

21 20 0-12473.884450772 -0.655818947 0.239857948 0.023824699

22 21 0-12474.048088126 -0.163637355 0.097394950 0.010966046

23 22 0-12474.117062190 -0.068974064 0.073514975 0.007774787

24 23 0-12474.153569627 -0.036507436 0.065592571 0.005925910

25 24 0-12474.177559842 -0.023990215 0.037621146 0.003567692

26 25 0-12474.189347803 -0.011787961 0.055857984 0.002841118

27 26 0-12474.201057594 -0.011709791 0.040695094 0.002294756

28 27 0-12474.207896955 -0.006839361 0.038682339 0.001830514

29 28 0-12474.212982911 -0.005085955 0.025077269 0.002175710

30 29 0-12474.215577638 -0.002594727 0.008104643 0.002327600

31 30 0-12474.216442754 -0.000865116 0.032031292 0.002385878

32 31 0-12474.213221715 0.003221039 0.074197281 0.002148656

33 32 0-12474.207445724 0.005775991 0.059084145 0.001566489

34 33 0-12474.204796466 0.002649258 0.036374708 0.001160115

35 34 0-12474.204195839 0.000600628 0.042850329 0.000924644

36 35 0-12474.203687463 0.000508376 0.054850055 0.000634481

37 36 0-12474.203926264 -0.000238802 0.017421964 0.000724514

38 37 0-12474.204453458 -0.000527194 0.003896225 0.000486288

39 38 0-12474.204616248 -0.000162790 0.009493813 0.000537077

40 39 0-12474.204916637 -0.000300389 0.006031827 0.000645036

Page 136: Computational Modeling of Functionalized Carbon Nanotubes

127

41 40 0-12474.205045650 -0.000129013 0.006284731 0.000686586

42 41 0-12474.205211187 -0.000165537 0.002650981 0.000748747

43 42 0-12474.205246506 -0.000035319 0.004665326 0.000773659

44 43 0-12474.205210887 0.000035619 0.010375890 0.000737788

45 44 0-12474.205155868 0.000055019 0.003287416 0.000659186

46 45 0-12474.205164844 -0.000008976 0.000824890 0.000639842

47 46 0-12474.205155632 0.000009212 0.000349554 0.000634972

48 47 0-12474.205159325 -0.000003693 0.001633776 0.000635497

49 48 0-12474.205182752 -0.000023427 0.002823873 0.000641361

50 49 0-12474.205231208 -0.000048456 0.005246747 0.000648716

51 50 0-12474.205346169 -0.000114961 0.002182165 0.000693467

52 51 0-12474.205403602 -0.000057433 0.019775281 0.000715496

53 52 0-12474.205013865 0.000389737 0.020200551 0.000513992

54 53 0-12474.204846538 0.000167327 0.009376081 0.000346240

55 54 0-12474.204915912 -0.000069374 0.003692693 0.000303452

56 55 0-12474.204952736 -0.000036823 0.007432551 0.000300010

57 56 0-12474.205055995 -0.000103259 0.003291419 0.000335051

58 57 0-12474.205126618 -0.000070624 0.001753311 0.000355659

59 58 0-12474.205162095 -0.000035477 0.000103860 0.000366336

60 59 0-12474.205164083 -0.000001988 0.003594780 0.000367276

61 60 0-12474.205115204 0.000048880 0.009511128 0.000345142

62 61 0-12474.204995111 0.000120092 0.004213937 0.000290068

63 62 0-12474.204975714 0.000019397 0.003875012 0.000270334

64 63 0-12474.205015648 -0.000039934 0.009638829 0.000283310

65 64 0-12474.205073677 -0.000058029 0.004174116 0.000321408

66 65 0-12474.205136780 -0.000063103 0.002318137 0.000356969

67 66 0-12474.205157629 -0.000020849 0.001507199 0.000368482

68 67 0-12474.205130429 0.000027201 0.007896329 0.000351952

69 68 0-12474.205007999 0.000122429 0.004385497 0.000267178

70 69 0-12474.205045324 -0.000037325 0.002835326 0.000295356

71 70 0-12474.205028467 0.000016857 0.005883442 0.000288220

72 71 0-12474.205095245 -0.000066778 0.002108541 0.000313603

73 72 0-12474.205118197 -0.000022952 0.004814055 0.000319875

74 73 0-12474.205186596 -0.000068399 0.001488937 0.000366970

75 74 0-12474.205202317 -0.000015721 0.000469948 0.000375848

76 75 0-12474.205202329 -0.000000012 0.002043237 0.000380329

77 76 0-12474.205206572 -0.000004243 0.001324846 0.000376204

78 77 0-12474.205216723 -0.000010151 0.001052387 0.000374719

79 78 0-12474.205205490 0.000011233 0.001948618 0.000372215

80 79 0-12474.205219390 -0.000013900 0.005931208 0.000368897

81 80 0-12474.205210834 0.000008556 0.005983004 0.000317845

82 81 0-12474.205242634 -0.000031800 0.006363481 0.000301323

83 82 0-12474.205281907 -0.000039273 0.002676799 0.000296989

84 83 0-12474.205295288 -0.000013381 0.011474189 0.000295030

85 84 0-12474.205338306 -0.000043018 0.002726884 0.000302534

86 85 0-12474.205362044 -0.000023737 0.001008867 0.000311657

87 86 0-12474.205352679 0.000009365 0.004615062 0.000308431

88 87 0-12474.205347053 0.000005625 0.002216385 0.000329449

89 88 0-12474.205342327 0.000004726 0.001449970 0.000317570

90 89 0-12474.205328997 0.000013330 0.002077145 0.000294624

91 90 0-12474.205314498 0.000014499 0.001037296 0.000271660

92 91 0-12474.205315022 -0.000000524 0.000835049 0.000268983

93 92 0-12474.205312019 0.000003003 0.000723686 0.000272418

94 93 0-12474.205310682 0.000001336 0.000847875 0.000273819

Page 137: Computational Modeling of Functionalized Carbon Nanotubes

128

95 94 0-12474.205310608 0.000000074 0.003465337 0.000274811

96 95 0-12474.205336181 -0.000025573 0.000090650 0.000283013

97 96 0-12474.205336324 -0.000000142 0.002177376 0.000282932

98 97 0-12474.205312932 0.000023392 0.005867711 0.000264405

99 98 0-12474.205257490 0.000055441 0.005414804 0.000223452

100 99 0-12474.205224044 0.000033446 0.011150462 0.000181655

101100 0-12474.205209728 0.000014316 0.003161689 0.000116950

102101 0-12474.205201421 0.000008307 0.001978729 0.000093155

103102 0-12474.205208497 -0.000007076 0.002337934 0.000093070

104103 0-12474.205215579 -0.000007081 0.004047512 0.000096474

105104 0-12474.205234422 -0.000018843 0.000842454 0.000112704

106105 0-12474.205239494 -0.000005072 0.000481105 0.000121138

107106 0-12474.205241165 -0.000001671 0.001415062 0.000124615

108107 0-12474.205237127 0.000004038 0.001118151 0.000113872

109108 0-12474.205243309 -0.000006182 0.000822408 0.000117799

110109 0-12474.205246144 -0.000002835 0.000453242 0.000120574

111110 0-12474.205249023 -0.000002880 0.000228174 0.000125099

112111 0-12474.205249255 -0.000000232 0.000512360 0.000124123

113112 0-12474.205248262 0.000000993 0.001545971 0.000118339

114113 0-12474.205251007 -0.000002745 0.007227043 0.000098648

115114 0-12474.205280047 -0.000029040 0.004607067 0.000083477

116115 0-12474.205295979 -0.000015932 0.002394822 0.000080372

117116 0-12474.205302120 -0.000006141 0.004648117 0.000070538

118117 0-12474.205312364 -0.000010244 0.003846144 0.000052324

119118 0-12474.205321168 -0.000008803 0.002704545 0.000044372

120119 0-12474.205327412 -0.000006245 0.002250579 0.000040893

121120 0-12474.205332867 -0.000005455 0.003723279 0.000048481

122121 0-12474.205340471 -0.000007604 0.000387131 0.000059151

123122 0-12474.205341233 -0.000000762 0.000691515 0.000063447

124123 0-12474.205339637 0.000001597 0.001511361 0.000056630

125124 0-12474.205338721 0.000000916 0.001364275 0.000041279

126125 0-12474.205340045 -0.000001324 0.001416865 0.000037387

127126 0-12474.205340328 -0.000000283 0.000704405 0.000031955

128127 0-12474.205340364 -0.000000036 0.000868718 0.000028952

129128 0-12474.205339778 0.000000586 0.000364309 0.000028560

130129 0-12474.205340632 -0.000000854 0.000753413 0.000032032

131130 0-12474.205341645 -0.000001013 0.000571856 0.000034542

132131 0-12474.205340834 0.000000811 0.001077008 0.000032357

133132 0-12474.205339019 0.000001815 0.001078395 0.000029960

134133 0-12474.205338092 0.000000927 0.000202515 0.000030260

135134 0-12474.205338065 0.000000027 0.000293940 0.000028819

136135 0-12474.205337663 0.000000402 0.000155381 0.000027895

137136 0-12474.205337505 0.000000158 0.000335575 0.000026540

138137 0-12474.205337071 0.000000433 0.000174771 0.000026388

139138 0-12474.205337266 -0.000000194 0.000457431 0.000024980

140139 0-12474.205336675 0.000000591 0.000603440 0.000026608

141140 0-12474.205337697 -0.000001022 0.000316164 0.000027837

142141 0-12474.205338188 -0.000000491 0.000497761 0.000026115

143142 0-12474.205339010 -0.000000822 0.000493467 0.000025918

144143 0-12474.205339674 -0.000000665 0.000202906 0.000026203

145144 0-12474.205339727 -0.000000053 0.000312217 0.000026096

146145 0-12474.205339827 -0.000000100 0.000245521 0.000025212

147146 0-12474.205340174 -0.000000347 0.000339573 0.000026479

148147 0-12474.205340827 -0.000000653 0.000375629 0.000029204

Page 138: Computational Modeling of Functionalized Carbon Nanotubes

129

149148 0-12474.205340370 0.000000457 0.000637701 0.000025448

150149 0-12474.205339282 0.000001087 0.000923299 0.000023462

151150 0-12474.205337989 0.000001294 0.000425972 0.000026553

152151 0-12474.205338202 -0.000000213 0.000245090 0.000024784

153152 0-12474.205338156 0.000000046 0.000164813 0.000023991

154153 0-12474.205338180 -0.000000024 0.000148801 0.000023980

155154 0-12474.205338282 -0.000000103 0.000614705 0.000023886

156155 0-12474.205338517 -0.000000235 0.000179303 0.000023728

157156 0-12474.205338580 -0.000000062 0.000082243 0.000023673

158157 0-12474.205338559 0.000000021 0.000343254 0.000023295

159158 0-12474.205338540 0.000000019 0.000442072 0.000024762

160159 0-12474.205339235 -0.000000695 0.000245206 0.000023770

161160 0-12474.205338794 0.000000441 0.000619237 0.000024448

162161 0-12474.205337799 0.000000995 0.000544709 0.000024475

163162 0-12474.205337568 0.000000231 0.000553753 0.000024780

164163 0-12474.205338232 -0.000000664 0.000765298 0.000026196

165164 0-12474.205339062 -0.000000831 0.000954396 0.000022162

166165 0-12474.205340129 -0.000001067 0.001141984 0.000020681

167166 0-12474.205341149 -0.000001020 0.001119491 0.000020448

168167 0-12474.205341792 -0.000000644 0.000899026 0.000019787

169168 0-12474.205342517 -0.000000724 0.000063837 0.000022704

170169 0-12474.205342593 -0.000000077 0.000160689 0.000023571

171170 0-12474.205342771 -0.000000178 0.000203007 0.000024640

172171 0-12474.205342595 0.000000176 0.000225905 0.000024101

173172 0-12474.205342498 0.000000098 0.000115579 0.000024064

174173 0-12474.205342599 -0.000000101 0.000037055 0.000024786

175174 0-12474.205342612 -0.000000013 0.000211481 0.000024765

176175 0-12474.205342495 0.000000118 0.000049705 0.000024622

177176 0-12474.205342560 -0.000000066 0.000040300 0.000025098

178177 0-12474.205342531 0.000000029 0.000195114 0.000024814

179178 0-12474.205342704 -0.000000173 0.000130134 0.000025668

180179 0-12474.205342642 0.000000062 0.000047918 0.000025964

181180 0-12474.205342643 -0.000000001 0.000115640 0.000025514

182181 0-12474.205342536 0.000000107 0.000256431 0.000024418

183182 0-12474.205342729 -0.000000193 0.000228682 0.000024000

184183 0-12474.205342904 -0.000000175 0.000063019 0.000024170

185184 0-12474.205342876 0.000000028 0.000060688 0.000024141

186185 0-12474.205342873 0.000000003 0.000670617 0.000023968

187186 0-12474.205343345 -0.000000472 0.000433623 0.000024646

188187 0-12474.205343756 -0.000000411 0.000102683 0.000026775

189188 0-12474.205343857 -0.000000101 0.000084719 0.000027445

190189 0-12474.205343920 -0.000000063 0.000388144 0.000027751

191190 0-12474.205343630 0.000000291 0.000195980 0.000026479

192191 0-12474.205343538 0.000000092 0.000029760 0.000026156

193192 0-12474.205343526 0.000000012 0.000089980 0.000026218

194193 0-12474.205343548 -0.000000023 0.000209733 0.000025725

195194 0-12474.205343648 -0.000000099 0.000569287 0.000024962

196195 0-12474.205343960 -0.000000313 0.001467048 0.000023068

197196 0-12474.205344661 -0.000000701 0.001199199 0.000019799

198197 0-12474.205345259 -0.000000598 0.000213879 0.000021284

199198 0-12474.205345383 -0.000000124 0.000043616 0.000022215

----------------

ENERGY CONVERGED

Page 139: Computational Modeling of Functionalized Carbon Nanotubes

130

----------------

TIME TO FORM FOCK OPERATORS= 21512.2 SECONDS ( 107.6 SEC/ITER)

TIME TO SOLVE SCF EQUATIONS= 4039.3 SECONDS ( 20.2 SEC/ITER)

FINAL ENERGY IS -12474.205345417 AFTER 199 ITERATIONS