Composite Insulator Generations I-IV (DE - JP) DE JP I II ... · 10/03/2010 1 INNOVATIONS & NEW...

44
10/03/2010 1 INNOVATIONS & NEW DEVELOPMENTS OF COMPOSITE INSULATORS CIGRE, North Africa Regional Conference, Tunis, Tunesia, 10.02.2010 Dr. Jens M. Seifert R&D and Quality Engineering LAPP Insulator GmbH & Co. KG Wunsiedel, Germany Composite Insulator Generations I-IV (DE - JP) I II III IV Innovation Level DE JP Innovation Innovation Innovation Innovation CIP, KAIZEN CIP, ??? 1988: ISO9001 R&D CIP Reviews Audits Universities EU Funding Idea Management 1965: Invention

Transcript of Composite Insulator Generations I-IV (DE - JP) DE JP I II ... · 10/03/2010 1 INNOVATIONS & NEW...

10/03/2010

1

INNOVATIONS & NEW DEVELOPMENTS OF COMPOSITE INSULATORS

CIGRE, North Africa Regional Conference, Tunis, Tunesia, 10.02.2010

Dr. Jens M. Seifert

R&D and Quality Engineering

LAPP Insulator GmbH & Co. KG

Wunsiedel, Germany

Composite Insulator Generations I-IV (DE - JP)

I II III IV

Innovation Level

DE

JPInnovation

Innovation

Innovation

Innovation

CIP, KAIZENCIP, ???

1988: ISO9001

R&D

CIP

Reviews

Audits

Universities

EU Funding

Idea Management

1965: Invention

10/03/2010

2

SUMMARY

1. History & General Design Features of RODURFLEX®

2. Advantages

3. Generation III (since 1979)

4. Innovations in Design & Development, New Design Tools

5. Generation IV (Video)

6. New Products (Insulating Crossarms, Station Posts, Heavy CLPs)

7. Impact of New Standards

8. Present & Future R&D work

1. History & General Design Features of RODURFLEX®

2. Advantages

3. Generation III (since 1979)

10/03/2010

3

1955: USA, Light weight insulator concept for economic insulation designs of OHTL system voltages > 345kV, “real inventors“, “cheap & dirty“ (bad) materials (PVC etc.) & bad designs

1963: Epoxies in Outdoor applications (CEP)

1965: RTV Silicone Composite Insulators invented by Mar tin Kuhl / Rosenthal Insulators, Germany; Strongly supported by Rosenthal Management Dr. Kärner [Generation I]

1967-1979: the „trial years“ (hydrolysis, brittle fractures, sealing issues) [Generation II]

1979 [Generation III] HTV, compression type fittings, meta sealing

1989: HTV, after several (10) years of excellent long-t erm service experience under severe pollution conditions, Prof. Kindersberger published 1st paper on Hydrophobicity Transfer (HTM), Serial Production, Turn Over > 1 Mio DM [Generation III]

today : (+) light weight, contamination/pollution resista nce, vandalism proof and ability to design economic compact OHTLs, extended serial prod uction, ISO 9001, New IEC standards, multi-supplier situation, turn over >20 Mio EURO[Development of Generation IV]

REASONS TO APPLY COMPOSITE INSULATORS: Why they cam e into existence?

Development of Insulator Technology in Europe

1910

1923

1938

1965

10/03/2010

4

Production Processporcelain

Bodypreparation

ExtrusionDrying

ShapingDrying

GlazingFiring

CuttingGrindingAssembling

composite

Rod pultrusionGrinding

Extrusion

Shed mountingand vulcanization

AssemblingSealing

“Kaerner‘s Matrix“ (1994)

Design

Materialsbad

bad

good

good

Impossible

Know how needed

Very difficult

Usual Case

What makes a good composite insulator?

RODURFLEX®

10/03/2010

5

Design of Rodurflex ® Generation III

chemical bonding

ECR- 1983 INTRODUCTION

HTV silicone 1979FORMULATION

HTV silicone 1979 FORMULATION

Forged steel 1985

silicone rubber sealing 1982

End Fitting Assembly

10/03/2010

6

Triple Point Designs

10/03/2010

7

A. Sprödbruch B. Kriechspurbildung

C. GFK-Stabdurchschlag D. Interface-Durchschlag

Failure Modes of Generations I and II

A. Brittle Fracture B. Tracking & Erosion

C. FRP Puncture D. Interfacial Breakdown

Failures in Design History

Gen III: NCI Life expectancy: 40…50a

10/03/2010

8

RODURFLEX® 1967 and today

Through the Generations

Quality is back!

Back to Quality!

No Quality - No Business!

10/03/2010

9

ISO 9001: Serial Production - Quality Management - Qu ality Engineering

Features of Generation III

BRITTLE FRACTURE Resistant ECR/FRP Rod since 1983

HTV Silicone Housing, chemical bonded interfaces si nce 1979

Compression Type forged steel (C45E) end fittings s ince 1983

No significant design changes since 1983 (service e xperience!)

Continous Quality Control for all process steps for large scale serial production acc. to ISO 9000 since 1980/1992

Metastable silicone sealing system since 1981

10/03/2010

10

• pollution layer water repellent

• low leakage currents

• low risk of flashover

• low line losses

• no cleaning required

Hydrophobicity Transfer Mechanism (HTM), CIGRE D1.1 4

Prof. Kindersberger (Prof. Kindersberger (19891989))

Prof. Kindersberger (Prof. Kindersberger (19891989))

Hydrophobicity Transfer Mechanism (HTM), CIGRE D1.1 4

Time [days]

s = 0.15

0.30

0.45

0.60

0.75

0.90

Wet

ting

angl

eϑϑ ϑϑ

[deg

]

10/03/2010

11

0

10

20

30

40

50

60

70

80

90

0 50 100 150 200 250 300 350

Transfer Time

Rec

edin

g A

ngle

20 years10 years

°

h

Dynamics & Long Term Stability of HTM

0

20

40

60

80

100

120

140

0 4 8 12 16

Transfer Time

Sta

tic C

onta

ct A

ngle

RTV-2

RTV-1

HTV-Gen III/IV

HTV-Gen II

HTV-Gen I

LSR

Generation III/IV HTV-PDMS / ATH filled

°

d

HTM – Different Materials (CIGRE D1.14)

10/03/2010

12

Pollution Performance - Comparison

Required geometrical Creepage distances to obtain the same electrical performance under pol lution

(KIWIT 1970: „Practical Experience with Outdoor Insu lation)

Silicone Rubber Composite Porcelain Longrod Glass/Porcelain Disk

75% 100% 120%

reference-45%

CONCLUSION: To operate under same pollution conditions, a silic one rubber composite insulator

only requires 40..45% of the CD required for Glass/ Porcelain Disks. A silicone rubber composite is

Therefore more economical or can withstand a level of 2 pollution classes higher than glass.

HTM impact on LCC and Service Costs

0

50

100

150

200

250[$/year]

132 kV line 275 kV line

Silicone insulatorcoated ceramic discceramic disc with washing

Calculated by M/s Powerlink, Australia

10/03/2010

13

Pin CorrosionGlass/Porcelain Disks: not hydrophobic surface ⇒⇒⇒⇒ high Leakage currents ⇒⇒⇒⇒ DC component in Leakage current ⇒⇒⇒⇒

galvanic cell ⇒⇒⇒⇒ PIN CORROSION

Silicone rubber composite with HTM & hydrophobic surface: not hydrophobic surface ⇒⇒⇒⇒ very low Leakage currents ⇒⇒⇒⇒ no DC component in Leakage current ⇒⇒⇒⇒

no galvanic cell ⇒⇒⇒⇒ NO PROBLEMS

Maintenance costs, lower lifetime, worse LCA

Life expectancy: 17…30a

Composite insulators offer low weight

=> low transport and installation costs

Composite Insulators SystemComposite Insulators System RodurflexRodurflex ®®

Introduction

10/03/2010

14

LCA Comparison Glass Disks vs. Silicone Rubber Comp osite 420kV OHTL

LCA Glass Disks vs. Silicone Rubber Composite

0%

20%

40%

60%

80%

100%

120%

Gla

ss D

isks

RO

DU

RF

LEX

Gla

ss D

isks

RO

DU

RF

LEX

Gla

ss D

isks

RO

DU

RF

LEX

Gla

ss D

isks

RO

DU

RF

LEX

Gla

ss D

isks

RO

DU

RF

LEX

Gla

ss D

isks

RO

DU

RF

LEX

Gla

ss D

isks

RO

DU

RF

LEX

Initial PurchaseCosts 0a

Washing Costs 10a MaintenanceCosts 15a

ReplacementCosts 25a

WashingCosts 35a

MaintenanceCosts 40a

ReplacementCosts 45a

years

p.u

cost

s pe

r int

ial p

urch

ase

cost

s

Initial Purchase Costs 0a Glass Disks

Initial Purchase Costs 0a RODURFLEX

Initial Purchase Costs 0a

Initial Purchase Costs 0a

Washing Costs 10a Glass Disks

Washing Costs 10a RODURFLEX

Washing Costs 10a

Washing Costs 10a

Maintenance Costs 15a Glass Disks

Maintenance Costs 15a RODURFLEX

Maintenance Costs 15a

Replacement Costs 25a Glass Disks

Replacement Costs 25a RODURFLEX

Replacement Costs 25a

Washing Costs 35a Glass Disks

Washing Costs 35a RODURFLEX

Washing Costs 35a

Maintenance Costs 40a Glass Disks

Maintenance Costs 40a RODURFLEX

Maintenance Costs 40a

Replacement Costs 45a Glass Disks

Replacement Costs 45a RODURFLEX

45a

NCI Life expectancy: 40…50a

Main Advantages (Summary):

10/03/2010

15

Methods Used in China to Assess Composite Insulators after Years in Service

LIANG Xidong1, WANG Jiafu1, SHEN Qinghe2, ZHANG Yibo1, LI Yan31. State Key Lab of Power System, Dept. of Electrical Engineering, Tsinghua University, Beijing 100084, China;

2. Shandong Electric Power Research Institute, Ji’nan 250002, China; 3. Technology Research Center, China Southern Power Grid Co., LTD., Guangzhou 510623, China.

Abstract: Maintenance on silicone rubber insulators is quite different from that on porcelain and glass insulators. Sampling result based maintenance is a widely used method for silicone rubber composite insulator maintenance in China. The principle, test items, measures and other details were introduced in the present paper.

Key Words: Composite insulator; Maintenance; Sampling result based maintenance; Maintenance-free period

The first maintenance-free period

The second maintenance-free

period

The third maintenance-free

period…

5~8 years based on manufacture

quality and operation experience

5~8 years* based on sampling

results

4~6 years* based on sampling

results…

„Sampling Result Based Maintenance“

Advantages of RODURFLEX® Composite Insulators• Enables new OHTL Insulation Design (Crossarms,Cross ropes etc.)

• Superior Pollution Performance (Hydrophobicity Tran sfer Mechanism)

• Extreme UV, Weather and Environmental Resistant HTV Silicone Housing

• Enables Extreme Creepage Designs (Patented Underrib Sheds)

• Earthquake Resistant

• Brittle Fracture Resistant (ECR Glass Epoxy FRP Cor e)

• Fail-safe meta stable sealing system

• Extreme strength classes SML up to 2000 kN possible for single unit

• Vandalism Proof

• Able to withstand Extreme Dynamic and Impact loads

• Light Weight: Easy Transport, Handling, Installatio n

• Light Weight: offers EHV OHTL designs

• Short Lead-Time

• Flexible in Design

• Reduced Life-Cycle Costs

• Proven since more than 40 years

10/03/2010

16

Generation III: Applications Worldwide

up to Um=1100kV

4. Innovations in Design & Development

5. Generation IV (Video)

10/03/2010

17

Prof. Kindersberger (Prof. Kindersberger (19891989))Time [days]

s = 0.15

0.30

0.45

0.60

0.75

0.90

Wet

ting

angl

eϑϑ ϑϑ

[deg

]Hydrophobicity Transfer Mechanism (HTM), CIGRE D1.1 4

Resistance against Tracking & Erosion - ATH Content

0,01

0,1

1

10

48% 55% 60%ATH Content

Mas

s Lo

ss i

n %

3,5 kV4,5 kV

Test Duration: 6h

10/03/2010

18

Outdoor Perfomance of HTV Silicone Rubber Compounds

Freiluftverhalten

ATH Anteil in Gewichts %

Silikonanteil in Gewichts %100% PDMS0% ATH

0% PDMS100% ATH

41% PDMS58% ATH

Leistung des Hydrophobietransfers

T&E Erosionsbeständigkeit

80% PDMS10% ATH

30-35% PDMS60-70% ATH

HTV RODURFLEX

Zu hoch gefülltes Silikon

RTV2/LSR

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 10 20 30 40 50 60 70 80 90 100

ATH content (by weight)

Per

form

ance

HTM

Tracking & Erosion Resistance

Outdoor performance

p.u.

%

Lapp Material 3160

10/03/2010

19

Test Methods

Dip period

Energizedperiod

Suspension type insulator

Grounded insulatorsupport wheel

Rotation in 90 steps0

Coolingperiod Drip period

Salt water

HV

A. Material B. Insulators C. Field / Test Stations

IEC 60587

IEC 61621

IEC 62217KIPTS

0

0,2

0,4

0,6

0,8

1

1,2

2,5 3 3,5 3,75 4 4,25 4,5

Test Voltage Ueff in kV

Max

. Ero

sion

dep

th in

mm

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

2,5 2,75 3 3,25 3,5 3,75 4 4,25 4,5 4,75 5

Test voltage in kV

Ero

sion

dep

th in

mm

4,0 mS/cm 2,5 mS/cm 1,5 mS/cm

Erosion Resistance (IEC 60587, HK: VDE 0441)

IEC 60587 mod, Variation U IEC 60587 mod, Variation χχχχ

⇒⇒⇒⇒ Screening required !

10/03/2010

20

0

0,5

1

1,5

2

2,5

3

3,5

4

LR1 LR2 LR3 LR4 HCR1 HCR2 HCR3

dept

h of

ero

sion

[mm

]

3,5 kV4,5 kV

Erosion Resistance – Screening Results

HTVLSR

99,8

99,5

99

98

95

90

80

70

60

50

40

30

20

10

5

2

1

0,5

0,2

150 250 350 450

time to failure [s]

pro

bab

ility

[%]

HCR-1

LR 1

LR 2

IEC 61621 (HL: VDE 0441): Screening Results

HTV

LSR

10/03/2010

21

0,5

0,6

0,7

0,8

0,9

1

1 1,5 2 2,5 3 3,5

Ratio Creepage Distance/Arcing Distance

Insu

latio

n ut

ilisa

tion

fact

or

η Insulation Capability – Yield Factor

s/p ≈≈≈≈ 1.0s

p

s/p=2.13 s/p=1.05 s/p=0,70

10/03/2010

22

Shed / Housing Design (Profiles)Standard Flat Underrib

Shallow Underribs

insulator type 1 insulator type 2 insulator type 3standard housing profile flat profile underrib profile

s/p** = 0,58 s/p** = 0,60 s/p** = 0,74CD’ = 20,6 mm/kV CD’ = 20 mm/kV CD’ = 18,6 mm/kV

(CD)

Salt Fog Test IEC 62217: 1000h Test

10/03/2010

23

Start of Erosion

Leakage Current

Local Arc Stability

Material Damage

Damage limit

Creepage Distance

10/03/2010

24

Test Stations / Test Lines („Full Scale“)

MOSS LANDING 550 kV

USA, Monterey, California

Koeberg Insulator

Test Station (KIPTS)

145kV

10/03/2010

25

Design Study (KIPTS)

Approach Shed Design h1 [mm] cd [mm] s/p* s/p**

Standard CS120SB (22/23(160/126)1475 1475+/-15 3625 1.50.75

Underrib CS120SB 22/16(170/130)1485 1485+/-15 3655 2.0 1.0

145kVVarying s/p

CD=25mm/kV=consth1=const Flat CS120SB 22/23(155/120)1485 1485+/-15 3630 1.6 0.8

Standard CS120SB 22/31(160/126)1485 1485+/-15 4495 1.160.58

Underrib CS120SB 22/22(170/130)1480 1480+-20 4550 1.48 0.74

145kVVarying s/p

CD=31mm/kV=consth1=const Flat CS120SB 22/31(155/120)1485 1485+-15 4495 1.2 0.6

Standard CS120SB 22/21(160/126)1700 1700+-20 3640 2.0 1.0

Underrib CS120SB 22/16(170/130)1485 1485+-15 3655 2.0 1.0

145kVs/p=1.0**

CD=25mm/kVh1= as it results Flat CS120SB 22/21(155/120)1700 1700+-20 3640 2.0 1.0

Standard CS120SB 22/26(160/126)2060 2060+-20 4495 2.0 1.0

Underrib CS120SB 22/20(170/130)1730 1730+-20 4500 2.0 1.0

145kVs/p=1.0**

CD=31mm/kVh1= as it results Flat CS120SB 22/26(155/120)2060 2060+-20 4495 2.0 1.0

* s/p: in acc.with IEC 60815 for alternating sheds h1: connection length (IEC 60815)** s/p: if calculated between large and small shed cd: creepage distance of housing (IEC 60815)s: shed spacing acc. to IEC 60815 p: shed projection (IEC 60815)

Standard Flat Underrib

Shallow Underribs

Design Study (KIPTS)

10/03/2010

26

Bilder KIPTS 2007/2008

standard smooth alternating flat alternating underribbed alternating

25mm/kV

31mm/kV

25mm/kV

31mm/kV

25mm/kV

31mm/kVcriterion

s/p**0,75

s/p**1,0

s/p**0,58

s/p**1,0

s/p**0,8

s/p**1,0

s/p**0,6

s/p**1,0

s/p**1,0

s/p**0,74

s/p**1,0

erosionslight

erosionstarting

no

slighterosionstarting

no

slighterosionstarting

no

slighterosionstarting

no no

slighterosionstarting

no

HC 7 7 4-6 7 6 5-6 6 3-7 5-7 7 7

DBA yes yes yes yes yes yes yes yes yes yes yes

pollution yes medium yes heavy yes medium yes heavy heavy yes heavy

crazing noin poll.layer

in poll.layer

in poll.layer

in poll.layer

in poll.layer

in poll.layer

in poll.layer

in poll.layer

in poll.layer

in poll.layer

Evaluation Scheme (KIPTS)

10/03/2010

27

LIGHT MEDIUM HEAVY

1 04K3195* 7.005839.80.01.00 CS120SB (22/23(160/126)1475standard smooth

alternating1475+-15 3625

2 06K6519 CS120SB 22/16(170/130)1485underribbedalternating

1485+-15 3655

3 06K6520 CS120SB 22/23(155/120)1485flat

alternating1485+-15 3630

4 04K3196 7.005840.80.01.00 CS120SB 22/31(160/126)1485standard smooth

alternating1485+-15 4495

5 05K4209* 7.095036.82.01.00 CS120SB 22/22(170/130)1480underribbedalternating

1480+-20 4550

6 06K6521* CS120SB 22/31(155/120)1485flat

alternating1485+-15 4495

7 06K6522 CS120SB 22/21(160/126)1700standard smooth

alternating1700+-20 3640

8 06K6519 CS120SB 22/16(170/130)1485underribbedalternating

1485+-15 3655

9 06K6523 CS120SB 22/21(155/120)1700flat

alternating1700+-20 3640

10 06K6524 CS120SB 22/26(160/126)2060standard smooth

alternating2060+-20 4495

11 06K6525 CS120SB 22/20(170/130)1730underribbedalternating

1730+-20 4500

12 06K6526 CS120SB 22/26(155/120)2060flat

alternating2060+-20 4495

145kVs/p=1

CD=31mm/kVh1= as it results

145kVVarying s/p

CD=25mm/kV=consth1=const

145kVVarying s/p

CD=31mm/kV=consth1=const

145kVs/p=1CD=25mm/kV

h1= as it results

10/03/2010

28

Shed Profile: Why Underrib Sheds for Extreme Pollut ion?

• shallow UR offer high CD

• UR act as creepage extender

• s/p = 1.0 can be met with URs

• UR offer protected CD

• s/p = 1.0 avoids T&E

• efficient insulation at s/p = 1.0

• excellent performance history

RODURFLEX®: High Pollution Applications

• China (525, 750 kV)

• Arabic Peninsula (420 kV*) UAE, Qatar, Saudi Arabia, Oman, Jemen

• REE Spain (420 kV*)

• USA California (525 kV*)

• USA Florida (525 kV*)

• South Africa (420, 765 kV*)

• India (420, 765 kV)

• Australia (525 kV*)

• North Africa (420 kV*)

• Chile, Peru (245 kV*)

• Iran (420 kV*)

* up to

10/03/2010

29

RODURFLEX®: Static Load-Time Curves

IEC 61109-1992 IEC 61109-2008

RODURFLEX®: Static Load-Time Curves

10/03/2010

30

10/03/2010

31

6. Generation IV / New Products / Innovations

Generation IV - D-Flex®

10/03/2010

32

Generation IV - D-Flex®

⇒⇒⇒⇒ VIDEO D-Flex®

Generation IV: Advanced Materials, Process & Design

after 285 h after 1000 h

0,001

0,01

0,1

1

10

100

0 200 400 600 800 1000Test Duration in h

Max

. Lea

kage

Cur

rent

in m

A Leakage Current vertical [mA]

Leakage Current horizontal [mA]

1. ATH Content ↑↑↑↑

2. LMW Content ↑↑↑↑

3. Spec. Vulcanisation Tech.

(Patent), LMW Generation Process

Standard

Gen IV

10/03/2010

33

Insulating Crossarms - Braced Line Posts 145 - 550kV

Insulating Crossarms – Compact Lines 420 kV

„Suspension Tower“

„Tension Tower“

10/03/2010

34

Compact Lines –Invisible Tower 420 kV

Composite Station Posts 36 - 550kV

Core ∅∅∅∅[mm] [inch]

Pollution Classes *

[SCD, IEC 60815]

Maximum Cantilever Moment **

[kN m]

Um***

[kV]

36.8 1.45 12-31 mm/kV 10 3645.0 1.75 12-31 mm/kV 15 72.563.5 2.5 12-31 mm/kV 20 17076.2 3.0 12-31 mm/kV 30 24588.9 3.5 12-31 mm/kV 40 362101.6 4.0 12-31 mm/kV 50 550

10/03/2010

35

7. Impact of New Standards

The Impact of Standards

No Standard

⇒⇒⇒⇒ No Business

10/03/2010

36

IEC Insulator Standard System

IEC 60815Auslegung Schirmprofil/Verschmutzung

RODURFLEX®: Design Tests IEC 61109

10/03/2010

37

RODURFLEX®: Design Tests IEC 61109

8. Present & Future R&D Projects

10/03/2010

38

R&D Partners

Prof. Kindersberger

Prof. Kurrat

Prof. Bärsch

Prof. Hinrichsen

Prof. Clemens

Prof. Grossmann

R&D: New Design Tools (FEM)

10/03/2010

39

R&D : FEM/BEM Tools

R&D on Field Calculations (HSU Hamburg)

10/03/2010

40

R&D at TU Braunschweig1. Field Related Problems (“ Water Drop Corona “)

2. “Interfacial Phenomena in Composite Materials“

0

0,005

0,01

0,015

0,02

0,025

0,03

0,035

0,04

0,045

0,05

0 2 4 6 8 10 12 14

Zeit / Tage

Tan

Del

ta

Bild 6Mit der Impulsladung gewichtete Häufichkeits-Randverteilung a)Tag 0b)Tag 14

0

20

40

60

80

100

120

140

0,0 45,0 90,0 135,0 180,0 225,0 270,0 315,0 360,0

Phasenwinkel / °

hnq(Phasenwinkel) / q*n

Mittelwert 1.Maximumsbereich : 48,51 (H*q), Max. bei 73,5

Mittelwert 2.Maximumsbereich : 46,53(H*q), Max. bei 261,5°

0

20

40

60

80

100

120

140

0,0 45,0 90,0 135,0 180,0 225,0 270,0 315,0 360,0

Phasenwinkel / °

hnq(Phasenwinkel) / q*n

Mittelwert 1.Maximumsbereich: 42,46 (H*q) , Max. bei 88°

Mittelwert 2. Maximumsbereich : 55,01(H*q) , Max. bei 264°

a)

b)

Dynamic Drop Test

Present Work @ CIGRE D1.14 / .27

10/03/2010

41

R&D: New Design Tools (STRI Insulator Selection Too l IST®)

HVAC

HVDC

AC/DC Solid Layer

AC / KIPTS

10/03/2010

42

Pollution Severity: 2% ESDD Level (mg/cm²)0,001 0,01 0,1 1

Insu

latio

n Le

ngth

(m

)1,8

1,7

1,6

1,5

1,4

1,3

1,2

1,1

1,0

0,9

0,8

0,7

0,6

0,5

Spe

cific

Cre

epag

e D

ista

nce

(mm

/kV

syst

em)

48

46

44

42

40

38

36

34

32

30

28

26

24

22

20

18

16

14

AC KIPTS Natural Pollution Performance 123kV

Glass Antifog 33mm/kV

Pollution Severity: 2% ESDD Level (mg/cm²)0,001 0,01 0,1 1

Insu

latio

n Le

ngth

(m

)

1,1

1,0

0,9

0,8

0,7

0,6

0,5

Spe

cific

Cre

epag

e D

ista

nce

(mm

/kV

syst

em)

30

28

26

24

22

20

18

16

14

12

Rodurflex ® 31mm/kV

AC KIPTS Natural Pollution Performance 245kV

Pollution Severity: 2% ESDD Level (mg/cm²)0,001 0,01 0,1 1

Insu

latio

n Le

ngth

(m

)

3,6

3,4

3,2

3,0

2,8

2,6

2,4

2,2

2,0

1,8

1,6

1,4

1,2

1,0

Spe

cific

Cre

epag

e D

ista

nce

(mm

/kV

syst

em)

48

46

44

42

40

38

36

34

32

30

28

26

24

22

20

18

16

14

Pollution Severity: 2% ESDD Level (mg/cm²)0,001 0,01 0,1 1

Insu

latio

n Le

ngth

(m

)

2,2

2,1

2,0

1,9

1,8

1,7

1,6

1,5

1,4

1,3

1,2

1,1

1,0

0,9

Spe

cific

Cre

epag

e D

ista

nce

(mm

/kV

syst

em)

30

28

26

24

22

20

18

16

14

12

Glass Antifog 29mm/kV

Rodurflex ® 31mm/kV

10/03/2010

43

Pollution Severity: 2% ESDD Level (mg/cm²)0,001 0,01 0,1 1

Insu

latio

n Le

ngth

(m

)6,0

5,5

5,0

4,5

4,0

3,5

3,0

2,5

2,0 Spe

cific

Cre

epag

e D

ista

nce

(mm

/kV

syst

em)

48

46

44

42

40

38

36

34

32

30

28

26

24

22

20

18

16

14

Pollution Severity: 2% ESDD Level (mg/cm²)0,001 0,01 0,1 1

Insu

latio

n Le

ngth

(m

)

3,8

3,6

3,4

3,2

3,0

2,8

2,6

2,4

2,2

2,0

1,8

1,6 Spe

cific

Cre

epag

e D

ista

nce

(mm

/kV

syst

em)

30

28

26

24

22

20

18

16

14

12

AC KIPTS Natural Pollution Performance 420kV

Glass Antifog 25mm/kV

Rodurflex® 25mm/kV

Pollution Severity: 2% ESDD Level (mg/cm²)0,001 0,01 0,1 1

Insu

latio

n Le

ngth

(m

)

8,0

7,5

7,0

6,5

6,0

5,5

5,0

4,5

4,0

3,5

3,0

2,5 Spe

cific

Cre

epag

e D

ista

nce

(mm

/kV

syst

em)

48

46

44

42

40

38

36

34

32

30

28

26

24

22

20

18

16

14

AC KIPTS Natural Pollution Performance 550kV

Pollution Severity: 2% ESDD Level (mg/cm²)0,001 0,01 0,1 1

Insu

latio

n Le

ngth

(m

)

5,0

4,8

4,6

4,4

4,2

4,0

3,8

3,6

3,4

3,2

3,0

2,8

2,6

2,4

2,2

2,0

Spe

cific

Cre

epag

e D

ista

nce

(mm

/kV

syst

em)

30

28

26

24

22

20

18

16

14

12

Rodurflex® 28mm/kV

Glass Antifog 26mm/kV

10/03/2010

44

Pollution Severity: 2% ESDD Level (mg/cm²)0,001 0,01 0,1 1

Insu

latio

n Le

ngth

(m

)

12,0

11,5

11,0

10,5

10,0

9,5

9,0

8,5

8,0

7,5

7,0

6,5

6,0

5,5

5,0

4,5

4,0

3,5

Spe

cific

Cre

epag

e D

ista

nce

(mm

/kV

syst

em)

48

46

44

42

40

38

36

34

32

30

28

26

24

22

20

18

16

14

AC KIPTS Natural Pollution Performance 765/800kV

Pollution Severity: 2% ESDD Level (mg/cm²)0,001 0,01 0,1 1

Insu

latio

n Le

ngth

(m

)

7,0

6,5

6,0

5,5

5,0

4,5

4,0

3,5

3,0 Spe

cific

Cre

epag

e D

ista

nce

(mm

/kV

syst

em)

30

28

26

24

22

20

18

16

14

12

Glass Antifog 24mm/kV

Rodurflex® 24mm/kV

THANK YOU FOR LISTENING!