Computational Contact and Impact Mechanics

251
SpringerWienNewYork

Transcript of Computational Contact and Impact Mechanics

Page 1: Computational Contact and Impact Mechanics

SpringerWienNewYork

Page 2: Computational Contact and Impact Mechanics

CISM COURSES AND LECTURES

Series Editors:

The RectorsGiulio Maier - Milan

Jean Salençon - PalaiseauWilhelm Schneider - Wien

The Secretary General

Executive Editor

The series presents lecture notes, monographs, edited works and

and Applied Mathematics.

Page 3: Computational Contact and Impact Mechanics
Page 4: Computational Contact and Impact Mechanics

This volume contains 157 illustrations

This work is subject to copyright.All rights are reserved,

whether the whole or part of the material is concerned

broadcasting, reproduction by photocopying machineor similar means, and storage in data banks.

© 2007 by CISM, UdinePrinted in ItalySPIN 12068043

All contributions have been typeset by the authors.

Page 5: Computational Contact and Impact Mechanics
Page 6: Computational Contact and Impact Mechanics
Page 7: Computational Contact and Impact Mechanics
Page 8: Computational Contact and Impact Mechanics
Page 9: Computational Contact and Impact Mechanics
Page 10: Computational Contact and Impact Mechanics

Emerging Spatial and Temporal Discretization Methods 3

Page 11: Computational Contact and Impact Mechanics
Page 12: Computational Contact and Impact Mechanics

Emerging Spatial and Temporal Discretization Methods 5

Page 13: Computational Contact and Impact Mechanics
Page 14: Computational Contact and Impact Mechanics

Emerging Spatial and Temporal Discretization Methods 7

Page 15: Computational Contact and Impact Mechanics
Page 16: Computational Contact and Impact Mechanics

Emerging Spatial and Temporal Discretization Methods 9

Page 17: Computational Contact and Impact Mechanics

10

Page 18: Computational Contact and Impact Mechanics

Emerging Spatial and Temporal Discretization Methods 11

Page 19: Computational Contact and Impact Mechanics

12

Page 20: Computational Contact and Impact Mechanics

Emerging Spatial and Temporal Discretization Methods 13

Page 21: Computational Contact and Impact Mechanics

0 0.1 0.2 0.3 0.4 0.5 0.6 0.70

1

2

3

4

5

6

7

8

9

10

x

Con

tact

Tra

ctio

n

Normal traction, analyticalFrictional traction, analyticalNormal traction, numericalFrictional traction, numerical

Page 22: Computational Contact and Impact Mechanics

Emerging Spatial and Temporal Discretization Methods 15

0 0.1 0.2 0.3 0.4 0.5 0.6 0.70

1

2

3

4

5

6

7

8

9

10

x

Con

tact

Tra

ctio

n

Normal traction, analyticalFrictional traction, analyticalNormal traction, numericalFrictional traction, numerical

Page 23: Computational Contact and Impact Mechanics

16

Page 24: Computational Contact and Impact Mechanics

Emerging Spatial and Temporal Discretization Methods 17

Page 25: Computational Contact and Impact Mechanics
Page 26: Computational Contact and Impact Mechanics

Emerging Spatial and Temporal Discretization Methods 19

0 5 10 15 20 25 30 35 40 450

0.5

1

1.5

2

2.5

3

3.5

4

4.5x 10

9

Displacement

Rea

ctio

n F

orce

Page 27: Computational Contact and Impact Mechanics

20

Page 28: Computational Contact and Impact Mechanics

Emerging Spatial and Temporal Discretization Methods 21

Page 29: Computational Contact and Impact Mechanics

22

-1.01E+03

-8.12E+02

-6.14E+02

-4.16E+02

-2.18E+02

-1.97E+01

1.78E+02

3.76E+02

5.74E+02

7.72E+02

9.70E+02

-1.21E+03

1.17E+03

_________________ S T R E S S 3

Time = 1.00E+00

-9.56E+02

-7.62E+02

-5.67E+02

-3.73E+02

-1.78E+02

1.64E+01

2.11E+02

4.06E+02

6.00E+02

7.95E+02

9.89E+02

-1.15E+03

1.18E+03

_________________ S T R E S S 3

Time = 1.50E+03

5.31E+01

1.06E+02

1.59E+02

2.12E+02

2.65E+02

3.18E+02

3.72E+02

4.25E+02

4.78E+02

5.31E+02

5.84E+02

6.37E+02

0.00E+00

_________________ Mises Stress

Time = 1.00E+00Time = 1.00E+00

5.95E+01

1.19E+02

1.78E+02

2.38E+02

2.97E+02

3.57E+02

4.16E+02

4.76E+02

5.35E+02

5.95E+02

6.54E+02

7.14E+02

0.00E+00

_________________ Mises Stress

Time = 2.02E+02Time = 2.02E+02

Page 30: Computational Contact and Impact Mechanics

Emerging Spatial and Temporal Discretization Methods 23

Page 31: Computational Contact and Impact Mechanics
Page 32: Computational Contact and Impact Mechanics

Emerging Spatial and Temporal Discretization Methods 25

Page 33: Computational Contact and Impact Mechanics

26

Page 34: Computational Contact and Impact Mechanics

Emerging Spatial and Temporal Discretization Methods 27

Page 35: Computational Contact and Impact Mechanics
Page 36: Computational Contact and Impact Mechanics

Emerging Spatial and Temporal Discretization Methods 29

0 5 10 15 20Time (scaled units)

0

2

6

10

12

16

Ene

rgy

(sca

led

units

)

0 5 10 15 20Time (scaled units)

0

2

6

10

12

16

Ene

rgy

(sca

led

units

)

Page 37: Computational Contact and Impact Mechanics
Page 38: Computational Contact and Impact Mechanics

Emerging Spatial and Temporal Discretization Methods 31

Page 39: Computational Contact and Impact Mechanics
Page 40: Computational Contact and Impact Mechanics

Emerging Spatial and Temporal Discretization Methods 33

Page 41: Computational Contact and Impact Mechanics

Time (scaled units)

0.0

50.0

100.0

150.0

200.0

Ene

rgy

(sca

led

units

)

Time (scaled units)

0.0

50.0

100.0

150.0

200.0

Ene

rgy

(sca

led

units

)

Page 42: Computational Contact and Impact Mechanics

Emerging Spatial and Temporal Discretization Methods 35

Page 43: Computational Contact and Impact Mechanics

Time (milliseconds)

0.00

0.05

0.10

0.15

0.20

0.25

Potential Energy, BallTotal Energy, Ball

Page 44: Computational Contact and Impact Mechanics

Emerging Spatial and Temporal Discretization Methods 37

Page 45: Computational Contact and Impact Mechanics
Page 46: Computational Contact and Impact Mechanics

G. Zavarise and M. Paggi

Page 47: Computational Contact and Impact Mechanics

Reliability of Micromechanical Contact Models 41

Page 48: Computational Contact and Impact Mechanics

G. Zavarise and M. Paggi

Page 49: Computational Contact and Impact Mechanics

Reliability of Micromechanical Contact Models 43

Page 50: Computational Contact and Impact Mechanics

G. Zavarise and M. Paggi

Page 51: Computational Contact and Impact Mechanics

Reliability of Micromechanical Contact Models 45

Page 52: Computational Contact and Impact Mechanics

G. Zavarise and M. Paggi

Page 53: Computational Contact and Impact Mechanics

Reliability of Micromechanical Contact Models 47

Page 54: Computational Contact and Impact Mechanics

G. Zavarise and M. Paggi

Page 55: Computational Contact and Impact Mechanics

Reliability of Micromechanical Contact Models 49

Page 56: Computational Contact and Impact Mechanics

50 G. Zavarise and M. Paggi

Page 57: Computational Contact and Impact Mechanics

Reliability of Micromechanical Contact Models 51

Page 58: Computational Contact and Impact Mechanics

52 G. Zavarise and M. Paggi

Page 59: Computational Contact and Impact Mechanics

Reliability of Micromechanical Contact Models 53

Page 60: Computational Contact and Impact Mechanics

G. Zavarise and M. Paggi

Page 61: Computational Contact and Impact Mechanics

Reliability of Micromechanical Contact Models 55

Page 62: Computational Contact and Impact Mechanics

56 G. Zavarise and M. Paggi

Page 63: Computational Contact and Impact Mechanics

Reliability of Micromechanical Contact Models 57

Page 64: Computational Contact and Impact Mechanics

G. Zavarise and M. Paggi

Page 65: Computational Contact and Impact Mechanics

Reliability of Micromechanical Contact Models 59

Page 66: Computational Contact and Impact Mechanics

60 G. Zavarise and M. Paggi

Page 67: Computational Contact and Impact Mechanics

Reliability of Micromechanical Contact Models 61

Page 68: Computational Contact and Impact Mechanics

62 G. Zavarise and M. Paggi

Page 69: Computational Contact and Impact Mechanics

Reliability of Micromechanical Contact Models 63

Page 70: Computational Contact and Impact Mechanics

G. Zavarise and M. Paggi

Page 71: Computational Contact and Impact Mechanics

Reliability of Micromechanical Contact Models 65

Page 72: Computational Contact and Impact Mechanics

66 G. Zavarise and M. Paggi

Page 73: Computational Contact and Impact Mechanics

Reliability of Micromechanical Contact Models 67

Page 74: Computational Contact and Impact Mechanics

G. Zavarise and M. Paggi

Page 75: Computational Contact and Impact Mechanics

Reliability of Micromechanical Contact Models 69

Page 76: Computational Contact and Impact Mechanics

70 G. Zavarise and M. Paggi

Page 77: Computational Contact and Impact Mechanics

Reliability of Micromechanical Contact Models 71

Page 78: Computational Contact and Impact Mechanics

72 G. Zavarise and M. Paggi

Page 79: Computational Contact and Impact Mechanics

Reliability of Micromechanical Contact Models 73

Page 80: Computational Contact and Impact Mechanics

G. Zavarise and M. Paggi

Page 81: Computational Contact and Impact Mechanics

Reliability of Micromechanical Contact Models 75

Page 82: Computational Contact and Impact Mechanics

76 G. Zavarise and M. Paggi

Page 83: Computational Contact and Impact Mechanics

Reliability of Micromechanical Contact Models 77

Page 84: Computational Contact and Impact Mechanics

G. Zavarise and M. Paggi

Page 85: Computational Contact and Impact Mechanics

Reliability of Micromechanical Contact Models 79

Page 86: Computational Contact and Impact Mechanics

G. Zavarise and M. Paggi

Page 87: Computational Contact and Impact Mechanics

Reliability of Micromechanical Contact Models 81

Page 88: Computational Contact and Impact Mechanics

G. Zavarise and M. Paggi

Page 89: Computational Contact and Impact Mechanics
Page 90: Computational Contact and Impact Mechanics

M. Brinkmeier, et al.

Page 91: Computational Contact and Impact Mechanics

Modern Approaches on Rolling Contact 85

Page 92: Computational Contact and Impact Mechanics

M. Brinkmeier, et al.

Page 93: Computational Contact and Impact Mechanics

Modern Approaches on Rolling Contact 87

Page 94: Computational Contact and Impact Mechanics

M. Brinkmeier, et al.

Page 95: Computational Contact and Impact Mechanics

Modern Approaches on Rolling Contact 89

Page 96: Computational Contact and Impact Mechanics

M. Brinkmeier, et al.

0 50 100 150 200 250

0

0.01

0.02

Tan

g

hom.meshinhom.meshinhom.mesh (bound. term)

Page 97: Computational Contact and Impact Mechanics

Modern Approaches on Rolling Contact 91

Page 98: Computational Contact and Impact Mechanics

M. Brinkmeier, et al.

Page 99: Computational Contact and Impact Mechanics

Modern Approaches on Rolling Contact 93

Page 100: Computational Contact and Impact Mechanics

M. Brinkmeier, et al.

Page 101: Computational Contact and Impact Mechanics

Modern Approaches on Rolling Contact 95

Page 102: Computational Contact and Impact Mechanics

M. Brinkmeier, et al.

Page 103: Computational Contact and Impact Mechanics

Modern Approaches on Rolling Contact 97

Page 104: Computational Contact and Impact Mechanics

M. Brinkmeier, et al.

Page 105: Computational Contact and Impact Mechanics

Modern Approaches on Rolling Contact 99

Page 106: Computational Contact and Impact Mechanics

100 M. Brinkmeier, et al.

Page 107: Computational Contact and Impact Mechanics

Modern Approaches on Rolling Contact 101

Page 108: Computational Contact and Impact Mechanics

102 M. Brinkmeier, et al.

Page 109: Computational Contact and Impact Mechanics

Modern Approaches on Rolling Contact 103

Page 110: Computational Contact and Impact Mechanics

M. Brinkmeier, et al.

Page 111: Computational Contact and Impact Mechanics

Modern Approaches on Rolling Contact 105

Page 112: Computational Contact and Impact Mechanics

106 M. Brinkmeier, et al.

Page 113: Computational Contact and Impact Mechanics

Modern Approaches on Rolling Contact 107

Page 114: Computational Contact and Impact Mechanics

M. Brinkmeier, et al.

Page 115: Computational Contact and Impact Mechanics

Modern Approaches on Rolling Contact 109

Page 116: Computational Contact and Impact Mechanics

110 M. Brinkmeier, et al.

Page 117: Computational Contact and Impact Mechanics

Modern Approaches on Rolling Contact 111

Page 118: Computational Contact and Impact Mechanics

112 M. Brinkmeier, et al.

Page 119: Computational Contact and Impact Mechanics

Modern Approaches on Rolling Contact 113

Page 120: Computational Contact and Impact Mechanics

M. Brinkmeier, et al.

Page 121: Computational Contact and Impact Mechanics

Modern Approaches on Rolling Contact 115

Page 122: Computational Contact and Impact Mechanics

116 M. Brinkmeier, et al.

Page 123: Computational Contact and Impact Mechanics

Modern Approaches on Rolling Contact 117

Page 124: Computational Contact and Impact Mechanics

M. Brinkmeier, et al.

Page 125: Computational Contact and Impact Mechanics

Modern Approaches on Rolling Contact 119

Page 126: Computational Contact and Impact Mechanics

120 M. Brinkmeier, et al.

Page 127: Computational Contact and Impact Mechanics

Modern Approaches on Rolling Contact 121

0 0.5 1 1.50

0.2

0.4

0.6

0.8

1

0.6

0.7

0.8

0.9

1 = 1000 1/s =2.5 1/s = 0.01 1/s

10 10 10 100

101

102

103

104

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

elasticviscoelastic

Page 128: Computational Contact and Impact Mechanics

122 M. Brinkmeier, et al.

Page 129: Computational Contact and Impact Mechanics

Modern Approaches on Rolling Contact 123

Page 130: Computational Contact and Impact Mechanics

M. Brinkmeier, et al.

Page 131: Computational Contact and Impact Mechanics

Modern Approaches on Rolling Contact 125

Page 132: Computational Contact and Impact Mechanics

126 M. Brinkmeier, et al.

Page 133: Computational Contact and Impact Mechanics

Modern Approaches on Rolling Contact 127

Page 134: Computational Contact and Impact Mechanics
Page 135: Computational Contact and Impact Mechanics
Page 136: Computational Contact and Impact Mechanics

Homogenization and Multi-Scale Approaches 131

Page 137: Computational Contact and Impact Mechanics
Page 138: Computational Contact and Impact Mechanics

Homogenization and Multi-Scale Approaches 133

Page 139: Computational Contact and Impact Mechanics
Page 140: Computational Contact and Impact Mechanics

Homogenization and Multi-Scale Approaches 135

Page 141: Computational Contact and Impact Mechanics
Page 142: Computational Contact and Impact Mechanics

Homogenization and Multi-Scale Approaches 137

Page 143: Computational Contact and Impact Mechanics
Page 144: Computational Contact and Impact Mechanics

Homogenization and Multi-Scale Approaches 139

Page 145: Computational Contact and Impact Mechanics
Page 146: Computational Contact and Impact Mechanics

Homogenization and Multi-Scale Approaches 141

Page 147: Computational Contact and Impact Mechanics
Page 148: Computational Contact and Impact Mechanics

Homogenization and Multi-Scale Approaches 143

Page 149: Computational Contact and Impact Mechanics

0.0001

0.001

0.01

0.1

1

10

0.001 0.01 0.1 1 10 100

cz1cz2

cz5

road track

Page 150: Computational Contact and Impact Mechanics

Homogenization and Multi-Scale Approaches 145

mm

mm

mm

mm

mm

mm

0.5

0 0.2

0.6

Page 151: Computational Contact and Impact Mechanics
Page 152: Computational Contact and Impact Mechanics

Homogenization and Multi-Scale Approaches 147

Page 153: Computational Contact and Impact Mechanics

Frequency [1/s]

Mod

ule

[N/m

m²]

1E+111E+071E+051000100.10.001

0.1

10

1

100

1000

10000

0.01

0.001

1E+15

storage modulus

loss modulus

Page 154: Computational Contact and Impact Mechanics

Homogenization and Multi-Scale Approaches 149

Page 155: Computational Contact and Impact Mechanics

150

Page 156: Computational Contact and Impact Mechanics

Homogenization and Multi-Scale Approaches 151

Page 157: Computational Contact and Impact Mechanics

152

Page 158: Computational Contact and Impact Mechanics

Homogenization and Multi-Scale Approaches 153

Page 159: Computational Contact and Impact Mechanics
Page 160: Computational Contact and Impact Mechanics

Homogenization and Multi-Scale Approaches 155

Page 161: Computational Contact and Impact Mechanics

156

Page 162: Computational Contact and Impact Mechanics

Homogenization and Multi-Scale Approaches 157

0

0.05

0.1

0.15

0.25

10 100 1000 10000

0.2

Page 163: Computational Contact and Impact Mechanics

2

0

0.1

0.2

0.5

0.6

10 100 1000 10000horizontal sliding velocity

0.51

51

0

0.1

0.2

0.5

0.6

10 100 1000 10000horizontal sliding velocity

0.20.5

2

Page 164: Computational Contact and Impact Mechanics

Homogenization and Multi-Scale Approaches 159

0

0.1

0.2

0.5

0.6

0.7

10 100 1000 10000horizontal sliding velocity

0.20.5

1

0

0.05

0.1

0.15

0.2

10 100 1000 10000 500

0

0.1

0.2

0.5

0.6

0.7

1 10 100 1000 10000

wl=0.1 mm

wl=0.025 mm

Page 165: Computational Contact and Impact Mechanics

160

0

0.2

0.6

1

1 10 100 1000 10000 100000

simulationexperiment

Page 166: Computational Contact and Impact Mechanics

Homogenization and Multi-Scale Approaches 161

Page 167: Computational Contact and Impact Mechanics
Page 168: Computational Contact and Impact Mechanics

P. Alart

Page 169: Computational Contact and Impact Mechanics

Contact on Multiprocessor Environmen… 165

Page 170: Computational Contact and Impact Mechanics

166 P. Alart

Page 171: Computational Contact and Impact Mechanics

Contact on Multiprocessor Environmen… 167

Page 172: Computational Contact and Impact Mechanics

P. Alart

Page 173: Computational Contact and Impact Mechanics

Contact on Multiprocessor Environmen… 169

Page 174: Computational Contact and Impact Mechanics

170 P. Alart

Page 175: Computational Contact and Impact Mechanics

Contact on Multiprocessor Environmen… 171

Page 176: Computational Contact and Impact Mechanics

172 P. Alart

Page 177: Computational Contact and Impact Mechanics

Contact on Multiprocessor Environmen… 173

Page 178: Computational Contact and Impact Mechanics

P. Alart

Page 179: Computational Contact and Impact Mechanics

Contact on Multiprocessor Environmen… 175

Page 180: Computational Contact and Impact Mechanics

176 P. Alart

Nstep

itera

tions point de bifurcation

Page 181: Computational Contact and Impact Mechanics

Contact on Multiprocessor Environmen… 177

Page 182: Computational Contact and Impact Mechanics

P. Alart

Page 183: Computational Contact and Impact Mechanics

Contact on Multiprocessor Environmen… 179

Page 184: Computational Contact and Impact Mechanics

P. Alart

Page 185: Computational Contact and Impact Mechanics

Contact on Multiprocessor Environmen… 181

Page 186: Computational Contact and Impact Mechanics

P. Alart

Page 187: Computational Contact and Impact Mechanics

Contact on Multiprocessor Environmen… 183

r

r

r r

r r

rd

bb

aa

k+1

k+1

k+1

rc rc

k+1/2

k+1/2

k+1/2

k+1/2 t

n

drk+1

=

status =k / slip

r

r

c

t

n

rk

rk+1/2a

rk+1/2b rb

k+1

k+1ra

bk+1

ak+1

status = slip +k

wak

uak

wck uc

k

rn

rt

wkb

kub

uak

kr

rk

ubk

uak

wak

wbk

ka0=w

r

status = stick status = gap status = slip+

k

k

k

k

=

=

k k k

Page 188: Computational Contact and Impact Mechanics

P. Alart

Page 189: Computational Contact and Impact Mechanics

Contact on Multiprocessor Environmen… 185

Page 190: Computational Contact and Impact Mechanics

P. Alart

Page 191: Computational Contact and Impact Mechanics

Contact on Multiprocessor Environmen… 187

Page 192: Computational Contact and Impact Mechanics

P. Alart

Page 193: Computational Contact and Impact Mechanics

Contact on Multiprocessor Environmen… 189

Page 194: Computational Contact and Impact Mechanics

P. Alart

Page 195: Computational Contact and Impact Mechanics

Contact on Multiprocessor Environmen… 191

Page 196: Computational Contact and Impact Mechanics

P. Alart

Page 197: Computational Contact and Impact Mechanics

Contact on Multiprocessor Environmen… 193

Page 198: Computational Contact and Impact Mechanics

P. Alart

Page 199: Computational Contact and Impact Mechanics

Contact on Multiprocessor Environmen… 195

Page 200: Computational Contact and Impact Mechanics

P. Alart

Page 201: Computational Contact and Impact Mechanics

Contact on Multiprocessor Environmen… 197

Page 202: Computational Contact and Impact Mechanics

P. Alart

0

100

200

500

G.M

.Res

. ite

ratio

ns = 0) = 0.2)

= 0.2) = 0.2)

= 0.2)

0

50

100

150

200

G.M

.Res

. ave

. ite

.

0

20

60

100

120

G.M

.Res

. ave

. ite

.

= 0) = 0.2)

= 0.2) = 0.2)

= 0.2)

shear compression

Page 203: Computational Contact and Impact Mechanics

Contact on Multiprocessor Environmen… 199

Page 204: Computational Contact and Impact Mechanics

200 P. Alart

Page 205: Computational Contact and Impact Mechanics

Contact on Multiprocessor Environmen… 201

Page 206: Computational Contact and Impact Mechanics

202 P. Alart

Page 207: Computational Contact and Impact Mechanics

Contact on Multiprocessor Environmen… 203

Page 208: Computational Contact and Impact Mechanics

P. Alart

Page 209: Computational Contact and Impact Mechanics

Contact on Multiprocessor Environmen… 205

Page 210: Computational Contact and Impact Mechanics

206 P. Alart

Page 211: Computational Contact and Impact Mechanics

Contact on Multiprocessor Environmen… 207

Page 212: Computational Contact and Impact Mechanics

P. Alart

Page 213: Computational Contact and Impact Mechanics

Contact on Multiprocessor Environmen… 209

Page 214: Computational Contact and Impact Mechanics

210 P. Alart

Page 215: Computational Contact and Impact Mechanics

Contact on Multiprocessor Environmen… 211

Page 216: Computational Contact and Impact Mechanics

212 P. Alart

Page 217: Computational Contact and Impact Mechanics

Contact on Multiprocessor Environmen… 213

Page 218: Computational Contact and Impact Mechanics

P. Alart

Page 219: Computational Contact and Impact Mechanics

Contact on Multiprocessor Environmen… 215

Page 220: Computational Contact and Impact Mechanics

216 P. Alart

Page 221: Computational Contact and Impact Mechanics

Contact on Multiprocessor Environmen… 217

Page 222: Computational Contact and Impact Mechanics
Page 223: Computational Contact and Impact Mechanics

220

Page 224: Computational Contact and Impact Mechanics

Numerical Soil Mechanics Experiments… 221

Page 225: Computational Contact and Impact Mechanics

222

Page 226: Computational Contact and Impact Mechanics

Numerical Soil Mechanics Experiments… 223

Page 227: Computational Contact and Impact Mechanics
Page 228: Computational Contact and Impact Mechanics

Numerical Soil Mechanics Experiments… 225

Page 229: Computational Contact and Impact Mechanics

226

Page 230: Computational Contact and Impact Mechanics

Numerical Soil Mechanics Experiments… 227

Page 231: Computational Contact and Impact Mechanics
Page 232: Computational Contact and Impact Mechanics

Numerical Soil Mechanics Experiments… 229

Page 233: Computational Contact and Impact Mechanics
Page 234: Computational Contact and Impact Mechanics

Numerical Soil Mechanics Experiments… 231

Page 235: Computational Contact and Impact Mechanics
Page 236: Computational Contact and Impact Mechanics

Numerical Soil Mechanics Experiments… 233

Page 237: Computational Contact and Impact Mechanics
Page 238: Computational Contact and Impact Mechanics

Numerical Soil Mechanics Experiments… 235

Page 239: Computational Contact and Impact Mechanics
Page 240: Computational Contact and Impact Mechanics

Numerical Soil Mechanics Experiments… 237

Page 241: Computational Contact and Impact Mechanics
Page 242: Computational Contact and Impact Mechanics

Numerical Soil Mechanics Experiments… 239

Page 243: Computational Contact and Impact Mechanics
Page 244: Computational Contact and Impact Mechanics

Numerical Soil Mechanics Experiments… 241

Page 245: Computational Contact and Impact Mechanics
Page 246: Computational Contact and Impact Mechanics

Numerical Soil Mechanics Experiments… 243

Page 247: Computational Contact and Impact Mechanics
Page 248: Computational Contact and Impact Mechanics

Numerical Soil Mechanics Experiments… 245

Page 249: Computational Contact and Impact Mechanics
Page 250: Computational Contact and Impact Mechanics

Numerical Soil Mechanics Experiments… 247

Page 251: Computational Contact and Impact Mechanics