COASTAL RESPONSE TO A DUAL JETTY SYSTEM …ong tu gm t s for rducng ths buren, ... COASTAL RESPONSE...

263
MISCELLANEOUS PAPER CERC-92-2 COASTAL RESPONSE TO A DUAL JETTY SYSTEM AT LITTLE RIVER INLET, A...2.8 739. NORTH AND SOUTH CAROLINA AD-A248 739 flhIiM by Monica A. Chasten Coastal Engineering Research Center DEPARTMENT OF THE ARMY Waterways Experiment Station, Corps of Engineers 3909 Halls Ferry Road, Vicksburg, Mississippi 39180-6199 DTIC f ELECTE APR 211992 March 1992 Final Report Approved For Public Release; Distribution Is Unlimited 9 2-100 34 Prepared for US Army Engineer District, Charleston Charleston, South Carolina 29402-0919 92 4 90 026

Transcript of COASTAL RESPONSE TO A DUAL JETTY SYSTEM …ong tu gm t s for rducng ths buren, ... COASTAL RESPONSE...

MISCELLANEOUS PAPER CERC-92-2

COASTAL RESPONSE TO A DUAL JETTYSYSTEM AT LITTLE RIVER INLET,

A...2.8 739. NORTH AND SOUTH CAROLINAAD-A248 739flhIiM by

Monica A. Chasten

Coastal Engineering Research Center

DEPARTMENT OF THE ARMYWaterways Experiment Station, Corps of Engineers

3909 Halls Ferry Road, Vicksburg, Mississippi 39180-6199

DTICf ELECTE

APR 211992

March 1992Final Report

Approved For Public Release; Distribution Is Unlimited

9 2-10034

Prepared for US Army Engineer District, CharlestonCharleston, South Carolina 29402-0919

92 4 90 026

Destroy this report when no longer needed. Do not returnit to the originator.

The findings in this report are not to be-construed as an officialDepartment of the Army position unless so designated

by other authorized documents.

The contents of this report are not to be used foradvertising, publication, or promotional purposes.Citation of trade names does not constitute anofficial endorsement or approval of the use of

such commercial products.

II

Form A~WO eREPORT DOCUMENTATION PAGE OMB No. 70o18

auh .vn~qrden for thK odC~400 of rnformalt~on '1 est d to arerag I hour evhp oie Mnulgte tune for reviewngstucfi.erdnentgda ore.gathwrmn and maontasnmfi the daita needad., and € OenlOI~mf and fevb~wm9i the cofeCts~o nOfl'a . laNd comet rfqaningl tis budn animate or an y othe ieatofti

cOfIKlmOn of ortnOM n. i nclud'ong tu gm t s for rducng ths buren, to Wfthwqw Iafeedbrtern Sersces. Dietorae for Informaton Operatmon, an fepoM 12IS JefferSf i

OavunHghway. Suite IM04. ArlingtOn. V& 22202-4302. and to the Offie of Monageient aW Budget. Paprort Reduction Prtoect (07M4-013M). We 9ngton0. DC 20503

1. AGENCY USE ONLY (Leave ank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVEREDI March 1992 Final report

4. TITLE AND SUBTITLE S. FUNDING NUMBERS

Coastal Response to a Dual Jetty systim at LittleRiver Inlet, North and South Carolina

6. AUTHOR(S)Monica A. Chasten

7. PNORMING ONIRNAGON NAME(S) AND ADRESS(ES) 8. PORMING OGANIAIONUSAE Waterways Experiment Station, Coastal REPORT NUMER

Engineering Research Center, 3909 Halls Ferry Miscellaneous PaperRoad, Vicksburg, MS 39180-6199 CERC-92-2

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING

AGENCY REPORT NUMBER

US Army Engineer District, CharlestonPO Box 919, Charleston, SC 29402-0919

11. SUPPLEMENTARY NOTES

Available from National Technical Information Service, 5285 Port Royal Road,Springfield, VA 22161.

12a. DISTRIB&JTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution is unlimited

13. ABSTRACT (Maximum 200 word)

Little River Inlet is a shallow coastal inlet located on the Atlantic Oceanalong the North Carolina-South Carolina border. Construction by the US ArmyEngineer District, Charleston (SAC) of a dual Jetty system at Little River Inletbegan in March 1981 and was completed in July 1983.

An extensive monitoring program began in March 1981 to evaluate theperformance of the jetty system and document its effect on local shorelines. Theprogram included beach profile surveys, inlet hydrographic surveys, aerialphotography, structural surveys, site inspections, and Littoral EnvironmentObservation (LEO) data collection.

The Coastal Engineering Research Center has conducted an analysis of themonitoring data collected at Little River Inlet between 1978 and 1989. Theobjectives of this analysis were to stunarize initial beach and nearshore responseto the project, and assist SAC in developing dredged material management plans.Additionally, the option of opening the weir section of either Jetty wasevaluated, and recommendations were made on continued project monitoring.

14. SUBJECT TERMS IS. NUMER OF PAGESInlet stabilizationJetties is PI CmTidal inlet

17.S10WY LASICAN SCLO CLSSIICTM It 510511 CLASSIFICA X UONTOF REPORT OF TNIS PAGE OF ABSTRACT

UNCALSSIFIED [UNCLASSIFIED INSN 7S40-01.210-SSOO Standard Form M (ROv ,4)J~~~ ~ ~~~~~m* O7. SE"RT SSWIAO MISECRTYOASWC

PREFACE

The investigation summarized in this report was conducted bythe US Army Engineer Waterways Experiment Station's (WES's)Coastal Engineering Research Center (CERC) through a reimbursablestudy for the US Army Engineer District, Charleston (SAC).Messrs. James Joslin and Millard Dowd were the SAC representa-tives involved in this study. Funds were provided by SAC.

Work was performed at WES under the general supervision ofDr. Yen-hsi Chu, Chief, Engineering Applications Unit (EAU),Coastal Structures and Evaluation Branch (CSEB), CERC; Ms. JoanPope, Chief, CSEB; Mr. Thomas W. Richardson, Chief, EngineeringDevelopment Division (EDD); Mr. Charles C. Calhoun, Jr.,Assistant Chief, CERC; and Dr. James R. Houston, Chief, CERC.

This report was prepared by the Principal Investigator (PI)of the reimbursable study, Ms. Monica A. Chasten, EAU, CSEB.Mr. Don Ward, Wave Dynamics Division, conducted the RCPWAVE andlongshore transport analyses. Technical assistance with the dataanalysis was provided by Mr. Bill Birkemeier, Chief, FieldResearch Facility; Mses. Kelly Lanier and Karen Pitchford andMessrs. Joseph Curro, III and Darryl Bishop, all of CSEB.Ms. Lanier, Mr. Bishop, and Ms. Janie Daughtry providedassistance in preparing the manuscript and figures. Technicalreviewers of the report were Dr. Yen-hsi Chu and Dr. Douglas R.Levin, Assistant Professor of Science, Bryant College, formerlyof CERC. The assistance of Mr. Millard Dowd, SAC, throughout thestudy is greatly appreciated.

A special acknowledgement is extended to Mr. Perry Reed,Civil Engineering Technician, EAU, CSEB who performed much of thebathymetry analysis. Mr. Reed passed away on 4 January 1991.

Dr. Robert W. Whalin was Director of WES. COL Leonard G.Hassell, EN, was Commander and Deputy Director.

1

-i,-..---.-_- .. - -

CONTENTS

PREFACE ................................................... 1

CONVERSION FACTORS, NON-SI TO SI (METRIC)

UNITS OF MEASUREMENT ............................. ........ 3PART 1: INTRODUCTION. . . ... .. ....................... 5

Purpose .............................. 5Background ............................ .......... 5Physical Setting . .............................. 6Project Description ................... .......... 8Construction and Dredging History ............... 10Monitoring Program................................ 11

PART II: DATA ANALYSIS METHODS AND RESULTS ............... 12Beach Profile and Inlet Hydrographic Data ....... 12Historical Shoreline Change Maps ................. 14Aerial Photography ................................ 18Wave Refraction Analysis .......................... 18LEO Data ........................................ 31

PART III: SUMMARY OF RESULTS AND DISCUSSION ............... 35

Longshore Transport Trends ........................ 35Shoreline Response ................................ 38Shoal and Fillet Volumes ........................ 47Jetty Scour and Channel Migration ............... 48

PART IV: RECOMMENDATIONS ................................. 51

Dredged Material Disposal Options ............... 51Continued Monitoring Efforts .................... 52Continued Analysis .............................. 53

REFERENCES ................................................ 54

APPENDIX A: BEACH PROFILES ............................... Al

APPENDIX B: POST-HUGO BEACH PROFILES ..................... BiAPPENDIX C: CUMULATIVE SHORELINE CHANGE .................. Cl

APPENDIX D: ABOVE-DATUMVOLUME CHANGE .................... Dl

APPENDIX E: BATHYMETRIC CONTOUR MAPS ..................... El

APPENDIX F: NUMERICAL MODEL METHODOLOGY ANDLONGSHORE TRANSPORT PLOTS .................... F1

APPENDIX G: LITTORAL ENVIRONMENT OBSERVATIONS ............ Gi

2

CONVERSION FACTORS, NON-SI TO SI (METRIC)UNITS OF MEASUREMENT

Non-SI units of measurement used in this report can be converted

to SI (metric) units as follows:

Multi]lY By To Obtain

cubic feet 0.02831685 cubic meters

cubic yards 0.7645549 cubic meters

feet 0.3048 meters

inches 2.54 centimeters

miles 1.609347 kilometers

K /

Ivfllabl ity Cod..

AVail and/orDlst speeial

3

tNORME CABOWI&

SOUTH irCAR0M

HOCLA INLETa

Figure~~ ~~~ 1. Suyae lcto a

LITL

COASTAL RESPONSE TO A DUAL JETTY SYSTEM AT LITTLE RIVER INLET.NORTH AND SOUTH CAROLINA

PART I: INTRODUCTION

Purpose

1. The Waterways Experiment Station's (WES) CoastalEngineering Research Center (CERC) conducted an analysis for theU.S. Army Engineer District, Charleston (SAC) of the monitoring

data collected at Little River Inlet, North and South Carolina

from 1979 to 1989. The objectives of this analysis were tosummarize initial beach and nearshore response to the Little

River Inlet navigation project, and essist SAC in developing

dredged material management plans. Additionally, the option ofopening the weir section of either jetty was evaluated, and

recommendations made on continued project monitoring.

2. Little River Inlet is located on the Atlantic Ocean

along the North Carolina-South Carolina border, approximately

23 miles" northeast of Myrtle Beach, South Carolina (Figure 1).

The inlet is the ocean entrance to the towns of Little River and

Calabash, the Atlantic Intracoastal Waterway (AIWW), and several

tidal streams. The back bay serves as a safe coastal harbor for

many private, recreational, and commercial fishing boats (US Army

Corps of Engineers 1977). Little River Inlet is the only oceanoutlet from the AIWW between Shallotte Inlet, NC and Georgetown,

SC, a distance of 68 miles.

'A table of factors for converting non-SI units of measurement toSI (metric) units is presented on page 3.

5

3. The inlet is part of the "Grand Strand," an area along

South Carolina's northeastern shore consisting of 60 miles of

resort beaches. Bird Island, an undeveloped privately-owned area

lies to the northeast of the inlet. To the southwest is Waties

Island, also privately owned and undeveloped.

4. Historical reviews of Little River Inlet are provided in

Seabergh and Lane (1977) and Anders et al. (1990). The first

survey of the area in 1735 noted that the inlet was just inside

the South Carolina State line (U.S. Army Engineer District,

Charleston 1971). Figure 2 indicates that the inlet remained

relatively close to the State border (Seabergh and Lane 1977).

The farthest known distance from the border was almost one mile

west in 1873 (Figure 2). Subsequent shoreline configurations

show an easterly migration of the inlet, and a post-1942 widening

of the inlet. This increase in width may be due to a larger ebb

tidal prism caused by the opening of the AIWW in the late 1930's

(Seabergh and Lane 1977). Dynamic changes in the position of the

main ebb channel and inlet shoals were historically experienced

within the inlet opening. Frequent shifting and migration of the

barred channel and extensive sand shoals made the inlet extremely

dangerous for navigation. At times, controlling depth in the

inlet was 3 ft or less at Mean Low Water (MLW). Due to the

instability of the channel, sidecast dredge operations proved

ineffective in providing safe navigation through the inlet.

5. Under Section 201 of the Flood Control Act of 1965, a

project for the improvement and stabilization of Little River

Inlet was authorized by Congress in 1972. Preconstruction

planning began in 1974, and final plans and specifications were

completed in 1980. Construction of a dual jetty system at the

inlet began in March 1981 and was completed in July 1983.

Physical Settina

6. Little River Inlet is located within a geomorphic

coastal zone termed the arcuate strand (Brown 1977). Landward,

6

INLET

SHORELINE 1924-26 BASELINE

SHORELINE 19534 BASELINE

WdRELINE 1968 BASELINE

2000 0 2000

SCALE IN FEET

Figure 2. Historical high water shorelines and inletlocations (Seabergh and Lane 1977)

7

the strand abuts a mid-Pleistocene beach ridge deposit (Ward and

Knowles 1987). The coastline is relatively straight and

interrupted by few tidal inlets.

7. Tidal inlet morphology along this portion of the

Carolina coast is characterized as mixed-energy (Hubbard et al.

1979) trending toward tide domination (Davis and Hayes 1984).

In a mixed-energy inlet, shoals located near the throat are

separated by channels of variable depth. Prior to stabilization,

the shoals at Little River Inlet were located slightly seaward of

the inlet throat.

8. The mean tidal range for this region is 5.0 ft. Thisrange lies within the overlap between the upper end of the

microtidal envelope and the beginning of the mesotidal range

(Davies 1964). The average significant wave height for the

vicinity is approximately 1.8 ft (Jensen 1983). Little River

Inlet is somewhat protected from waves generated from the

northeast by the Frying Pan Shoals at Cape Fear, NC.

9. Little River Inlet is connected with a marsh area and

the AIWW, which in turn is joined to the Waccamaw River. Fresh

water inflow from this source averages 1,200 cu ft per second, or

53.6 million cu ft per tidal cycle. The total pre-project tidal

prism was 505 million cu ft (Seabergh and Lane 1977).

Project Description

10. The authorized stabilization project provides for an

entrance channel 12-ft deep, 3,200-ft long, and 300-ft wide

across the ocean bar, and an inner channel, 10-ft deep, 9,050-ft

long, and 90-ft wide from the entrance channel to the AIWW. The

channel is stabilized by two jetties, with sand transition dikes

connecting the structures to the shore. A low weir section was

built into each jetty, and then subsequently covered with armor

stone (Figure 3).

11. Optimum design of the navigation project was determined

through the use of a fixed-bed hydraulic model study (Seabergh

8

SUNSET. BEACH

BIRD.ISLAN INLET

SAND DIKE

COVEREDLI WEIR

INLETEAST

JETTY

COVERED \ S

SAND IKE ETTY

A TLANTIC OCEAN

HOG INLET lw a o 2=rI

Figure 3. Little River Inlet navigation projectand vicinity

9

and Lane 1977). This study examined alignment, length and

spacing of the jetties, weir sections, current patterns and

magnitudes, sediment movement patterns, effects on the tidal

prism, and effects on bay salinities.

12. The two jetties are of typical quarrystone, rubble-

mound construction. Seven various sizes of stone weighing

between 2.5 pounds and 8 tons were used to construct the jetties.

The east jetty is approximately 3,300-ft long, and the west jetty

is approximately 3,800-ft long. Both jetties include a sand dike

to anchor the structure to the shore, a weir, and a sand-tight

section joining the weir to the sand dike.

13. The hydraulic model study determined that a 1,300-ft

weir section at elevation +2.4 ft MLW backed by deposition basins

would be the most feasible plan for both jetties. As

constructed, this 1,300-ft section was divided into a 650-ft

sand-tight section connected to the shore and a 650-ft weir, in

order to provide more control of sand overtopping the weir.

However, the weirs were subsequently covered with armor units to

an elevation of +8 ft MLW. The deposition basins were never

dredged.

Construction and Dredging History

14. The first stone was placed on the east jetty 28 July

1981 and the last one was set on 8 June 1982. Initial dredging

of the entrance channel to a 300-ft width and 12-ft depth was

performed between June and July 1982. This dredging effort

removed 513,000 cu yds of material from the channel, which was

subsequently used to construct the west sand dike. Upon

completion of the east jetty, construction equipment was

mobilized to Waties Island. Stone placement for the west jetty

began in June 1982 and finished in early June 1983.

15. Little River Inlet has been dredged only one time since

the initial dredging of the channel. This dredging effort was

accomplished between December 1983 and February 1984. The total

volume removed from the entrance and inner channels was

10

264,000 cu yds. Most of this material was placed adjacent to theinner side of the west jetty due to migration of the channeltowards the jetty.

Monitoring Program

16. The SAC began collecting pre-project baseline data atthe Little River Inlet project in 1979. A formal monitoringprogram was initiated by SAC and CERC in 1981. The primaryobjectives of this program were to evaluate the performance ofthe jetty system and document its effects on adjacent shorelines.

17. The first phase of the formal monitoring program beganin March 1981 and continued through February 1986. A reducedmonitoring effort will continue through 1991. The two phases are

summarized below.

Phase I18. Phase I of the monitoring program consisted of:

A. Beach profiles (quarterly, 58 lines through October1983, then 48 lines)

b. Inlet hydrographic surveys (quarterly)-. Aerial photography of shoreline (monthly during and

one year after construction, then quarterly)d. Structural surveys (quarterly)

e. Site inspections (annual, by SAC/CERC personnel)f. Littoral Environment Observations (LEO) (three

sites daily)Phase II

19. The reduced monitoring program consisted of:A. Beach profiles (semi-annual, 48 lines)b. Inlet hydrographic surveys (semi-annual)c. Aerial photography of shoreline (semi-annual)

!. Structural surveys (annual)

_. Site inspections (annual, SAC/CERC personnel)

. Littoral Environment Observations (LEO) (threesites daily)

11

PART II: DATA ANALYSIS METHODS AND RESULTS

20. The CERC has analyzed monitoring data collected at

Little River Inlet between 1979 and 1989. This chapter briefly

describes the data and the analysis methods used in this

investigation. Due to the large volume of data, most results are

presented in separate appendices. Limitations of the data and

results are discussed in each of the respective appendices.

Beach Profile and Inlet Hydrographic Data

21. Beach surveys were taken along 58 profile lines until

October 1983, and 48 lines for the remainder of the program. The

profile lines are spaced at 200-ft intervals to approximately

3500 ft from the channel centerline on either side of the inlet

(Figure 4). From there, profiles are spaced at 500-ft intervals

for a short distance, and then 1000-ft intervals to a distance of

about 2.6 miles from the channel centerline. Coverage continues

with 5000-ft spacing east to Tubbs Inlet, and west across Hog

Inlet to North Myrtle Beach. Starting locations and alignments

of the profile lines are provided in Appendix A (Table A-l).

22. Profile data was obtained from SAC and entered into the

Interactive Survey Reduction Program (ISRP) (Birkemeier 1984). A

description of ISRP, the techniques used to analyze the data, and

the plotted results are presented in Appendix A.

23. Hurricane Hugo made landfall on September 21, 1989,

just north of Charleston, SC. Post-Hugo profile data (December

1989) at Little River Inlet was plotted separately since the data

represents profile changes during an extreme event. Comparison

plots were made using surveys from 1988 (Appendix B).

24. Also computed from the profile data were estimations of

MLW and Mean High Water (MHW) shoreline change (Appendix C) and

calculations of above datum volume changes (Appendix D).

25. The ISRP beach profile and inlet hydrographic survey

data for specified dates were input into Radian Corporation's

12

TUBBS INLET

SUNSETBEACH

ATLANTI

131

Contour Plotting System (CPS-3). Bathymetric contour maps were

then generated for annual spring/summer surveys between April 1981

and July 1988 (Appendix E).

26. Shoal and fillet volumes were then computed from the

bathymetric maps using CPS-3. Five volume polygons were designated

covering the fillets to the west and east of the jetties, a central

ebb shoal area, and the shoal areas on the inner side of each jetty

(Figure 5). Table 1 and Figures 6 and 7 show the results for each

volumetric determination. Additional volume computations were made

for the shoal on the inner side of the east jetty (polygon denoted

East Inside) to determine potential sources of the shoal's growth.

Temporal changes in the shoal size were correlated to changes in

other inlet sand bodies that may be sources of sediment supply.

Historical Shoreline ChanQe Maps

27. Maps delineating the shoreline at various points in

time (1873, 1924/26, 1933, 1962/63, 1969/70, and 1983) were

prepared by the National Oceanic and Atmospheric Administration

(NOAA), National Ocean Service (NOS), and the South Carolina

Division of Research and Statistical Services (DRSS). These maps

were then used by Anders et. al (1990) to analyze changes in

shoreline position along the South Carolina coast over the past

150 years.

28. A brief review was made of relative historical

information found in Anders et al. (1990). Shoreline change

measurements were made for map transects corresponding to ISRP

Lines 49 through 53 (see Figure 4), a suspected erosional area on

the western end of Waties Island. These ISRP profile lines

correspond to survey Stations 81+00W to Stations 121+00W,

respectively. In order to avoid potential scale distortions,

measurements were made on the original mylars, and not on the

maps published with Anders, et al. (1990).

29. Shoreline positions along the transects were digitized

using a CALCOMP 9000 system, and shoreline changes between

14

SURVEY BASELINE

A TLANTIC OCEAN

Figure 5. Polygons used in shoal and fillet volumecalculations

15

H 0 C M 0 Ln~ -W m in Mn LO

0-01

~r- r- r4 en in -w r- O I f4 in

N N N N N4 4 IA4

410

00

C-40

r4 .0 q

41 0

-0

co N 14 In W tC

4 r%-I V4 1-4 a V4'D

110

Total Volume In Polygon (M. yd3)

7

8

5 -

4

3

2

0APR61 MAY82 JUL.62 MAY63 JAN64 MAY64 JUN65 JUN66 JUL67 JUL68

MWest Fillet EM East Fillet = Center

Figure 6. Ebb shoal and fillet polygon volumes

Total Volume In Polygon (yd3 X 1000)

500

400

350

300

250

200

150

100 -.......

50

0 1APR61 MAY62 JUL62 MAY613 JAN84 MAY64 JUN615 JUN66 JUL67 JUL66

East Inside Polygon MWest Inside Polygon

Figure 7. inner shoal polygon volumes

17

historical dates were computed. This process was repeated

several times to improve quantitative accuracy. Table 2 andFigure 8 provide historical shoreline change analysis results.

Aerial Photography

30. Aerial photography, at a scale of 1 in. = 400 ft, ofLittle River Inlet and the adjacent shorelines was collectedmonthly during and for one year after construction. Aerials werethen taken quarterly for the remainder of the first phase of themonitoring program.

31. Mosaics of the spring photography from 1979 to 1988were constructed (Figures 9a through 9j). Shoreline changemeasurements from both the full-size photographs and the mosaicswere limited to qualitative analyses, since discrepancies withinthe photography prevented confident quantitative comparison ofthe shorelines.

32. Aerial photography of Hog Inlet was visually examinedrelative to changes on the western end of Waties Island. Theinlet has historically demonstrated significant shoreline changeson this portion of Waties Island (Anders et al. 1990). Theposition of the inlet thalweg and volume of material contained inthe ebb shoals were qualitatively evaluated in relation to thebeach profile data collected for this area.

Wave Refraction Analysis

33. A pre- and post-project refraction analysis wasconducted using the numerical model RCPWAVE (Ebersole et al.1986). The primary objectives of this analysis were to examinethe wave climate in the inlet's vicinity and evaluate longshoretransport trends, for both pre- and post-jetty conditions.

34. The Wave Information Study (WIS) conducted a 20-yr wavehindcast study for the Atlantic coastlines (Jensen 1983). PhaseIII WIS data from Station A3108, Sunset Beach, was used along

1s

II

-4)

* 4

i-I v4 $4 0

1 0 0 0

0 0

14 0 04

.a IV~o

+ >

4J0 4

0

oI =1 I

001 Nn N N 04 0m 0 44

E4 0 v-I$

0 ~ 10

ri H- H- . + '.4 (' 0%n ~II+ + 6

4J

* 4)

04 go 0

0 '4 V.4 P4 '.4 r

0 o 41U MA U

~~4g~~ W' 4 ~4 14)

~4 in in in in in q A

19

Cumulative Shoreline Change. MHW 00tS00

All data was digitlind from transact aheets400 - wmept for 1969170 and 1983 (which were

-100

-200

0ia

B100 910 4 t 0.0--Sa110 9Sa110 *Sa110

T-shests/map from Anders et al. (1990)

Figure 8. Historical shoreline change for map transectscorresponding to profiles on Waties Island

20

a. March 1979

b. March 1980

ieet IOf 5)

~Aa~11982

Ik

e. ~aIl~1983

f* 4arch 1984

* -* *~-. a,~

g. Mrch1985

h. 1arch 1986

~,(Shta, 4 of 5)

e fi. January 1987

. arch 1988

A /

t 5 of 5)

7 >1-'

............................................-.~-~------- -~----

with bathymetric data from 1981 (pre-project), 1985, and 1988. A

summary of the methods used to run RCPWAVE is given in

Appendix F. Potential longshore transport computations were then

based on equations found in the Shore Protection Manual (1984).The methodology used to calculate sediment transport, along with

plots of annual and monthly sediment transport trends for 1981,1985, and 1988, are also located in Appendix F.

35. The grid used for Little River Inlet covers an area 5.7miles alongshore and 1.2 miles offshore (Figure 10). The grid isdimensioned into 200 cells (150 ft wide) along the coast (gridlines i=1 to 201, numbered from west to east) by 154 cells (75 ftwide) (grid lines j=1 to 155, numbered from shore seaward). Thejetties are located approximately between grid nodes i=94 and

i=102.

36. The procedure used to calculate longshore transport inthis analysis is considered more qualitative than quantitative.

Due to the assumptions and limitations of the numerical model andmethods used, results should be examined as a transport potential

or trend over a range of cells. The jetties and local bathymetryin the vicinity of the inlets are not well interpreted by themodel. Transport values in the immediate vicinity of these areas

should be disregarded.

LEO Data

37. The LEO program was established by CERC to provide ameans of daily monitoring of wave climate in a particular coastal

region (Schneider 1981). Visual observations recorded for

parameters such as breaking wave height, angle of wave approach,wave period, current direction and speed, and wind information.

38. LEO data was recorded almost daily by observers atthree locations; Ocean Isle Beach, NC, Sunset Beach, NC, and

Cherry Grove Beach, SC (Figure 11). Since access to both

adjacent shorelines is difficult or restrictive, it was

31

32 112

STA. 33095

LEOSTA. 39039

AfM

"am

' }-...

1 0 I 2ML.S

U 0STA. 46002

Figure 11. Littoral Environment Observation (LEO)

sites in the vicinity of Little River Inlet

33

impossible to establish a LEO site in the immediate vicinity of

the inlet.

39. The CERC utilizes specially developed computer programsto analyze LEO data and compute statistics of various coastalparameters. LEO data summaries for the stations in the vicinity

of Little River Inlet are presented in Appendix G. Included in

these summaries are calculations of longshore transport using twodifferent methods; however, these values are considered onlyqualitative estimates of transport trends at the LEO site

(Schneider and Weggel 1980). The LEO data analyzed in this

report were examined comparatively to support other data results.

34

PART III: SUMMARY OF RESULTS AND DISCUSSION

Lonashore Transgort Trends

40. Historically, the direction of longshore transport in

the vicinity of Little River Inlet has been highly variable

making it difficult to define a dominant trend. Sediment

transport rates and directions appear to vary both spatially and

temporally in the vicinity of Little River Inlet. Local

bathymetry and shoreline angle controlled drift reversals are

common along the South Carolina coast; especially in the vicinity

of tidal inlets.

41. A pre-project survey report (US Army Corps of Engineers

1977) estimated a gross transport rate of 300,000 cu yd/yr with

both northeastward and southwestward moving drift balanced at

150,000 cu yd/yr. This estimation was based on maintenance

dredging records at sites such as Georgetown Harbor, SC and

Masonboro Inlet, NC.

42. Longshore transport estimations made during project

design concluded a gross transport rate of 300,000 cu yd/yr with

a net transport of 100,000 cu yd/yr to the west (US Army Corps of

Engineers 1977). This estimate was based on the geomorphology

and historical evolution of the inlet, and on calculations made

using wave data and visual observations at Holden Beach, NC, a

site located approximately 15 miles to the northeast of Little

River Inlet. Although this was the best available data at the

time, these calculations are based on limited assumptions. In

addition, Mad, Tubbs, and Shallotte Inlets are located between

Holden Beach and Little River Inlet, and probably affect the

local calculated longshore transport rates significantly.

43. Pre-project longshore transport analyses for Little

River Inlet were also conducted in 1979 and 1980 at the Waterways

Experiment Station for the US Army Engineer Division, South

Atlantic. Based on hindcast wave climatology for three years

(US Army Engineer Waterways Experiment Station, unpublished) and

35

I'

preliminary Wave Information Study data (Corson and Resio,

unpublished), both analyses showed this to be an area with

extremely variable transport; but, with a slight net transport to

the northeast. An additional analysis conducted by CERC in 1984

(Pope, unpublished) using WIS data (Jensen 1983), also concluded

a net northeasterly transport for Phase III stations A3108

(Sunset Beach, NC), A3109 (Crescent Beach, SC), and A3110 (Myrtle

Beach, SC).

44. Due to inconsistent longshore transport information,

the RCPWAVE analysis presented in Appendix F was conducted to

specifically examine transport trends for the pre- and post-

project conditions. Determination of longshore transport trends

assisted with the examination of beach and nearshore response to

the project, and in the evaluation of the weirs of both jetties.

45. Pre-project RCPWAVE results show an overall dominanceof longshore sediment transport to the northeast on Waties Island

and a slightly less dominant transport to the northeast on Bird

Island. Transport on Bird Island is sometimes variable and

appears, on occasion, to be opposite to the dominant trends.

These reversals tend to occur in the vicinity of Mad and Tubbs

Inlets, and are not considered representative of the regional

trend of longshore sediment transport.

46. Post-project RCPWAVE analysis results continue to show

a general northeasterly longshore transport trend. Figure 12 is

a typical plot showing this northeasterly transport trend.

Again, transport values should be examined as a qualitative

potential or trend over a range of cells. Analysis results also

indicate that minor seasonal (September-November) reversals tothe southwest may occur on occasion. These reversals may be

caused by seasonal waves encountering different shoreline

orientations caused by the growth of the west fillet on Waties

Island. Geographical variations such as a bulge in the shoreline

or change in shoreline angle can cause localized transport

reversals by transforming the incoming waves.

36

o 0CN %4

00

0

L&.0

o 0CL Z

- v,

_ _ _ _ _ L. p

z :3 4-

< 0

0

o 4

'J~ ~~~ >

C-N.94

JA/,A I~dJ aodamjj~1su~4J370

If 1-4

I

47. Methodologies used to quantify longshore sediment

transport have been inconclusive. From the RCPWAVE results,

fillet volumes, LEO summaries, and other pre-jetty analyses of

littoral transport conducted by WES in 1979, 1980 and 1984, there

is strong evidence that longshore transport is variable; but,

slightly dominant to the northeast. The collection of inshore,

directional wave gauge data would improve longshore transport

information.

Shoreline Response

48. Beach response to the Little River Inlet jetties was

examined through the analysis of beach profiles, bathymetric

contour maps, and aerial photography. Due to the large amount of

data, overall trends were examined initially. Specific areas

were then examined to define trends in more detail.

49. It should be noted that the study area was examined

with a data set of beach profiles spanning over an 8 year period.

In addition to the construction of a navigation project within

this 8 year period, the presence of 4 tidal inlets within less

than 7 miles of shoreline (Tubbs, Mad, Little River and Hog

Inlets), makes this study area especially vulnerable to cyclic

trends and short-term fluctuations. An estimate of the long-

term, equilibrium shoreline and rates of change at this point

would most likely be premature, and is difficult to separate from

the short-term "noise" and initial responses due to jetty

construction. Therefore, overall trends and coastal responses to

the jetties are examined, without quantitative rates of change or

future extrapolations.

50. The Bird Island shoreline between the east jetty and

Mad Inlet exhibited an overall accretion of between 50 and 100

ft, and the profiles appear to have steepened slightly since

jetty construction. This section of shoreline accreted steadily

38

until middle to late 1984, and then either remained relatively

stable or eroded slightly. This initial accretion could be due

to the attachment of a portion of the pre-jetty ebb delta,

onshore migration of the offshore bar due to wave sheltering by

the jetties, and/or stabilization of the east sand dike area.

The relative stability of this shoreline may also be attributed

to wave sheltering by the jetties and the variability of littoral

transport in the Bird Island vicinity.

51. The portion of shoreline between Mad and Tubbs Inlets

appears also to have accreted slightly, but is more variable due

to its proximity to both inlets. It should be noted that ISRP

Profile Line 9 lies immediately to the west and Profile Line 8

immediately to the east of Mad Inlet, accounting for the often

dramatic changes seen on these lines.

Waties Island

52. The shoreline to the west of the jetties in the

vicinity of ISRP profile lines 49 through 53 has previously been

identified as a potential area of project-related erosion (Figure

13), with profile line 52 experiencing the worst recession. This

area was examined in detail.

53. Historical shoreline change measurements taken along

map transects corresponding to ISRP lines 49 through 54 (Survey

Stations 81+00W through 131+00W) show that the western end of

Waties Island has naturally been unstable. Along these profile

lines, the shoreline has exhibited an overall erosional trend

since 1934 (Table 2 and Figure 8). According to Anders et al.

(1990), the northeast side of Hog Inlet (western end of

Waties Island) experienced 1,970 ft of accretion from 1873 to

1933/34, over 1,380 ft of erosion through 1969/70, and then

accreted 200 ft from 1969/70 through 1983. This area has been

historically dynamic in nature, experiencing alternating periods

of erosion and accretion, and has exhibited periodic trapping and

bypassing of significant quantities of material via Hog Inlet.

394

TUBBS INLET

LITTLEURIVE

NO~ eu SID K NN USEEWC CH

Figur 23. uspecedMeOioaraoWtisIln

40E7

54. Analysis of the profile data collected in themonitoring program, also shows a dynamic shoreline on thisportion of Waties Island. Shoreline changes for the MLW, +3- and+5-ft (MHW) contours were computed to examine different portions

of the profiles. The shoreline does not show a consistenterosional trend; but, appears to experience alternating periodsof erosion and accretion (for example, see Figure 14). Each bar

in Figure 14 represents the MHW shoreline change for ISRP profileline 52 (Station 111+00W) between the preceding survey date andthe date where the bar is plotted. It should be noted that themajor shoreline recessions are experienced during the fall andwinter seasons. Cumulative shoreline change and above datumvolume change plots (Appendices C and D) for several of theprofile lines in this area tend to show a slight cumulative trendof erosion from approximately the winter of 1983 through thewinter of 1987 (Figure 15). Although the beach experienced

relative stability or periodic recovery during this three yearperiod, it remained in a net eroded state relative to pre-winter

1983 conditions. The shoreline began to experience accretionfrom 1987 through the last regular survey date in 1988 (thesurvey in 1989 was post-hurricane). By 1988, the position of the

shoreline in this area was approximately the same as the 1981pre-project shoreline.

55. Tidal inlets strongly influence the dynamics of

adjacent beaches and can cause significant fluctuations in theseshorelines (Hayes et al. 1974; Fitzgerald et al. 1978; Fitzgerald1988). Often, these fluctuations are periodic and associatedwith natural inlet bypassing of sediment. As evidenced by aerialphotography and bar movement along the profile lines, the cyclic

trapping and bypassing of large quantities of sediment by Hog

Inlet, an unstabilized tidal inlet, appears to be significant tothe trends of erosion and accretion on the western portion of

Waties Island. This portion of the island appears to accrete

periodically from the downdrift lobe of the Hog Inlet ebb deltawelding to the beach face (Figure 16, also see Figure 9).

41

.4

a-.0

0c0

II

z "'4

- 0 r

N0

i o

0 4

0- 0 Id4

C,))0V 0

Co

-4

OS

c 1* 0 0

Ct 0

0 0 0

0 tO U) 0

0%

4

429

Profile Line 52

Cumulative Shoreline Change (ft)700600500

400300

200100

0-100-200-300

J J J J J J J J J Je a a a a a a a a a

n n n n n fl n n n

8 8 8 8 8 8 8 8 8 91 2 8 4 5 7 8 9 0

Survey Date

MLW --- MHW

Profile Line 53

Cumulative Shoreline Change (ft)700600500400300

200100

0 ... -- -

-100

-200-800-400

J J J J J~ J J J J Ja a a a a a a a a an n n n n n n n n n

8 8 8 a a a 8 8 a 91 2 3 4 6 a 7 8 9 0

Survey Date

-MLW -- MHW

Figure 15. Cumulative shoreline change plots fortwo profiles on western end of Waties Island

43

Figure 16. Aerial photo showing ebb tidal delta system at

Hog Inlet (February 1984)

441

Ebb tidal deltas represent a large sand reservoir, and slight

changes in the size of the ebb delta can greatly affect the sand

supply to nearby beaches (Fitzgerald 1988). From visual

observations of aerial photography, wave transformations around

the Hog Inlet shoals appear significant, and may also be a factor

in the periodic erosion on Waties Island. Wave transformations

due to the ebb shoal morphology may create a divergent nodal zone

downdrift of Hog Inlet on the western end of Waties Island

(possibly in the vicinity of ISRP profile line 52). Nodal zones

downdrift of inlets have been observed to be regions of beach

erosion (Ashley 1987; Farrell and Sinton 1983; Douglass 1991).

56. Based on an examination of profile data, aerial

photography, longshore transport trends, and historical data from

Anders et al. (1990), the periodic erosion occurring in this area

is more likely due to the dynamic morphology of Hog Inlet and

seasonal fluctuations, than due to effects caused by the

construction of the Little River Inlet jetties. In most cases,

the greatest beach recession is observed after the winter

seasons, with periodic recoveries of the beach inbetween.

Additionally, there has not been a significant increase in

sediment in the updrift fillet on Bird Island. If the jetties

were acting as a barrier to sediment supplying the western end of

Waties Island, a larger accretion in the east fillet would be

observed.57. The shoreline reach closest to the west jetty (ISRP

Lines 33 through 46) accreted dramatically since jetty

construction. Most of this accretion is due to the onshore

migration and welding of the abandoned (pre-jetty) ebb tidal

delta. An additional sediment source for this area was the

stabilization of the west sand dike area. These are discussed in

the following section on shoal and fillet volumes.

58. Summarizing shoreline change over the study area,

Figure 17 shows the net shoreline changes calculated between

April 1981 (pre-jetty) through July 1988. Moving from left to

right on Figure 17, the plot shows accretion immediately adjacent

to Hog Inlet, relatively the same shoreline position on the

45

MHW Shoreline Change Ift)

400

300

200

100 /MdN

0Wad= .kdksan W E island

-100 I I I I I

-15 -10 -5 0 5 10 15 20Distance ftr Jetties (ft) (Thousands)

- Figure 17. Mean high water shoreline change: April 1981to July 1988.

western end of Waties Island, and then a major accretion in the

fillet to the west of the jetties. East of the jetties, the

shoreline appears to have accreted approximately 50 to 100 ft

overall, with the exception of the profile line at Mad Inlet.

This profile line showed major accretion, and is indicative more

of a short-term fluctuation (shoal migration). Again, in only a

7 year time period, it is difficult to separate out the short-

term fluctuations and "noise" from the long-term trends; however,

this figure gives an indication of the initial shoreline

responses experienced since jetty construction. The cumulative

plots in Appendix C provide more detailed descriptions of

shoreline changes occurring between April 1981 and July 1988.

46

Shoal and Fillet Volumes

59. Total volumes of material in the fillets and shoals

were computed utilizing the Contour Plotting System. Two areas

showing the most accretion were the fillet to the west of the

jetties (Figure 6) and the inside jetty shoreline of Bird Island,

labeled East Flood (Figure 7).

60. The landward migration of the relict ebb tidal delta

and stabilization of the downcoast sand dike are the causes of a

major portion of the accretion in the west fillet (see Figure 9d

through 9j). Because ebb tidal deltas form due to a balance of

tidal and wave forces, confinement of flow between the jetties

causes wave dominance of the adjacent pre-jetty ebb tidal delta.

Landward bar migration occurs due to wave induced sediment

transport. This response of the ebb tidal delta has been

observed at other southeast inlets, and is discussed in Hansen

and Knowles (1988) and Pope (1991).

61. By 1985, a portion of the abandoned ebb delta which had

been trapped between the jetties during construction, had welded

onto the western portion of Bird Island inside of the jetties

(polygon denoted East Inside). This extent of this sand shoal

began to significantly increase from 1987 to 1989. This shoal is

probably receiving some sediment deposits from the channel

eroding material off of the centrally located flood delta.

Additionally, although the jetties have been sand-tightened, a

small portion of this increase may be due to sediment passing

through or over the jetties. Supplementary volumes were computed

for this area in an attempt to determine the sources of this

growth, and show that the major volumetric increase is due to the

attachment and molding by waves of the old ebb shoal onto this

portion of Bird Island. During a field investigation in May

1991, this shoal had developed a significant scarp and appeared

to be experiencing erosion due to currents and tidal flow.

62. The dominant direction of littoral drift is to the

northeast. With the frequent drift reversals, there still does

not appear to be a significant building up the east fillet. If

47

the jetties were acting as a barrier to sediment supplying the

western end of Waties Island, a larger accretion in the east

fillet and along would be observed. Aerial photography and

supplementary volume calculations indicate that the buildup of

the inner shoal within the jetties is mostly due to migration and

attachment of a portion of the abandoned ebb shoal. Some of this

accretion may be due to wind-blown sand or sand passing from the

east fillet through the east jetty; however, this amount is not

significant enough to be the major source of sediment for the

inside shoal.

63. Examination of volume calculations and hydrographicsurveys shows that the ebb tidal delta appears to be slowly re-

building off of the tip of the east jetty. This shoal is not

yet apparent in the aerial photography, and ranges in depth

between 8- to 12-ft below MLW.

Jetty Scour and Channel Migration

64. Sinfa the jetties were constructed, the channel has

meandered and migrated relative to the constructed project

channel. Scour holes have formed along the west jetty and at the

east jetty tip (Figure 18), possibly due to the migrating

channel. The scour hole along the west jetty has been documented

to run within 50 ft of the toe of the structure to a depth of

25 ft MLW for approximately 2,000 ft (US Army Engineer District,

Charleston 1990). The scour hole at the tip of the east jetty is

also approximately 20 to 25 ft deep. Comparison of bathymetric

contour maps (Appendix E) shows that these scour holes began to

develop just after construction was completed. A deep area on

the order of 25 to 30 ft also exists further back in the inlet

throat near the shoal on the inner side of the east jetty. This

scour could possibly be the relict inlet gorge or due to the

confluence of the two bifurcating channels that feed the inlet

(Kjerve et al. 1979).

65. The SAC is monitoring the erosion and slope steepening

at these scour locations in order to evaluate the condition of

48

and potential risk to the structures. A stability analysis was

completed for the west jetty in February 1990. The results

indicated an average existing slope of 1 vertical on 2.5

horizontal, with a computed factor of safety of 1.7. The

required factor of safety is 1.5; corresponding to a minimum

acceptable slope of 1 vertical on 2 horizontal. If increased

erosion towards the jetty occurs, remedial measures will be

required to insure the integrity of the jetty structures (US Army

Corps of Engineers 1990).

49

JULY 1988 BATHYMETRY

CONTOURS IN ft.DATUM IS MLW

-1-u

0)

is- SCURf2

F-- - 0

-u1

Figure 18. Locations of scour at the Little River Inlet jetties

50

PART IV: RECOMMENDATIONS

Dredaed Material Disnosal ontions

66. The primary objectives of this analysis were tosummarize beach and nearshore response to the Little River Inlet

navigation project and assist SAC in developing disposal plansfor maintenance material to be dredged from Little River Inlet.

67. From the most recent channel surveys, adequate

navigable depths exist in the inlet; however the channel hasmigrated significantly. Based on depth alone, there does notappear to be a critical need for dredging operations within theinlet. If dredging of the inlet does proceed, several

alternatives are available for disposal of the dredged material.

A. Beach nourishment for western Dortion of WatiesIsland (ISRP Lines 49 to 53 corresondina to surveystations 81+00 to 121+00 West). This analysisdetermined that the periodic erosion occurring atthis section of shoreline was primarily caused byfrequent trapping and bypassing of material by HogInlet and seasonal fluctuations. Placement ofdredged material in this area is not an efficientmethod for disposal. Due to the dynamic nature ofthe area, the longevity and stability of thenourishment is at high risk. Due to the dominantnortheasterly transport trend, this material mayshift downdrift into the west fillet and mayultimately reenter the Little River Inlet channel.Also, dredging costs would be excessive since thisarea is approximately 2 miles to the west of thechannel.

J. Placement of material directly to the east of theietties on Bird Island. Although the direction oflongshore transport in the study area is variable,it is slightly dominant to the northeast. However,the east fillet section of the Bird Islandshoreline has in fact showed a net accretion overthe entire monitoring period, therefore bypassingof the material or disposal of dredged material inthis area does not appear to be necessary.Additionally, adding a significant quantity ofmaterial to this section of shoreline may effectthe natural processes at Mad Inlet.

g. Placement of material in the scour hole at the eastiettv ti and alona the inner side of thewestJetty, The SAC performed a similar operation after

51-. ,

the December 1983 dredging of the Little RiverInlet channel; however, the material did not remainin the scour hole for very long. This option wouldbe a temporary solution to the scour hole problem;but, would not have great longevity and could causeproblems with shoaling in the channel.

. A redirection or modulation of flow throuah thechannel. The deep area that exists adjacent to theinside Jetty shoreline of Bird Island couldpossibly be a factor in the channel meandering inthat direction, and then swinging back along thewest jetty. Several alternatives may exist forusing the dredged material in an attempt toredirect the channel and alleviate scour along thewest jetty. Measurement of currents within theinlet system was conducted in May 1991, andanalysis of this data would be required before thisalternative could be fully defined. Inlethydrodynamics may be used to evaluate a more stableposition for the channel.

q. Stockgilina of the material. The dredged materialcan be stored in the sand dike areas for futureuse.

68. Stockpiling the material inside the jetties on the westside of the inlet (in the sand dike area) is the recommendeddisposal alternative. This analysis has concluded that there isno immediate need for beach nourishment due to project-relatederosion. Since a hydraulic pipeline dredge will be used for thisoperation, material can easily be pumped into this area andstored for future use if it should ever be required. Thepotential effects of a dredging operation on the inlet system'sstability is further justification to stockpile the sand andcontinue monitoring the project. This aspect is under additionalinvestigation in Phase II of this analysis.

Continued Monitorina Efforts

69. Additionally, this analysis examined if any actionshould be taken to open the weir sections of either Jetty. Dueto the relative balance in the fillet and shoal system, there donot appear to be any apparent benefits from uncovering either ofthe weirs at this time.

52

I

70. Continued monitoring of the project at a minimum level

is recommended to better define the long-term equilibrium

response to the jetty construction. Monitoring should include

annual beach profiles, annual aerial photography coinciding with

the beach surveys, and periodic structural inspections and

hydrographic surveys of the inlet. Continuation of the LEO

program at the three sites in the vicinity of Little River Inlet

is not recommended. Ten years of LEO data have already been

collected, providing an adequate database for this type of

information.

71. In addition to routine project monitoring, the

collection of wave gage data would improve the accuracy of

longshore transport information. Tidal current monitoring and

delineation of the inlet hydrodynamics will aid in defining the

dynamics of the channel migration and scour problem.

Continued Analysis

72. Subsequent discussions between SAC, CERC, and U.S. Army

Engineer, South Atlantic Division representatives have indicated

that the channel migration and jetty scour problems are important

project concerns relative to dredging and nourishment operations.

Additional analyses of the post-jetty thalweg evolution and

stability, relative inlet hydrodynamics, and jetty scour have

been recommended and approved by SAC.

73. Phase II of this analysis is to perform a

reconnaissance level review of the inlet thalweg stability, and

develop recommendations for an inlet maintenance and/or

monitoring plan which will assist with the proposed dredging of

Little River Inlet. These recommendations will attempt to

minimize dredging requirements and maximize inlet stability, in

order to reduce or prevent scour-induced damage to the jetties

due to natural thalweg migration. The field investigation of

tidal currents at Little River Inlet and a side-scan sonar surveywere conducted in May 1991. Results of these analyses will be

available in a subsequent report.

53

REFERENCES

Anders, F. J., Reed D. W., and Neisburger, E. P. 1990."Shoreline Movements: Tybee Island, Georgia, to Cape Fear, NorthCarolina, 1851-1983," Technical Report CERC-83-1, Report 2, UsArmy Engineer Waterways Experiment Station, Vicksburg, MS.

Birkemeier, W. 1984. "A User's Guide to ISRP: The InteractiveSurvey Reduction Program," Instruction Report CERC-84-1, US ArmyEngineer Waterways Experiment Station, Vicksburg, MS.

Brown, P. J. 1977. "Variations in South Carolina CoastalMorphology" in Beaches and Barriers of the central South CarolinaCoast. D. Nummedal (ed).

Corson, W. D., and Resio, D. T. 1980. "Yearly LittoralTransport Statistics for Murrells Inlet and Little River Inlet,"US Army Engineer Waterways Experiment Station, Vicksburg, MS.

Davies, J. L. 1964. "A Norphogenic Approach to WorldShorelines," Zeit. fur GeomorDh., Vol. 8, pp. 127-142.

Davis, R. A. Jr., and Hayes, M. 0. 1984. "What is a WaveDominated Coast?" In: Hydrodynamics and Sedimentation in WaveDominated Coastal Environments, B. Greenwood and R. A. Davis,eds., Vol 60.

Douglass, S. L. 1991. "Simple Conceptual Explanation of Down-drift Offset Inlets," Journal of Waterway. Port. Coastal. andOcean Enaineerina. American Society of Civil Engineers, Vol. 117,No. 2.

Ebersole, B. A., Cialone, N. A., and Prater, M. D. 1986."Regional Coastal Processes Numerical Modeling System: RCPWAVE-ALinear Wave Propagation Model for Engineering Use," TechnicalReport CERC-86-4, US Army Engineer Waterways Experiment Station,Vicksburg, MS.

Farrell, S. C., and Sinton, J. W. 1983. "Post-Storm Managementand Planning in Avalon, New Jersey,* Proceedinas. Coastal Zone

Fitzgerald, D. N. 1988. "Shoreline Erosional-DepositionalProcesses Associated with Tidal Inlets," in Hydrgdyn= ics andSediment Dynamics of Tidal Inlets, ed. D. G. Aubrey and L.Weisher, Springer Verlag.

Fitzgerald, D. N., Hubbard, D. K., and Nummdal, D. 1978."Shoreline Changes Associated with Tidal Inlets Along the SouthCarolina Coast," Prceedinas. Coastal Zone '78, American Societyof Civil Engineers, San Francisco, CA.

54

Hanson, M. and Knowles, S. C., 1988. 'Ebb-Tidal Delta Responseto Jetty Construction at Three South Carolina Inlets,' inHydrodynamics and Sediment Dynamics of Tidal Inlets, ed. D. G.Aubrey and L. Weisher, Springer Verlag.

Hayes, M. 0., Hulmes, L. J., and Wilson, S. J. 1974."Importance of Tidal Deltas in Erosion and Depositional Historyof Barrier Islands," Abstracts with Programs. 1974 AnnualMeetina. Geological Society of America. Miami, FL.

Hubbard, D. K., Oertel, G., and Nummedal, D. 1979. "The Role ofWaves and Tidal Currents in the Development of Tidal InletSedimentary Structures and Sand Body Geometry: Examples for NorthCarolina, South Carolina, and Georgia," Journal of SedimentaryPejtrolM . Vol 49, pp 1073-1092.

Jensen, R. E. 1983. "Atlantic Coast Hindcast, Shallow Water,Significant Wave Information,' WIS Report 9, US Army EngineerWaterways Experiment Station, Vicksburg, MS.

Kjerve, B., Shao, C. C., and Staper, F. W. Jr. 1979. "Formationof Deep Scour Holes at the Junction of Tidal Creeks: AnHypothesis," Marine GeoloMv. Vol. 33.

Pope, J. unpublished. "Longshore Transport Trends in theVicinity of Little River Inlet, South Carolina," US ArmyEngineer Waterways Experiment Station, Vicksburg, MS.

Pope, J.. 1991. "Ebb Delta and Shoreline Stabilization -Examples from the Southeast Atlantic Coast," Proceedings.Coastal Zone. '91. American Society of Civil Engineers, LongBeach, CA.

Schneider, C. 1981. "Littoral Environment Observation 'LEO'Data Collection Program," CERC Coastal Engineering Technical Aid81-S, US Army Engineer Waterways Experiment Station, Vicksburg,MS.

Schneider, C., and Weggel, J.R. 1980. "Visually Observed WaveData at Pt. Mugu, California," Proceedinas. 17th InternationalCoastal Enaineerina Conference. American Society of CivilEngineers, Sydney, Australia.

Seabergh, W. C., and Lane, E. F. 1977. "Improvements for LittleRiver Inlet, South Carolina,' Technical Report H-77-21, US ArmyEngineer Waterways Experiment Station, Vicksburg, MS.

US Army Engineer District, Charleston. 1971. Little River InletBrunswick County. North Carolina and Horr County. SouthCarolina. Survey Report on Naviaation. Charleston, SC.

55 V,

US Army Engineer District, Charleston. 1977. Little River InletNorth Carolina and South Carolina Naviaation project.GeneralDesian Memorandum. Charleston, Sc.

1990. Little River Inlet Navigation Project. LittleRiver Inlet. North and South Carolina. Letter Report of Post-HugoDamaae Assessment". March, Charleston, SC.

US Army Engineer Waterways Experiment Station. unpublished."Littoral Transport Rates at Murrells and Little River Inlet,"Transmittal letter to South Atlantic Division, Vicksburg, MS.

Ward, D. L., and Knowles, S. C. 1987. "Coastal Response to WeirJetty Construction at Little River Inlet, North and SouthCarolina," Coastal Sediments '87. American Society of civilEngineers.

56

APPENDIX A:

BEACH PROFILES

S

APPENDIX A: BEACH PROFILES

1. Beach profile data was obtained from SAC periodically

and entered into the Interactive Survey Reduction Program (ISRP).

The ISRP is a Fortran program developed by CERC (Birkemeier 1984)

which permits interactive reduction, editing, and plotting of

field survey notes and the correction of previously entered data.

The primary output from ISRP is a two-dimensional distance

offshore and elevation data file.

2. The actual baseline survey stations were incorporated

into an ISRP numbering system (Table A-i, Figure A-i). Theprofile data plotted in this appendix is labeled according to the

ISRP numbering system. The ISRP also assigns a survey number toeach survey date (Table A-2). For example, ISRP profile line 52,

survey number 10 corresponds to Sta 111+00, surveyed in April

1983. Table A-3 denotes a number of ISRP line numbers ofparticular interest.

3. The program STCKPL (Birkemeier, unpublished) was used to

plot the ISRP profile data on a VAX computer. The full length of

the survey (horizontal scale, 0 - 6000 ft) and a windowed section

(horizontal scale, 0 - 2500 ft) were plotted for each profile

line. The STCKPL program takes the data for each profile throughtime and plots each survey (solid line) with the preceding survey

(dashed line). The date is written to correspond with the end of

the second survey (solid line).

4. Profile data considered questionable or insufficient

were marked with an asterisk on the individual plots. Since

there was such a large amount of data, if an entire profile line,

portions of the line, or individual data points were considered

questionable, the data was removed from the analysis. No

smoothing was performed on the profiles. Since noisy fathometer

data was frequently encountered, the intention of not smoothingthe data was to average out the errors in the volume

calculations. This was considered a better alternative than

making erroneous assumptions of the smoothed profile.

A3

~7 i

Table A-1

Little River Inlet Beach Profiles

(East to West)

ISRP Baseline State Plane CoordinatesProfile No. t.t . Norh EastBearn

1 195+62 326,626.18 2,761,423.21 S 15010'25" E

2 145+62 325,367.46 2,756,597.52 S 15010'25" E

3 135+62 325,094.44 2,755,916.89 S 21051'25" E

4 125+62 324,497.41 2,755,125.62 S 31°10'15" E

5 115+62 323,977.29 2,754,271.53 S 3100'25" E

6 105+62 323,457.17 2,753,417.43 S 3120'25" E

7 95+62 322,937.05 2,752,563.34 S 31020'25" E

8 85+62 322,416.93 2,751,709.25 S 3100'25" E9 74+70 321,849.12 2,750,776.83 S 31020'25" E

10 65+62 321,376.69 2,750,001.06 S 31020'25N E

11 55+62 320,856.57 2,749,146.97 S 31020'25" E

12 45+67 320,339.13 2,748,297.27 S 31020'25" E

13 39+94 320,045.52 2,747,860.50 S 16023'00" E

14 34+94 319,904.49 2,747,386.81 S 16023'00" E

15* 32+50 319,835.67 2,747,152.71 S 16023'00" E

16 29+94 319,763.46 2,746,907.11 S 16023'00" E

17* 27+50 319,694.64 2,746,673.01 S 16023'00" E

18 24+94 319,622.43 2,746,427.41 S 16023'00" E

19* 22+50 319,553.61 2,746,193.32 S 1623'00u E

20 19+94 319,481.40 2,745,947.71 S 1603'00" E

21* 17+50 319,028.82 2,745,826.44 S 16023'00 E

22 14+94 318,956.60 2,745,580.84 S 1623'00" E

23* 12+50 318,887.79 2,745,346.75 S 16023'00" E

24 9+94 318,815.58 2,745,101.14 S 16023'000 E

25 8+00 318,760.86 2,744,915.02 S 16023'00" E

26 6+00 318,704.45 2,744,723.14 S 16023'00* E

27 4+00 318,648.03 2,744,531.26 S 16,23'00" E

28 2+00 318,591.62 2,744,339.32 S 16023'000 E

(Continued)

* Profile line deleted after October 1983.

A4

Table A-1 (Concluded)

ISRP Baseline State Plane CoordinatesilStation No. Nrth East

29 0+00 318,791.62 2,744,072.12 S 16023'00" E30 2+07 318,788.51 2,743,864.58 S 16023900" E31 4+15 318,785.41 2,743,657.03 S 1603'00" E32 6+23 318,782.31 2,743,449.47 S 16023'00" E33 8+30 318,779.20 2,743,241.92 S 16023'00" E

34 10+37 318,776.10 2,743,034.37 S 16023'00" E35* 12+97 318,772.27 2,742,774.93 S 16023'00" E

36 15+56 318,768.33 2,742,515.48 S 16023'00" E37* 18+16 318,764.46 2,742,256.04 S 16023'00K E

38 20+75 318,760.57 2,741,996.60 S 1603'00" E39* 23+35 318,756.69 2,741,737.16 S 16023'00" E

40 25+94 318,752.81 2,741,477.72 S 16023'00" E41* 28+54 318,748.93 2,741,218.27 S 16023'00" E42 31+13 318,745.05 2,740,958.84 S 16023'00" E43* 33+73 318,741.17 2,740,699.39 S 16023'00K E

44 36+33 318,737.29 2,740,439.96 S 16023'00" E45 41+51 318,729.53 2,739,921.07 S 16023'00" E

46 51+00 318,047.58 2,739,124.68 S 15002'25" E47 61+00 317,788.08 2,738,158.94 S 15002'25" E

48 71+00 317,528.58 2,737,193.19 S 15002'25" E49 81+00 317,269.08 2,736,227.45 S 15002'25" E

50 91+00 316,959.73 2,735,277.09 S 19015'08" E51 101+00 316,629.99 2,734,338.01 S 19015'08K E52 111+00 316,300.29 2,733,383.94 S 19015'080 E53 121+00 316,041.41 2,732,412.13 S 23057'46" E54 131+00 315,543.89 2,731,538.93 S 23057'46" E55 141+00 315,137.7 2,730,625.12 S 23057'46" E

56 191+00 313,665.14 2,725,869.06 S 21000'09N E57 241+00 311,837.27 2,721,215.36 S 22002'15" E

58 291+00 309,829.26 2,716,645.43 S 18013'27" E

* Profile line deleted after October 1983.

AS

Table A-2

Little River Inlet. SC

Beach Profile Survey Dates

Survey Date ISRP Survey Number

April 1981 2

July 1981 3

October 1981 4

January 1982 5

May 1982 6

July 1982 7

October 1982 8

January 1983 9

April 1983 10

July 1983 11

October 1983 12

January 1984 13

April 1984 14

August 1984 15

October 1984 16

June 1985 17

October 1985 18

January 1986 19

June 1986 20

July 1987 21

February 1988 22

July 1988 23

December 1989 25

A6

Table A-3

Notation of Atypical Profile Lines

ISRP Profile No. Descrition

1 Immediately adjacent to Tubbs Inlet

8 Immediately east of Mad Inlet

9 Immediately west of Mad Inlet

25-33 Immediately adjacent to and acrossLittle River Inlet channel and jetties

29 Little River Inlet channel centerline

55 Immediately east of Hog Inlet

A7

PROFILE LINE 1FIRST SURVEYSECOND SURVEY

30 APR 8115 JAN 84

15 JUL 81 . -

.. ..... 15 APR 84

.... . ...... IS AUG 84.......... 15 OCT 81

.... .......... 15 OCT 81

Q) 15JAN 82

> -- *15 MAY 82 ... 5JN8

.0 15 JUL 82 .. 15 OCT8B5

15 OCT 8215JN8

*15 JAN 83 15 JUN 86

20-

1015JL8

0 15~ I JUL 83

-E15 OCT 83 15 JUL 88

-20

-31........15 JAN 84 *Insufficient data

0 100 2000 3000 4000 5000 6000 0 1000 2000 3000 4000 5000 6000

Distance, ft

PROFILE LINE 2.............................. FIRST SURVEY

-SECOND SURVEY

-~3 .. APR 8. ~ 15 JAN 84

15 JUL801 .. 15 APR 84

---- *15 AUG 84

3i 15 CT 61*15 OCT 84

*15 JAN 82

15 MAT 82 \. *15 JUN 85

.*15 JUL 82 --- *15 OCT 85

- ... 15 OCT 82 .... 15 JAN 86

2 15 JAN 83 ... 15 JUN 86

0,*15 APR 83 --- 15 JUL 87

015 JUL 83 1s FEB 88

1 15 OCT 83 15 JUL 88

2015 JAN 84 *Insufficient data

0A W 20 0) 46 0O 6 1000 2000 3600 40100 50MZ 6000c. t1zz

A8

PROF1LE U?'E 3---FRST SUR~VEY-SECOND3 SURVEY

30 APR681 i5 JAN 841

15 JUL 8115 APR 84K15 OCT 81 15 AUG 84

*15 JAN862 .. 15 OCT 84

0 15 MAY 82 ... 1 JUN 85.0

C *15 JUL 82 ---- 15 OCT 85

> 15 OCT862 ~.... 15 JAN 86

u- 1JA8315 JUN 86

20.. *15 JUL 87'iS APR 63

15I JUL 63 15 FEB 88

-15 I OCT 83 15 JUL 88

-2 15 JAN 84 *Ins~ufficient data-30-1.

0 1000 2000 30400 5006 600 ;0 0 1000 2000 3000 4000 5000 6000

Distance. ft

PROFILE LINE 4

A FRST SU.RVEY-SECONDI SURVEY

30RPR 81 15 JA 84

415 JUL 81 ---- ~15 APR804

*15 AUG 84

15 OCT 81..

.. 5JN8 .... 15 OCT 84

>..15 MAY 82 . .. 15 JUN 85

15 JUL 82 ....A. .. 15SOCT 8S

- k . iS OT82 15 JAN 8615SJAN 83 -- 15 .JUN 86

'15 APR 83 --- *15 J 87

15 JUL 83 ~SFE8-o1

*15 OCT 83 is JUL 88-20

3015I JAN 84 *Insufficient data

0 2000= 3000 4000 5000 6000 0 1000 200 W00 4000 5000 6000

Distance, ft

A9

ROfILE LiNE 5---FIRST SURVEY

S ECOND SURVEY

*30 APR 81 .. 15 JAN 84

15~~*1 OCT8 s U 8415 \Ni 8215 APR 8W- .... 15 MAY 82 1sJUN 85

15 JUL 82 15 OCT865

15>8 15 JAN 86

..... 15 JAN 83 15 JUN 85

2015 APR 83 *5JL8

0 - 15 JUL 83 1S FEB 88 ,

210 15 OCT 83 *15 JUL 88-2 0J A 4 * I n u f f c i e n t d a t a

-30 iI A 4

0 1000 2000 3000 4000 5000 6000 0 100 2000 3000 4000 50 00 6000

PRORiLE LiNE 6............. FIRST SRVEY

* 30 APR 81K--S0 SVE

15 ANR 84

7.15 JUL 81 ... 15 APR 84

7: ~~~15 OCT 81 ... 1 m 8

15 JAN 8215 OCT 84

>15 MA Y 8 2 .. .1 5 J UN85

415 JUL 82 15S OCT85

i .. . 15OCTN82 15 i N . 86

.... ~1 5 86 810- 15P8 15 JUL 87

0 .... 15 JU L 83 15 FEB 88

15 OCT 83 1 UL8

-20-

-30 15 JAN 8,*Insufficien~t date

0 000 2000 3000 40 00 0 O 0 IO 0 4 0 5 00 6000

A10

PROFLE NE 7..... FIRST SURVEY

SEOND SURVEY

30 APR 81 15 JfN 84

15 JUL 81 15 APR 84

15 OCT 81 ... 15AUG04

*15 JAN 82 _'15OCT84

15 JUN 8

SR 15 MAY 82

. -. 15 JUL 82 ... 15 OCT 85

... 15 OCT 82 15 .JAN 86

15 JAN 83 15 JUN 86

201 15 APR 83 ---- *15 JUL 87

10-

0- 15 JUL 83 15 FES 8

-1015 OCT 83 15 JUL 88

15 JAN 84 *Inufficient data

0 1000 2000 3000 4000 5000 6000 0 1000 200 3000 4000 500o 6o

Distonce. ft

PROFL.E UNE 8FIRT..... ST SURVEYSECOND SURVEY

30 APR 81 15 JAN 84

15 JUL 81 ..... 15 APR 84

15 OCT 81 *15. ' AUG 84

-: '15 OCT 8415 JAN 82

15 JUN 85

15 MAY 8215JUL82 '15 OCT 85

15oct82 1 5T 86-W ... . _ 1s JAN 86i .

15 JAN 83 .. 15.JUN8620

-.... . 15 APR 83 --- " 15 JUL 87

0- 15 JUL 83 '15 FE8 88

-10.-20- 15 OCT 83 IS JUL 88

-30 'IS [AN R4 , ns. , , enN d40 1000 2000 40 W 00X 20 300 4 ,000 WW OO

D)Istonce, ft

All

I

PROFILE LINE 9. FRST SURVEY

-SECONDg SURVEY

30PR81

5 J..8. . .15 J N 81515 R 8415 OCT 81 11 AP5R 84

15 JAN 82 *15 OCT 84

15 MAY82 15 IJUN 85

--- 15 JUL 82 -15-- sOCT 85

15 OCT 82 15 JAN 86

15 JAN 83 15 JUN 86

20-

10 . .... 15 APR 83 15 JUL 87

o 15 JUL 83 15 FEB 88

~2j15 OCT 83 15 JUL 88_-

301 8 I*Insufficieft dgt6

0 1o= 200) 3000 4000 500 6000 0 1000 20o 3000 4000 5OO 6000

Distance, ft

PROFIL LIN 10---- FRT SURVEY

- SECON SURVEY

30 APR 81..... 15 ,JAN 84

15JU-815 JUL 81

15 APR 84

.-- ~i---", 1OCT 81 --- 15 AUG84

.. * 15 OCT 84

15 JAN82

is MAY e2 15 JUN~ 85- 15 OCT 85

15 JUL 82

15 OT 82 15 JN 86

15 JAN 83 15 JN 86

20

10 15 APR 83 15 JUL 87

0 15 JUL 83 15 rEB 88

-10 ' 15 OCT 83 15 JUL 88

-2030 Jist 84 *lwmPAfftciait data

0 1000 2000 3000 4000 WO0 6000 6 000 2 000 4000 O OO

Distance, ft

A12

tI

PROFRL LK( 11... FIRST SURVEY

-SECOND SURVEY

~30 APR 81 15 JAN 84

15 JUL 8 1 ... 15 APR 84

15 OCT 81 --- 15 AUG 84

... 15 JAN 82 -*---15 OCT 84

> ... 15 MAY 82 ... 5JUJN 05

<15 JUL 82 *15OCT 85

> ~15 JAN86A? 15 OCT 82 ..

15 JAN 83 ..*.... 15 JUN 86

201 15 APR 83

10,1 15 JUL 87

0 15 JUL 8315 FEB 88~A1 15 OCT 8315JL0

-20 0 15 JAN 84 *insufficent data

0 100 2000 3000 4000 50 600 0 W00 2000 31000 400 50 00 6000

Distance, f t

PROFRL UNE12..................... ...FIRST SURVEY

-SECOND SRVEY

30 APR 81 15 -Mt 84

15 JUL 81.......................15 APR 84

:5 OCT 8 5.W8

15JFAN82 t' a15 OCT 84

15 MAY 82 ---. 15 JUN 85

15 JUL 82....................*15OCT 85

15OCT 82 .... . 15 JAN86

15 JAN 83 ---- i48

20 ..........

10- 15 APR 83 15JU 8

0 15 . I JUL 83 15 FEB 88

-20

IS JN 84*Insufficilent date

0 1100 2000 35000 4000 W000 W000 0 000 2000 X 10 4000 5000 &i000

Distance, ft

A13

PROFLE LINE 13FIRST SURVEY

15JU81 .... .~ - SECOW. SRVEY

30 APR 81 .S 1JAN 84!

15 OCT 81 15I AUG 841

15 JAN 82 *15 OCT 84

>15 MAY 82 5-- JUN*85

15 JUL 82 15 OCT 85

15 OCT 82 15 JAN 86

20 1 5JAN 83 ~ 15 JUN 06

10 -15 APR 83 .-- .. 15 JUL 87

0 \15 JUL 83 1......8

-201 -. 15 OCT 83 15 JUL 88

-30 1 84, *Insufficient data

0 1000 2000 3000 4000 5000 6000 0 1000 2000 3000 4000 5000 6000

Distance. ft

4 PROFiLE UNE 14...FRST SURVEY- SECOND* SURVEY

30 APR8 B..... 15 JAN 84

15 JUL 8 . .. 15 R8

15JA 8 *15 OT8

>15 MAY 82 1.. .. IJUN8515 jUf\ 5 CT8LA 15 OCT 82 15 JAN 86

20~.1JAN8 15 JUN 86

15AR8 1IS JUL 87

15 JUL 8315E8

-2-15 OCT 83 1S JUL 88

115 84, *1.nsufficient data

PROLE UNE 15--- FIRST SURVEY

- SECOND SURVEY

30 APR 81

15 JUL 81

'-.. ' 15 OCT 81

*15 JAN802

15 MAY 82

•- .. 15 JUL 82

15 OCT 82

15 JAN 83

20 ..

10 1 5 APR 83

0 15 JUL 83

SIrsufficient data

O 1000 2000 300 400 50 z:00Distance, ft

PROFLE UNE 16... FIST SURVEY

*1*- ~... - SECOND SURVEY

30 APR 81 15 84

15 JUL 81 15 APR864

15 OCT 81 .15 AUG 84

1 .JAN82 .... 15OCT4

...... 15 MAY 82 .15 JN85

IS JUL 82 15OCT85

.W 15 OCT 82

15JO8 15 JAN86

... " ..., 15 JAN 83 ... 15 JUN 8620

10 15 APR 83

0 15 JUL 83 88

15 OCT 83 15 JUL. 88

-3 lq IA R4 I 1 1

1060 2000 36oo 4o00 5o o0 0 o= 2000 3000 4000 WOO OODistorce, ft

A15

PROF1LE LNE T7

FRST SURVEY- SECOND SURVEY

30 APR 81

15 JUL 81

..... 15 OCT 81

----........ 15 JANl 82

-S 15 MIAY 82

15 JUL 82

" 15.. i OCT 82

.15 JAN 83

20.

10 15A PR 83

0- 15 JUL 83

-10

-20-

-30 -1000 2000 3000 4000 5000 6000

Distance. ft

PROFE UNE 18

SECOND SURVEY

.0P8 ...... 15 JAN~ 84

15 JUL 81 - --- 15 APR804

15 OCT 81 .15 AUG 84

. . . JAN 82 15 OCTB4

.-....... 15.MAY"82 ---. ,,, . 15 AT 85

15 JUL 82 15 OCT 85

15 OCT 82 ..... . ......... 15 JON 86

15 AN 86

20- .15 JAN 8315 JlL 87

10 .. 15 APR 83

07 15 JUL 83 15 FEB 88

-10- S15 OCT 83 15 JUL 88

-208

-30 .... 15 JAN 84. *Insufficient data

0 000 2000 3000 4000 5o00 6000 0 looo 300 400 0Distance, ft

A16 j

PROFLE UNE 19..... FIRST SRVEY

- SECOND SURVEY

... 30 APR 81

*15 JAN 62

15 MAY 82

15 JUL 82

15 OCT82

15 JAN 8320

10 .15 APR 83

0 15 JUL 83

-10 15 OCT 83

-20-

*Insufficient data

1000 2000 3000 4000 5000 6000

Distonce, ft

PROFILE UNE 20..... FRST SURVEY

-SECOND SURVEY

15 JAN 84\.... 30 APR 81 ..

':- ... As PR 04

15 JUL 81

"15 OCT 81 .... 15AUG84

15 JAN 82 --- 15 OCT 84.15 JUN 85

. ~15 MAY 8215Or8

.15 O1T U5

•"15 JUL 82

15 OCT 82

15 JUN1 8615 JAN 83

20- -....

10, 15 APR 83 -.

0 15 JUL 83 15 FES 88

-10 *15 OCT 83 *15 JUL 88

-20 15 JAN 84 *Insufficient doat

-30 II0 1000 2000 3000 4000 W00 W000 0 100 2000 3=0 4000 5000 600

Distonce, ft

A17

PROF1E LINE 21.*. FRST SURVEY

SECOND SURVEY

...... 30 APR 81

15 JUL 81

.... 15 OCT 81

---- 15 JAN 82

.3 .... *15 MAY 82

15 JUL 82

U .... 15 OCT 82

15 JAN 83

20-

10 15 APR803

01 .. 15 JUL863

-20 15 OCT 83

300 1000 2000 3000 4000 5000 600

Distance, ft

PROFiLE UWN 22......................... FST SURVEY

-SECONDI SURVEY

... 30 APR 81 ... 15-4N 84

~15 JUL 81 15- PPR 84

15 OCT 81 is AG 8

15 JAN 82 ... 15 OCT 84

15 JUN8515 MAY 82

15 OCT 0s

W .. 15 OCT 82 ... ....... 15 JAN 86

. ~ ~ 1 2JAN e3 .*- 18

20- ..

0 .. 15UL8 JU 1F878

-10. 83 11 8

..-.. 15OCTL83isrBe

-20-

30- '6 ow 84,*Insgufficienlt dat a

0 OW0 2000 3000 4000 W00 6000 0 EICO 200 3000 400 W00 6000Distance, ft

A18

PROFILE UNE 23

---FIRST SURVEY-SECOND SURVEY

p..30RPR 81

15 JUL 81

*15 OCT 81

15 JAN 82

.2 **.15 MAY 82

0 *15 JUL 82

u-i .. 15 OCT 82

15 JAN86320.

10 . 15 APR 83

0 .. 15 JUL 83

-20- *15 OC0 8

-30 *Inlsufficient data0 000 2000 3000 4000 500 6000

Distanice. ft

PROFLE LWN 24...FIRST SURVEY

-SECOD SURVEY

30 AR BI15 JAN 84

..... 15 JUL 81

... .- 15 OCT 81 15 AUG 84

15 JAN 82 15 OCT 84

is itwl 85

...2. *15 MAY 8215 OCT 85

15SJUL 82

1S OCT 82' - 15 .. V 86.....

... .15 JUN 86

-- ------ 15 JAN 8320-

10. ... 15 APR 83 *15 JUL 87

0 15 JUL 83 15 JUI 88

-20 *15 OCT 83 1 L8

.3015 JAN 84 *Insufficienlt data

0 OW0 2000 3000 4000 5000 6000 0 %00 2000 3000 4000 500 600

Distance, ft

A1.9

{ PROFILE LINE 25-] --- FIRST SURVEy

-SECOND SURVEY

30 APR 81 15 JAN 84:

4j.1 JL8 15 APR 841

--- S1 OCT 8 1 ....... 5..I AUG 84'15 OCT 84

15 I JAN 82 ... 15JUN 85

--- 15 MAy82 -- 15OCT85

<1 U8 15 OCT 85~

~ 315 OrT 8215 JUN 86

20 15 JAN 83

10~''- <-15 APR 83 K 15 JUL 87

15 JUL 83 .. 15 FEB 88

-2 15 OCT 83 15 JUL 88

30 1 S IFIN R4 *Insufficient data

0 00 00 00 00 00 00 0 1000 2000 3000 4000 5000 8000astonce, ft

PROFILE UNE 30

----------------------------FIRST SURVEY

I .30 APR 81 15 JAN 84

- 15 JUL 81 5. I APR 81

I - - 15 OCT81i 15 AUG 84

15 OCT 8415 JAN 82

8 .-- 15 MAY 82 15 JUN -5

.3 ............1..JUL82

..... is. JULOC 8215OT 5

JP15 JAN83I JI 86

1l JUL 83 .15 JUL 86

.5.A.. . . .15.C.83.15 JUL 88

Dito-ce ft

A20

PROFILE LINE 31..... FRST SURVEY

-SECOND SURVEY~

130 APR 81 15 JAN 8i

15I JUL 81 15 APR 64'

I. 15 OCT 81 15 AUG 84

15 JAN82- 15lOCT 84'

.015 M Y82 ............ 15OCTN85

15OCTL82 5OT8

15 OC 825 JN 86

15 JAN863

---- 15 APR 83 15 JUL 87

115 JUL 83*...*- 15E8

-10 ........ 15 OCT 83 15 JUL 8-20. .... 15 JN 8-30I 150 JAN0 840 ft.1 1. 1000 2000 3000 4000 jfl EI3 88

I3D APR 81 15I JAN 84

15 JUL 81 15 APR 84

15 AUG 8415 OC 811I OCT 64

7 L, 15 JAN 82

15 MAY 82 .. 15 JUN 85

< .....-- --.15 JUL 82 15OCT 85

15 JAN 86

........ 1 OCT 82LU 15 JUN 86

15 JAN 83

15 APR 83- . . . 1JU8

20-10..., .. ... 15 FEB 88

-10-' 15 OCT 83 Is JUL88e

-20- 15 JAN 84-3 0 1060 2000 3000 4000 5000 600& 0 00 3000 4000 5000 0

Distarxe, ft

A21

PROFILE LINE 33---- RST SURVEYI - SECOND SURVEY

30 APR 81 15 JA' 84!

15 JU 81 ..-. I1 APR 811

.... 15 OCT 81 1 u 4

--- ..... ........ ...... 15 OCT 61...i U841

15 JAN 82 1 C

IV15 MAY 82 15 JUN85

C: 15 JUL 82 15 OCT 85

1 15 JUN 86

15 JAN 83-~ . .15 JUL 87

20 -iI ~15 APR 83

20i 15 JUL83 15 FEB 8

-jr 15 OCT 83

-20JS 1 *Insufficient data

0 1000 200 04000 5000 6000 0 l00( -000 3000 4000 5000 600

Distance. ft

I ~PROFILE LINE 34

FiRST SURVEYI - SECOND SURVEY

30 APR 81 .15JN8

~ . ... *15 APR 84IS JUL 81

15 OCT 81 . 5U815 OCT 84

i3-I.. ~15JAN ~ 15J28

15 MA 82 .1....JUL82. 5 N8

15 OCT 82 1

~ 1.. -. .. 15 JUN 86

I ... 15 JAN 8315 JUL 87

20 ~ 15 APR 83

101 15 JUL 83 - .. 5E8

-10 ....... 15 OCT 83 1s JUL. 882015 JAN 84 *Insufficienit d&t&

0 1000 2000 3000 406 5f0 60 0 1000 2000 3000 4000 5000 6000Distance. ft

A22

PROFILE UINE 35... FIRST SURVEY

-SECOND SURVEY

30 APR 81

15 JUL 81

15 OCT 81

-15 JAN 82

> 15MAY 82

- 15 JUL 82

-V.. ...... 15 OCT 82

- 15 JAN 83

-15 APR 83

20 - - 15 JUL 83

-10- 15 OCT 83-20- *Insu~fficient data-30. II

0 1000 2000 3000 4000 5000 6000

Distonc-e, ft

PROFILE LINE 36j.. FIRST SURVEY-SECOND SURVEY

*,30 APR 81 .. 15 JAN 84

-15 JL81 15. SAPR 84

*. 15 OCT 81 15 AUG 84

..... 15 OCT 84

............. . 15 JAN 82

.. .. . ..... 5 AY 82 ----- N ---...... 5 JN 85

15 JUL 82 15 OT 85

...... 15 OCT 82 15 JAN 86

15 JAN 83 15 JUN86

15 APR893 15 lJUL87

20 .......

1015 JUL8:3 15 FEB 88

0.

-0.....15 OCT83 "1 5 jL 88

-20- 15 JAN 84 *Insufficienit data

0 1000 2000 300 4000 5000 6000 0WO 30 4000D 00 600

Distom,e ft

A23

PROFILE LINE 37... FRST SURVEY

-SECOND SURVEY

30 APR 81

* 15 JUL 81

15 OCT 81

15 MAY 82

>8.. 15 JUL862

Q 15 OCT 82

.6)15 JAN 83

15 APR 83

15 JUL 83

20-10- 15 OCT 83

-0-

-20--30

0 1000 2000 3000 4000 5000 6000EDstonce, f t

PROFILE LIN 38.......FRST SURVEYSECOND SURVEY

'30 APR 81 .....- 1S JAN 84

- 15I JUL 81 .15 APR 84

15 OCT 81 * 15UG 84

3.15 JAN 82 15 OCT 84

>15 MAY 82 15 JJ'N 85

15 JUL 82 15 OCT 85

-- 15 OCT 82 15 .ftN 86

- 15 JAN 83 15 JUN 86

15 APR83 15 .JL 87

20. .5JL8 .15...0

101 U 3 5FB8

0. -

-U - 15 OCT 83 'is JUL 88

230 .' .A 4 Insufficient data

0 1000 2000 300 4000 W00 6000 0 0 2000 3000 400 5000 6000,Distance. ft

A24

PROFiLE UNE 39--FIRST SURVEY

SECOND SURVEY

-. -30 APR 81

15 JUL 81

15 OCT681

15 JAN 82

15 MAY 82

< ~15JUL 82

> 15 OCT 82

15 JAN 83

15 APR 83

20 15 JUL 8310

-0 is OCT 83

-20 *Insufficient dt

-300 100 2000 3000 4000 5000 6000

Distance, ft

PROFLE UNE 40.......................... FRST SURVEY3 - SECONDJ. SURVEY

3APR 81 15 JAN 84

15 JUL 81 ..... 1. 5PR 84

1581*... 15 AUG 84

15 OCT 84

... ... '15 JAN 8215 JN85

15 MAY 82 ...

15 JUL682 15 OCT805

15 JWWN 86

Uj.............. . is OCT 83

*15 JAN 83 1 J.8

-20 5 JA 84 Insufficient "ato

0 1000 2000 3000 400000

Distonce ft

A2 5

PROFiLE LiNE 41

---FIRST SURAVEY

SECOND SURVEY

-. ...- 30 APR 81

15 JUL 81

15 OCT 81

15 JAN 82

15 MAY 82

15 JUL 82

..- .*15 OCT 82

20-i ... 15 JAN 83

101 . 15 APR 83

0 15 JUL 83

-10. 15 OCT 83

-20-

-300 1000 2000

30 sto

40t 560 6000

PROFUL LK 42

---FF- SUVYi - SE-Z SULRVEY

.. 30 APR 81 15 JAN84

15 JUL 81 -.... 15 APR 84

I .15 OCT 81 15. AU~G 84

15 JAN 82 .... 5C8

15 MAY 82 .15 JUN 8S

15 JUL 82 .15 OCT 85

w -, 15 OCT802 1s JAN 06

I. .15 JAN803 15 JUN86

20 ...... .. . ...

105I APR 83 ........... 15 JUL. 87

01 . 15 JUL 8315F88

-10-15 OCT 83 15 JUL 88

-20- ....

I % A F14*Insufficient data,

PROFLE UNE 43... FIRST SURAVEY-SECOND SURAVEY

30 APR 81

-- *15 JUL 8 1

- .. 15 OCT 81

15 JAN 82

..... .... SMAY 82

15 JUL 82

.... 15 OCT 82

15 JAN 83

20 .. ... ,15 APR 83

01 15 JUL 83

15 OCT 83

-20 1*insu~fficient data

0 000 2000 3000 4000 5000 6000

EDstonce. f t

PRORiLE LINE 44

.... FIS SURAVEY

-SECOND SURAVEY

.. .... 30 APR 81 ,.. .15 JAN 84

.... 15 JUL 81 15 APR 84

*15 AUG 84

3: ~ 15C8JAN 82 . . . ... 15 OCT 84

>15 MAY 82 15 JUN85

I JUL 82 ............. 15OCT 85

0 .... ....UL8 15 JAN8810 ~15 OCT 832 L8

20

15 JAN 84 *nufcetdata-30 I. - T

0 0 0 MO WO 4000 O WO 0 X Z00 W6000 2000 6000

A27

PROMlE UNEA5---FRSr SUR~VEY-SECOND SURVEYp

......... 30 APR 81 .... .. 15 APR 84

*15 JUL 81 *-..15 RUG 84

-- *150OCT 81 ... 15 OCT 84

*15 JAN 82 *..15 JUN 85

*1 MA 82-.. 15 OCT 85

I 15 JUL 82 15 JAN 86

-15 JUL82

LLJ5OT2 . 15 JUN86I

20115 JAN 83 -- 15 JUL 87

10- 15 APR 83 i1s EB 88115-OCT-8 15 JUL 88

-2 15 JAN 84

-3115 APR 84 *Insufficient data

0 1000 200 3000 4000 5000 600 0 D0 2000 3000 4000 5000 6000

EDstance, ft

PROFLE UNE 46...FRST SURVEY

-30 15ANR82 1 15 APR 85

1I 00, 821 . .~ .. * 15 OCT 84

... 1JUL 82 V~15 AM85

15OCTY82 15 OCT 85

bi15APRL83 15 JAN 88

15 OCT 83 15 JUL886

1 . 5 JAN 84 ..

-201..

31i APR 84 Insufficienit data

-0 106 26 ~ ~ -: ~ o200 300 4000 5MW 0 00m -1 000 6000

A28

PROFILE LJNE 47----- FRST SURVEY

-SECONDE SURVEY

....... 30 APR681 - .15 JAN l. .. .15 JUL 81 \...15 APR 84 i

15 OCT 81 ... 5A08

15 JAN682 iS. 1OCT684

isAY 82 15 JUN685

.... 1........5 JUL 82 15 OCT 65

15 OCT682 "---- 15 JAN6

15 JAN 83\.- 15 JUN 86

101.... 15 APR 83 15 JUL 87

0- 15 JUL 815 FEE 66

-1-15 OCT 83 *1 5 JUL 88

30:15 JAN 84 *Insufficient data

0 200 ~:~Z3 1~ ~ 3 *C'~ Dstace, ft ~5060

-SECOND SURVEY

30 APR 81 \15 JAN 84I ...... 15 JUL 81 .. 15 APR864

*15 RUG8415 OCT 81

15 OCT 84- ..- 15 JAN b2

> 5 MAY 82 .... 15JJN805

15 JUL 82 ... .15 OCT 85

15 OCT 82 . 15 JAN 06

15 JAN 83 15 IJUN 86

20

10 15 APR 83 15.. .. IJ.L 87

0 Is 5JUL863 15 FEB 88

-20-15 OCT 84 isafic~i Jdata

-20

0 W E3 00 3000 4000 5000 6000 0 WOO 200 30 400 5000 6W00Distci'. ft

A29

PROFILE UNE 49FIRST SURVEY

- SECOND SURVEY

30 APR al 15 JAN 84

J....U. . 3 JL . 15 APR 84

15 OCT 81 --- " 15 AUG 84

15 JAN 82~ ---- 15 OCT 84

15 MAY 82 -. JUN85

. 15 JUL 82 15OCT85

... 15 OCT 82 ... 15 JAN 86

15 JAN 83 *15 JUN 86

20-

10. 15 APR 83 *15 JUL 87

0- 15 JUL 83 15 FES 88

15 OCT 83 15JUL 68

-20:

15 JAN 84 -insufficient data

0 1000 2o0o 3o00 4000 5000 6000 0 1000 20o 3000 4000 5000 6000

Distance. ft

.1 PROFILE LINE 50. .....FRT SURVEy

- SECOND* SURVEY

30 APR 81 15JAN 84

- 15 JUL81 s- 1APR84

15 OCT 81 s R15UG 84

15 JAN 15 OCT 84

A. 15 MAY 82 --- 15 JUN 85

15 JUL 82 ---- 15 OCT 85

iSJ !5CT 82 V _ Is 1JAN866

15 JAN 83 15 J.N 86

20APR 83 .... *15 JUL 87

10-

0. -* 15 JUL803 is FES 88

-10- 15 OCT 83 15 JUL 8

-20-

-30 15 JAN 84 *Insufficient date

0 000 2000 3000 4000 50 6000 0 o O00 3000 40O 00 o0Dstoncm ft

A30

PROFILE LINE 51... FRST SURVEY

-SECOND SURVEY

30 APR 15 JAN 84

15 JUL 81 15 APR 84

15 OC 81 .-. 15 AUG 84

15 JAN82 . -15 OCT 84

>15 MAY8B2 --- 15 JLPN 85

C 15 JUL 82 ... 15 OCT 85

.... T15\OCT.82 15 JAN806

15 JAN 83 .... 15 JUN 86

20- 15 APR 83 .-. *15 JUL 87lo-.

015 JUL 83 15 FEB 88510 *15 OCT 83 15 JUL 8815 JAN 84 *Insufficient data

0 1000 2000 3000 4000 5000 6000 0 1000 200 3000 4000 5000 6000

Distance. f t

PROFILE UNE 52.........................FRST SU.RVEY

-SECOND SURVEY

30 APR 81 15 JAN 84

15 --- i JUL 81 .. 15 APR 84

15 OCT8 *15 AUG 84

1. I JAN 82~ --- a15OCT804

is5MAY 82 51R8

15 JUL 82 .. 15 OCT 85

15 OCT 82' 5.48

15 JAN 83 15 JLRN 86

20-

10 ... 15 APR 83 a 15 JL 7

0- *15 JUL 83 15 FE8 88

-10- ~15 OCT 8315JL 8-20

-015 JAN 84 *Insgufficient data

O X)00 MO0O -000 40 00 5000 6000 0 1000 2000 3000 40M 5000 6000DiStrce ft

A31

PROfiE LIE 53FPST SURVEY

-SECOND SURVEY

30 APR 81 \ -. 15 JAN 84

... .. 15 JUL 61 ---- 15 APR 84

15 OCT 81 --- *15 AUG 84

15 JAN 82 *15SOCT 84

>SA8 15 JUN 85

1 5JL2 . 15 OCT 85

15 OCT 82\- 15 JAN 86

5 JAN 03 . 15 JUN 86

20

1015 APR 83 .. *15 JUL 87

o -. . . . . . 15 JUL 83 15 FEB 88

15 OCTB83 15 JUL 88

-20-

3015 JAN 84 -ins ufficient data

0 I000 2000 3000 4000 5000 6000 0 1000 2000 31000 4000 5000 6000

Dstonce. ft

PROfiLE LINE 54

.. . . . . . . . ..FRST SURVEY

-SECONDE SURVEY

30 APR 81 K..15 JAN 84

15 JUL 81~\ 15 APR 84

.1......5sOCT861 *1S AUJG84

15 JAN 82 *15 OCT 84

>15 MAY 82 1..5I JUN 85

1 5JUL 82 5OCT 85

-- 15 OCT 82 IS JA 86

5 JAN 83 ---- 15 .JN 86

20

0 . .... 15 APR803 -....... .... 15 JUL 87

O .. 15 JUL 83 IS FEB 88

20 .... 15 OCT 83 15 JUL 88

-3015 JAN 84 *Inlsufficienlt data

0 1=0 2000 3000 4000 5000 6000 0 1000 200 300 4000 W00 600

Distonce. ft

A32

PROFILE UNE 55..... FIRS SURVEY

-SECOND SURVEY

30 APR 81 15 JAN 84

... .... 1 JUL 81 .- - - - - - 15 APR 84

15 OCT 81 *15 AUG 84

15 JAN 82 --- "15 OCT 84

15 AY 82 15 JUN 85

15 JUL 82 15 OCT 85

ISJ15OCT 82 .... 15 JAN 86

- .-. 15 JAN 83 15 JUN 8620

.. 15 APR 83 15 JUL 87

0l 15 jUL 83 15 FEB 88

15 OCT 83-20 . ....... 15 JUL 88

15 JAN 84o 1000 200 300 4600 500 6000 o 6 206 3oDo 400 , 50 6o0o

Distonce, ft

PROFILE LINE 56

-- SECOND SUVE

I 30 APR 81.. 15 APR 84

15 JUL 81 .. " 15A UG 84

15 OCT 81 15 OCT 84

15 JUN 8515 JAN 82 -.

>........... 15 OCT 85.< 15 MAY 82

15JUL 82 15 JAN 86

15 OCT 82 '1 8J" ....... 15 JUN 86

15 JAN 83 --21 JA 3 15 JUL 87

015 APR 83 *15 FEB 88

0- *15 JUL 83 15 JUL 88-10-

15 OCT 83

IS APR 84 *Insufficient data

o ,oo0 20 0 4000 5000 8000 0 Vo 20 300 400 500' 6060Distance, ft

A33

*1 PROFILE LINE 57FRST SURVEY

-SECOND SURVEY

j.-30 APR 81 15 APR 84

--- 15 JUL 81 --. 15 AUG 84

I15 OCT 81isOT8--- 15 JAN 82 --- 15 JUN805

> . 15AY 82 -. 15 OCT 85

o0 . 15 JUL 8215A80

W. 15 OCT 82 15 JUN 86

15 JAN 83 .. "*15 JUL 87

201

i15 APR 83 is. F5 EB 88

015 JUL 83 15 JUL 88

-20 15 OCT 83

I *-Insufficient data

-304i 19 APR 84, 110 20 0 4

0 1000 2000 3000 4000 5000 6000 0 10 200 30 400 5000 6000Distorce, ft

PRoniLE LINE 58............................FVST SURVEY

-SECONDO SURVEY

15 AUG 84

15 JUL 81isRG8

15 OCT81 ... 15 OCT804

-C ~15 JUN8515 JAN 82

15 MAY 821 5C8

-15 JUL 82>~. 15JN8

Li15 OCT8:2 --- 5 JUN86

15 JAN83 Is j.L e7

20

10 15 APR 83 15 FEB 88

0. 15 JUL 8315J 8

-10-15 OCT 83

-20--30 APR i A *Insufficient data

0 1000 MOO0 3000 4000 500 m00 0 WO0 2000 3000 4000 500 00

i~Sto~ce. ft

A34

APPENDIX B:

POST-HUGO BEACH PROFILES

APPENDIX B: POST-HUGO BEACH PROFILES

1. The post-Hugo survey data (December 1989) was plottedseparately since the survey data was collected after an extremeevent, as opposed to a representative survey of beach response tothe jetties.

2. Similar to the data in Appendix A, the post-Hugo profiledata was entered into the Interactive Survey Reduction Program.After correction of suspected erroneous points, the data wasplotted using a Turbo-Pascal program. Comparison plots were madeusing the February 1988 survey; except for ISRP Profile Lines 1,8, 9, 25-28, 45, and 56 which were compared with the July 1988survey (due to insufficient data in the February 1988 surveys).Profile Line 46 was dropped because of questionable data on thepost-Hugo survey.

B3

4 -

25 I

20 JLittle River Inlet, SC

Profile Line I15 15 July 88

15 Dec 8910

5

-5

-10

-15

-20 - Erosion

-25 - Accretion

-30 n 1 1 i0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Distance from baseline (Ft)

25 1 1 ,

20 Little River Inlet, SCProfile Line 2

15 - 15 Feb 88A 15Dec 89

10

IS 5

-IO

0

-5

-10

-15

-20 Erosion

-25 Accretion

30 II I I I

0 500 1000 1500 2000 250 3000 3500 4000 4500 5000

Distance from baseline (ft)

B5

25

Little River Inlet, SC20

Profile Line 315 - 15 Feb 88

15 Dec 8910

" 5

0

-5U

-10

-15

-20 U Erosion

-25 9 Accretion

-3 0 .t I I - I

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Distance from baseline (ft)

25 f f I I I I

20 Little River Inlet, SC

Profile Line 415 15 Feb 88

15Dec 89

510 .t

-10

-50

-1 -

-20 - Erosion

25 - E Accretion

-30

-30 I m , f , 1 , I ' ' I

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Dimnce from bseline (ft)

B6

25

20 - Little River Inlet, SC

Profile Line 515 -15 Feb 88

10 I.15 Dec 89

S5

S 0

S-5

-10

-15

-30 I

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000Distance from baseline (ft)

25

20 Little River Inlet, SC

Profile Line 615____ 15 Feb 88

15 Dec 89

10

S0

0

-15

-300 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Distance from bineine (ft)

B7

25

20 Little River Inlet, SC

Profile U~ne 715 _____ 15 Feb 88

15 Dec 8910

S 5

-5

0

-15

-20 -Erosion

-25 - QE Accretion

-30 1 1 1 1 I

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000Distance from baseline (11)

25 1

20 ~Little River Inlet, SC

Profile Line 915 _____ 15 July 8

15 Dec 89

10

-5

-0

-5

-30 I

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Distanc hin bein (Ft)

B8

20 - Little River Inlet, SC

Profile Line 915 -15 July 88

15 Doc 9910

I~-5

-10

-15

-30 7EMI Io

300 500 1000 1500 2600 2500 3000 3500 4000 4500 5000Distane fnom baseline (Ft)

251 1111

20 Little River Inlet, SCProfile Line 10

15 15 Feb 8 -15 Dec 89

10

-50

-10

-15

-25 -Accretion

0 500 1000 1500 2000 2500 3000 3500 4000 4500 500Distance foe baseline (ft)

B9

25 , , ,

20 Little River Inlet, SC

Profile Line 1115 15 Feb 88

15 Dec 8910

0

.5

-10

-15

-20 - Erosion

-25 - Accretion

-30 1 i 1 t 1 I i 1

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000Distance from baseline (fi)

25 i 1 1 i i 1

20 Little River Inlet, SC

Profile Line 1215 15 Feb 88

15Dec 89

10

-5-0

-20 - Erosion

-25 * Accretion

-30 -I - - I - II

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000Distance from baseline (ft)

B1O

25Little River Inlet, SC

20

Profile Line 1315 15 Feb 88

15 Dec 8910

0

-5

-20 * Erosion

-25 Accretion

-30 1 - i j - I I I I0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Distance from baseline (ft)

25 I

20 Little River Inlet, SC

Profile Line 1415 15 Feb 88

15Dec 89

10

5

-5

-10

-15

-20 Erosion

25 Accretion

-30 I I I I I I - --

0 500 1000 1500 2000 2500 3000 3500 4000 4500 500

Distance from baseline (fit)

BIl

25

20 - Little River Inlet, SC

Profile Line 1615 -15 Feb 8815 Dec 89

10

5

-10

-15

-20 - Erosion

-25 - E Accretion

-30 I I I I I ,0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Distance from baseline (ft)

25 1 1 1

20 Little River Inlet, SCProfile Line 18

15 15 Feb 88

15 Dec 8910

5

2 0

-5

-10

-15

-20 - Erosion

-25 - Accretion

-30 I I

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Distance from baeline (ft)

B12

25 -T F

20 Little River Inlet, SC

Profile Line 2015___ 15 Feb 88

15 Dec 8910

5

0

-15

-25 - Accretion

-30 1 1 1 I

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Distance from baseline (ft)

25

20 Little River Inlet, SC

Profile Line 2215 ____ 15 Feb 8

15 Dec 89

10

-5

-0

-5

-30 1 1 1 - I

0 300 1000 1500 2000 2500 3000 3500) 4000 4500 500Distance from baseline (ft)

B13

25

20 -Little River Inlet, SC

Profile Line 2415 -____ 15 Feb 88

15 Dec 8910

S 5

0

;~-5

-10

-15

-20 -Erosion

-25 - E] Accretion

-30 1 1 1 1 1 I

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000Distance from baseline (ft)

25 1 1 1

20 Little River Inlet, SCProfile Line 25

15 15 July 815 Dec 89

10

-5

-10

-15

-25 -Accretion

-30 1 1 1 1 1 I

o 500 1000 1500 2000 2500 3000 3500 4000 4500 500Distance from baseline (Pt)

B14

25Little River Inlet, SC

20Profile Line 26

15 ~15 July 8815 Dec 89

10

S 0

0

-15

-20 Erosion

-25 Accretion

-30 I

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000Distance from baiseline (Ft)

25 1 1

20 Little River Inlet, SIC

Profile Line 27150____ 15 July 88

15 Dec 8910

5

0

S-5

10

-15

-25 - M Accretion

.30 ' - I III I II0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Distance fnxm bawlans (Pt)

3154

25

20 - Little River Inlet, SC

Profile Line 2815 -15 July 88

15 Dec 89

10

-5

-25 Accretion

-300 500 1000 1500 2000 2500 3000 3500 4000 4500 500

Distance ftrm baseline (Ft)

25

20 Little River Inlet, SC

Profile Line 2915 15 Feb 88

15 Dec 8910

S 5

0

-10

-15MWM6-dib

-20 kroionW W

-3 I - II II

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000Distance from baseline (ft)

B16

25

20 - Little River Inlet, SC

Profile Line 3015- 15 Feb 88

15 Dec89

to 0

0

-5

-10

-15

-25 -Accretion

30 'I I I I I I I

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000Distance from baseline (ft)

25 1

20 Little River Inlet, SC

Profile Line 3115 ______ 15 July 87

15 Dec 8910

0

-5

-10

-15

-301 I I I - I I I

0 500 1000 1500 2000 2500 3000 3500 4M0 4500 50WDim=nc ftc. bueline (Pt)

B17

25

20 Little River Inlet, SC

Profile Line 3215 -15 Feb 88

15 Dec 8910

5- -

0

S-5

-10

-15

-30 I

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000Distane from baseline (ft)

25 1

20Little River Inlet, SCProfile Lime 33

15 15 Feb 8815 Dec 89

10

S-5

-10

-15

-30 - I I - L - ---

0 500 1000 1500 2000 2500 3000 3500 4000 4500 50MDistane from bmlie (ft)

25 -------

Little River Inlet, SC20

Profile Line 345 11 Feb 88

15 Dec 89

10

50

-15

-20 - Erosion

-25 - Accretion

-30 ' I I I I0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Distance from baseline (fl)

25 I 1 I I I I

20 Little River Inlet, SC [

Profile Line 365 15 Feb 88

15Dec 8910

45- 5

0

1-50

-15

-20 1 Erosion

-23 Accretion

-300 500 1000 1500 2000 2500 3000 3500 4000 4500 00

DUie from bueine (ft)

B19

25

20 - Little River Inlet, SC

Profile Line 38015 15 Feb889

15 Dec 89

10

0

-5

-10

-15

-20 -Eosion

-25 -Accretion

-30 1 I I I II

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000Distance from baseline (11)

25 1 1

20 Little River Inlet, SC

Profie Line 4015 ____ 15 Feb8

15 Dec 8910

5

-5

-10

-15 -

-20 - Efosi

-25 -Arto

0 500 1000 1I00 2000 2500 3000 3500 400D 4500 50WDistanc frmm bmlin (ft)

320

25

Little River Inlet, SC20

Profile Line 4215 15 Feb 88

15 Dec 89

05

-10 -- S

" -5 -s

-15

-20 n Erosion

-25 Accretion

-30 1 -i i i I0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Distance from baseline (ft)

25 1 , , , , 1

20 Little River Inlet, SC

Profile Line 4415 15 Feb 8815 Dec 89

10

-5

0

-10

-15 " ,

-20 mE wasion

.25 IIAccreton

-30 I I I I0 500 1000 1500 2000 2500 3000 3500 4O0 40 5000

Disomee fiun baseine (ft)

B21

.4

25Little River Inlet, SC

20

Profile Line 4515 15 July 88

15 Doc 9910

S0

1-5

-10

-15

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000Distane from baseline (Ft)

251 1

20Little River Inlet, SC

Profile Line 4715 ________ 15 Feb 815 ~15 Dec 89

10

-5

-10

-15

-25 Accretion

-30 -- -- I

0 500 1woo 1500 2000 2500 3000 3500 4000 4500 50Distnce from buedine (ft)

B22

25 I I # I

Little River Inlet, SC20

Profile Line 48- 15 Feb 881 15Dec 8910

5

-10

-20 - Erosion

-25 - Accretion

-300 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Distance from baseline (ft)

25

20 -Little River Inlet, SCProfile Line 50

15 - 15 Feb 8815Dec 89

10

0

" -5

-10

-15

-20 - Erosion

-2 Accretion

-30 I I I I I I

0 500 1000 1500 2000 250 3000 3500 4000 4500 50Disime frmn ballne (ft)

B23

!4

25

Little River Inlet, SC20

Profile Line 5115 -___ 15Feb 88

15 Dec 8910

S 0

;i -5

-10

-15

-20 - Erosion

-25 - Accretion

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000Distance from baseline (ft)

251 1

20 ~Little River Inlet, SC

Profie Line 52i15___ 15 Feb 88

15 Dec 910

5

-0

-5

-30

0 Soo 10OW 1500 2000 2500 3000 3500 4000 4500 5000Distuwm trai baseline (ft)

B24

25

Little River Inlet, SC20

Profile Line 5315 15 Feb 88

15 Dec 8910

0

-5

-10

-15

-20 I Erosion

-25 - Accretion

-30 I I I I I I

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Distance from baseline (ft)

25 1 1 1 1 1 1

20 Little River Inlet, SCProfile Line 54

15 15 Feb 8815 Dec 89

10

-5

-10 "

-15

-20 Erosion

-25 Accretion

-30 - I I I I I I I I

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Dktc from bseline (f)

B25

-1

25 ,Little River Inlet, SC

20Profile Line 55

15 15 Feb 8815Dec 89

10

S 0.2 .-5

-10

-15

-20 - Erosion

-25 Ei Accretion

-30 I I I I I I0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Distance from baseline (ft)

25 1 1 1

Little River Inlet, SC20

Profile Line 5615 15 July 88

15 Dec 8910

".2-0 "-5

-10

-15-20 - Erosion

-25 -Accretion

-30 1 1 - I I i i0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Distance from baseline (Ft)

B26

25

20 -Little River Inlet, SCProfile Line 57

15 ______ 15 Feb 8815 Dec 89

10

5

0

> -5

-15

-20 - Erosion

-25 -Accretion

-30 I

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000Distance from baseline (ft)

B2 7

APPENDIX C:

CUMULATIVE SHORELINE CHANGE

APPENDIX C: CUMULATIVE SHORELINE CHANGE

1. Mean Low Water (MLW) and Mean High Water (MHW) shoreline

position data from the beach profile surveys were used to

calculate shoreline change for each profile line. Changes were

calculated between successive surveys through time, and were then

added cumulatively. Because of the short time period between

surveys, shoreline change was examined in units of feet, and not

feet/year. Again, profile data that was considered insufficient

was removed from the analysis.

2. The data was plotted as cumulative MHW and MLW shoreline

change for each ISRP profile line. Shoreline change was computed

for ISRP profile lines 2 through 24 and 36 through 55. Profiles

between 25 and 35 were omitted since they are taken along the

channel between the jetties, or are immediately adjacent to the

jetty, and do not provide an accurate measurement of natural

beach change.

3. Some of the plotted results in the west fillet area show

large variations in the shoreline. These are generally evident

of the construction of the west sand dike and of the old ebb

shoal welding onto this portion of the beach. The profiles

adjacent to Little River, Tubbs, Mad, and Hog Inlets also tend to

show large and erratic changes.

C3

-!

Profile Line 2

Cumulative Shoreline Change (ft)700

400300200100

0-100 - '

-200-300

J 400 J J

a a a a a a a a a a

8 8 8 a 8 a 8 a 91 2 3 4 5 a 7 a 9 0

Survey Date

-MLW --- MHW

Profile Line 3

Cumulative Shoreline Change (ft)700So00500400300-200100

0-100-200-300

a a a a a a a a an n n n n nl nn

a a a a a a a a 91 2 3 4 5 6 7 a 9 0

survey Date

-- MLW ---- MHW

C5

r

Profile Line 4

Cumulative Shoreline Change (ft)700600So0

400300200100

00

-200-300

J J J J J Ji J J J Ja a a a a a a a a an n n n n n n n n

8 a 8 a 8 8 8 a 91 2 3 4 5 6 7 a 0 0

Survey Date

MLW --- MHW

Profile Line 5

Cumulative Shoreline Change (ft)700600500400300200

0 e

-100-200-300-400 it,,, i i i i t u tlt iii 11 i~ i~i l i l|ut111 i llilt|lit, It til llti|liil 111

J J J J J J J J J Ja a a a a a a a a an n n n n n nn

a a 8 8 a 8 a 8 a 91 2 3 4 6 6 7 8 9 0

Survey Date

-MLW --- MHW

C6

Profile Line 6

Cumulative Shoreline Change (t)700Soo-!Soo -500

400300200 -

100 -

-100-200-300-400 IIIIIlllllllllllllllllllllllllllllllllllll 11111111111 111111111 111 II j Ig, IIIIIIIIIII11111111IIII[I I

J J J J J J J J J J1

a a a a a a a a a an n n n n n f n n n

a a 8 a 8 8 8 8 a 91 2 3 4 5 6 7 8 9 0

Survey Date

-MLW .... MHW

Profile Line 7

Cumulative Shoreline Change (ft)700600

500400300200100 .. . . . . . . . .

1 0 - - .- -.. - - - ---- - - - - - --- ~ -

-100-200

• 400-400 112111111 lLIIIll 11111 i1111111111111l111111111 iji ii LIlii 11111lili i 11111 ill 1111f t t qul/ ip p pg pl

J J J J 4 J J J J Ja a a a a a a an fl n n n ft n

8 8 a a 8 91 2 3 4 5 6 7 a 9 0

Survey Date

-MLW "--MHW

C7

Profile Line 8

Cumulative Shoreline Change (t)TOO

600 -

500

400

200-200 -1 0 0 " "0 ", . . , ~ ~-- -------- o .o -- " ° "

-100 -" . .." ,- 2001

-300-400 '1

J J J J J J J J J JA A A A A A A A A AN N N N N N N N N N

a a a a a a a a a 91 2 3 4 5 6 7 a 9 0Survey Date

-MLW --- MHW

Profile Line 9

Cumulative Shoreline Change (ft)700600500

400300

200100

- 100 " " P'" ""... ......

-100 -

-200-300-400 111i111111 II 111111 1111 I11 111111111 111 Illilll|~l~l| lllll||lll 1111111 ||L|||l111111111 11|1 |||l ||| I|*

J1 J J J1 J J1 J J J Ja a a a a a a a a an n n n n n n n n n

8 a 8 8 a a a 91 2 3 4 5 a 7 5 9 0

survey Date

-MLW --- MHW

C8

Profilie Line 10

Cumulative Shoreline Chang* (It)700600-500-400-300200100

-100-200

-800

a a a a a a a a a afn n ntf t f t f n

1 2 3 4 5 6 7 a 9 0Survey Date

-MLW --- MHW

Profile Line 11

Cumulative Shoreline Change 00t700Go00500400300-200100 ------- -

-100-200--800-

a a a a a a an ii n nt t nt n nft

II a a a a a 4 a 91 2 3 4 5 0 7 6 3 0

Survey Date

MLW --- MHW

19

Profile Line 12

Cumulative Shoreline Change It)700

500400300200

0

-100-200-300

ii n n n n ni v i i v

1 2 3 4 5 a 7 a 9 0survey Date

-MLW -- MHW

Profile Line 13

Cumulative Shoreline Change (ft1)

To

400300200

0210 5

-200 W

-300dF

Prof Ile Line 14

Cumulative Shoreline Change (ft)700G00500400300200[

10

-100-200-300-400

a a a a a a a a a an n n n n n n n no a a a a a a 81 2 3 4 5 6 7 a 0 0

Survey Date

MLW -- MHW

Profile Line 16

Cumulative Shoreline Change (ft)700Goo-500400300200

10 -

-100-200-300F

a a a a a a a a a an n n n n n n ni

a a a a a a a a a 91 2 3 4 5 6 7 a 9 0

Survey Date

MLW --- MHW

cil

Profile Line 18

Cumulative Shoreline Change (ft)7006S00

500

400300

200

100

-100-200-300

J J J J J J J J J J

a a a a a a a a a an n n f n n n

a 8 8 8 8 8 91 2 3 4 5 6 7 a 9 0

Survey Date

MLW --- MHW

Profile Line 20

Cumulative Shoreline Change (ft)700600500400300200100 - -- --------------

0

-o100-200-300-400 ..................

gait] 1uu1 puulupuhh~lllhhll~hh hu~l

J J J J J J J J J J

a a a a a a a a a an n n ni n nI n n n

a 8 a a a a a a 91 2 3 4 5 0 7 S 9 0

Survey Date

-MLW "-" MHW

C12

Profile Line 22

Cumulative Shoreline Change 0t)700800-500400300200100

0-100-200-300-400

a a a a a a a a a an n n n n n n n n n

6 a a a a a a a a 91 2 3 4 5 6 7 a 9 0

Survey Date

- MLW

Profile Line 36

Cumulative Shoreline Change (ft)700600500400300 -

100 Se11nd Dike Consatruction --- --

0-100-200-300-400

a a a a a a a a a an n n n n n n n n n

a a a a a a 6 a a 91 2 3 4 a a 7 8 9 0

Survey Date

-MLW --- MHW

C13

Profile Line 38

700

600500

400

300 -

200100 Sand Dike Construction ---. ----- ------

0-100-200-300

J J J J J J J J J Ja a a a a a a a a an n n n n l n n n n

a S 8 a 6 8 8 a 91 2 3 4 5 6 7 8 0

Survey Date

MLW --- MHW

Profile Line 40

Cumulative Shoreline Change (ft)700600

500 -400300200 -and Dike Con-t-u---n .. . ..------------------- -----

0-100-200-300-400 .1iiiili11 111111 ill ltiii i 1111 l ll ll llllllhlillillllllllll i ii 11111 IIitl ttli tlil 111lii lll

J J J J1 J J J J J Ja a a a a a a 'a a an n n n f n n n n8 a a1 2 3 4 5 6 7 a 9 0

Survey Date

-MLW --- MHW

C14

Prof ile Line 42

Cumulative Shoreline ChancA* ftt)700600500400300200 -Construction100

0-100-200-3800

a a a a a a a a a an n n n n n n n n n

8 8 a 8 8 8 8 8 a 91 2 8 4 5 6 7 a 9 0

Survey Date

MLW -- MHW

Profile Line 44

120Cumulative Shoreline Change (ft)

11001000 - - - ----------

900800 - -.

700600S00 -- --

400800200100

0-100 *

-200 NotS. Difference in YAi cl

-800 ...

n n n n n t i n n n

a a a S a 9 S a a 9.1 2 3 4 6 6 7 a 9 0

Survey Date

-MLW --- MHW

C15

Profile Line 45

Cumulative Shoreline Change (ft)700

200300

100

0-100 F- 100

-200

-300

-400 .....I MiUiI Il1 I iift i ll1 t Mlili t tlll1l111 1 t till llt iL1I11I1 lI1L1I1

J J J J J J J J J Ja a a a a a a a a

1 -1 - n n n

a 8 8 8 a 8 92 3 4 5 6 7 8 9 0

Survey Date

- MLW --- MHW

Profile Line 46

Cumulative Shoreline Change (tt)

700

600

500

400

300 ,

200

-100

-200

-300

J J J J J1 . J .1 Ja a a a a a a

n n n n n I n

8 8 8 a a a a a1 2 3 4 5 6 7 a 9 0

Survey Date

MLW --- MHW

C16

r

Profile Line 47

Cumulative Shoreline Change (ft)

70060

500

400

300200-

1 0 ....- -.-- - -

-100

-200

-300

-400 .. .......... 111............ .....ii ......1ii 1

J J J J J J J J J Jn n n n n n n n n

a 8 8 8 8 8 8 8 8 91 2 3 4 5 6 7 8 9 0

Survey Date

MLW - MHW

Profile Line 48

Cumulative Shoreline Change (ft)700

800500

400

300200

10 -~ ------~-100

-200

-300-400 [iittllJ it [t ll li uu u tutlii i tilll l I ittJlJItu it upi tttupll ii iltlilil~11Jl

J J J J J9 J9 J9 J J J

8 8 8 8 8 91 2 3 4 5 6 7 a 9 0

Survey Date

MLW --- MHW

C17

Profile Line 49

Cumulative Shoreline Change (ft)700600500

400300200

-----------------------------------100

-100-200-300

J J J1 J J .1 J J Ja a a a a a a a a a

fl n n fl n n n I

8 8 8 8 8 8 8 8 8 91 2 3 4 5 8 7 8 9 0

Survey Date

- MLW -. MHW

Profile Line 50

Cumulative Shoreline Change (ft)700600

600

400300200100

-100-200-300

J J J J J J J J J1 J

a a a a a a a a a an n n n n n n n n

8 8 8 8 S 8 8 S 8 9

1 2 3 4 a 0 7 0Survey Date

MLW --- MHW

C18

Profile Line 51

Cumulative Shoreline Change (ft)700

00500

400

300

200100 .

-O0

- 400J J J J J J1 J J J J

a a a a a a a a a an n 1 n n n n n n

8 8 8 8 6 8 91 2 3 4 5 6 7 a 9 0

Survey Date

-MLW .... MHW

Profile Line 52

Cumulative Shoreline Change (ft)700600500400300200

0-100-200-300

J J J J J J1 J J1 J Ja a a a a a a a a a

n n n n n n n n i

8 a a a a a a a 6 91 2 3 4 5 6 7 a 9 0

Survey Date

MLW -- "MHW

C19

Profile Line 53

Cumulative Shoreline Change (ft)700600

500400300200100

0--100-200-300- 4 0 0 ........... ...........

J J J J1 J J J J J .a a a a a a a a a a

n n n n n n n n n I

8 a 8 8 8 8 8 8 91 2 3 4 5 6 7 8 9 0

Survey Date

MLW .... MHW

Profile Line 54

Cumulative Shoreline Change (ft)700600 I

500

400300200100

0 ~ z -------~ -- -

-100-200-300

I40 I~i | I Hia111 1111i1i Ii I Ill I I i II~ it ll t 111|iii11111iiii 1111i1 |li 1i1il1l 1l11i1 li11111 | ll t 1i~

-400 F ...............J J J J J J J J J Ja a a a 1 a a a a a

n n n h n n n n n

8 8 8 8 a a a a a 91 2 3 4 5 6 7 S 9 0

Survey Date

MLW --- MHW

C20

Profile Line 55

Cumulative Shoreline Change (it)700

600-400-300200

0-100-200-300

J 400 J Ja a a a a a a a a a

n n n n n n n n n n

8 a a a a a 8 a 91 2 3 4 6 6 7 a 9 0

Survey Date

MIW MHW

C21

APPENDIX D:

ABOVE-DATUM VOLUME CHANGE

APPENDIX D: ABOVE-DATUM VOLUME CHANGE

1. The program VOLUME-PC was used to calculate above- and

below-datum volume changes along each profile line. VOLUME-PC is

a program for processing beach and nearshore survey data on an

IBM compatible microcomputer, and is a complementary program to

ISRP-PC and ISRPSORT.

2. The "shoreline" is defined as the horizontal intercept

of the profile data with the datum (in this case, MLW). Although

the program actually computes changes in cross-sectional area,

changes are presented as volumes based on a uniform length of

beach (yd3/ft). These volumes were then linearly interpolated by

multiplying over a normalized distance interval of 250 ft to

produce a volume in y& over that "cell."

3. Similar to the shoreline change plots, volume changes

were calculated between successive surveys for each profile line

through time. Plots were made for cumulative above datum volume

changes. Below datum volume changes were computed; however, due

to insufficient offshore data on a large number of profile lines,

these results were not considered in the final analysis.

4. Again, some of the plotted results in the west fillet

area show dramatic increases in volume, which are generally

evident of the construction of the west sand dike and of the old

ebb shoal welding onto this portion of the beach. The profiles

adjacent to Little River, Tubbs, Mad, and Hog Inlets also tend to

show large and erratic volume changes due to dynamic inlet

morphologies.

D3

L ___ _

Profile Lie 2

Cumulative Above MLW Volumbe Change (Ya3)s0

40-

30-

20

10

0

-10

a aa a a a a a a a

1 2 3 4 5 6 7 S 9 0Survey Data

Profile Line 3

Cumulative Above MLW Volum Change (yd3)50

40

30-

20

10

0

-10

-20 1 H ! IIII IIIIIIH H H H H H

a a a aa a an a 'nai 8 8 a 0 a 9

1 2 3 4 5 0 7 4 SSurvey Dabe

Ds

Profile Line 4

Cumulative Above MLW Volume Chang* (yd3)60

40

20

20

-10

-20

I n I I n t It It I

a a a a a a a a a 91 2 3 4 5 a 7 a 9 0

Survey Date

Profilie Line 5

50Cumulative Above MLW Volume Change yd3)

40

30

20

10

-10

-20J J J . J

nt n a ii pi nt nt

a a a a a a a a B

1 2 3 4 5 7 S 9 0Survey Data

D36

Profile Line 6

cumulative Above MLW Volume Change (Yd3)50

40

30

20

10

0

-10

-20

n a, a a a a a n

S a a a a a a 8 91 2 3 4 5 a 7 6 9 0Survey Date

Profilie Line 7

Cumulative Above MLW Volume Change (yd3)50

40

30

20

10 -......

0

-10

a a 11 a a S a a a 9

1 2 a 4 a e 7 a 9 0survey Date

D7

Profile0 Line 8Cumulative Above MLW Volume Change (yd3)

50

40

30

20

10

0

-10

J 20J JA A A A A A A A A AN N N N N N N N N N

8 8 8 8 6 6 a a a 91 2 3 4 5 S 7 6 9 0

Survey Date

Profile Line 9

sCumulative Above MLW Volume Change (yd)

40

30

20

10

0

a a a a 'a 'a a a an n ii n n ni n n n n

S I U S 6 91 2 3 4 a 6 7 a 9 0Survey Date

Profile Line 10

Cumulative Above MLW Volume Change (ydS)60

40-

30o

20

10-

0

-20

a a a a a a a a a a

8 a 8 a 6 8 8 a 91 2 3 4 5 6 6 9 0

Survey Date

Profile Line 11

Cumulative Above MLW Volume Change (yd3)s0

40

20-

20

S a a a a 4 a a a 9

2 3 4 5 6 7 8 S 0survey Date

D9

Profile Line 12

Cumulative Above MLW Volume Change (Yd)50

40-

30

20

10

0

-10

S a a a a a a aI I I I n n .

8 8 a 8 a a a a a 91 2 3 4 5 6 7 a 9 0Survey Date

Profile Line 13

Cumulative Above MLW Volume Change (ydS)50

40

30-

20

10

0

-10

n n ii n n n n

8 S S a a a a 91 2 3 4 5 6 9 0Survey Date

D10

Prof Ile Line 14

cumulative Above MLJW Volume Change (ydS)50

40-

30-

20

10

0

-10

aa a a a a a a a afi n n i n n ni

1 2 3 4 5 6 7 8 9 0Survey Date

Prof ile Line 16

5Cumulative Above MLW Volume Change (ydl)

40

30

20

10

0

-10

a a a a II a a a a 9

1 2 3 4 a a a 8 0Survey Date

Profile Line 18

sCumulative Above MLW Volume Change (yda)

40

30

20

10

0

-10

a a a a a a a a a an n n n f n n n n

a 8 a a 8 8a 91 2 3 4 5 6 7 a 9 0

Survey Date

Profile Line 20

Cumulative Above MLW Volume Change (yd3)50

40

30

20

10

0

-10

a a a a a a a a a 9

1 2 3 4 5 6 7 S 9 0Survey Date

D12

Prof Ile Line 22

Cumulative Above MIW Volume Change (Yda)

50

40-

30

20

10

o

-10

a a a a a a a a a an ii n n n n n n n

a a a a a a a 9 a 91 2 8 4 a 6 7 6 9 0

Survey Date

Profile Line 36

Cumulative Above MLW Volume Change (yd3)s0

40

30

20

10

0

-10

-20

a a a a a a a a a an n n n n n n IN IN ft

a a S 6 8 a a a1 2 3 4 5 S 7 a 9 0

Survey Date

D13

Profile Line 38

Cumulative Above MLW Volume Change fyda)120110100 S and90 - Dk

so-Construcetion70s050403020100 -r

-10 Note- Oitwano. In Y-Ax~s Seale-20

a a a a a a a a a an fi i n~ It fl n n n na 8 a a 8 a a a a 91 2 3 4 5 6 7 a 9 0

Survey Date

Profile Line 40

10Cumulative Above MLW Volume Chang* (0y3)

110100

90so - and70 -Construction

so-

2010

0-10 Note. Difference to Y-Axia seats

-20

a a a a a a a a a an n is n n is n is ns

1 2 3 4 S 0 7 8 9 0Survey Date

D14.

Profile Line 42

Cumulative Above MLW Volume Change (yda)120110;100

70so Sand50 Construction

40

3020100

-10 Note: Dllerence In Y-AxzI Scale

-20J J J J J J J J J Ja ai a a a a a a a an n fn n n i n n n

a 8 8 8 8 a 8 92 3 4 5 6 7 8 9 0

Survey Date

Profile Line 44

Cumulative Above MLW Volume Change (yd3)

s0

70

6o

50

40

s0

20

10

0"

-10 Nota- Dilfferenoe In Y-AxIs Scale

-20 ii I11$II ljl | ||i liii 1111111 11111111 $1.1 I Ill l i 111111i II I| lhll|ll 11111111i|111111i£11i111

J J J J J J J J J Ja a a a a a a a a an n n n n n If n n

a aO 8 a a 91 2 3 4 5 6 7 a 9 0

Survey Date

D15

Ir'I

Profile Line 45 1!

Cumulative Above MLW Volume Change (da)50

40

80

20

10

0

-10

20 liii 11111111.1 t t111 1| Illltllltlllll 1l11 i111 1lllll11111111111111 tI illi f 1111£I111 hihhhhhhh li l##

J J J J J J J J1 J Ja a a a a a a a a an n ii n n n n n

S 8 8 8 a 8 8 8 8 91 2 $ 4 5 6 7 8 9 0

Survey Date

Profile Line 46

Cumulative Above MLW Volume Chane (ydS)50

40

80

20

10

0

-10

J J J J J J J J J J

n a n n a a n n4 aa ai a a a 6 6 11 4 a

1 2 a 4 S 6 7 a 0 0Survey DOe

D16

Profile Line 47

Cumulative Above MLW Volume Change (yd3)

40-

80-

20

0 Z -

-10

-20 .......... .

a a a a a a a a a an ft n nt ft nt t nt f n

8 a a a 8 a a a 6 91 2 3 4 5 a 7 a 9 0

Survey Date

Profile Line 48

sCumulative Above MLW Volume Change (yd3)

40

30-

20

10

0

a a a a a, n on an1 2 3 4 7 9 0

survey Dows

D17

Prof Ile Line 49

sCumulative Above MLW Volume Change (yd3)

40-

20

-10

-20

a a a a a a a a a a

1 2 a 4 5 0 7 a 9 0Survey Date

Profile Line 50

Cumulative Above MLW Volume Change (yda)50

40-

20

10

0

-10

a a . a a a a 9

1 2 3 4 S 4 7 a 9 0Survey Dale

D18

Profile Line 51Cumulative Above MLW Volume Change (yd3)

5o

40

30

20

10

0-

-10

-20 Iiii ii l tilll IIll l llill 111iiliii l iii IIIIII1111 l l li llt 1111 ll 11llllllit1lll1

d1 J J J1 d J J J J Ja a a a a a a a a a

n I n n n It n n n n

S a a a a 8 a a 9

1 2 3 4 5 7 a 9 0Survey Date

Profile Line 52

Cumulative Above MLW Volume Change (yd)50

40

30

20

10

0 --10

-2l0 |II Ill ll 11 illlt llll lill I ll l li ltl tt |t|tllii LtltitTitL|i gi i iiit||iiggg gg g~iEl|g~l

J J J J J J J J J Jn a a n a n a a a aa aI a a a n 4 a a 91 2 3 4 5 0 7 a 9 0

Survey Date

D19

Profile Line 53

Cumulative Above MLW Volume Change (yd3)50

40

30

20

10

0 -

-10

-20 1i111i11 ll tllil 111111111111.11 I l ii 1l 11111 l IIlllillll~ Illilhll ||11ltliil~lll ll 111111

J J J J J J J J J1 Ja a a a a a a a a aI fn n n n ni

a8 8 a82 3 4 5 a 7 a 9 0

Survey Date

Profile Line 54

Cumulative Above MLW Volume Change (ydt)s0

40

30

20

"10

-20

J J J J J J J J J Ja a a a a a a a a an in fi ii n n n i A

1 2 a 4 9 5 7 a 0 0Survey Date

D20

-- -- m mmm, ia~il El lilll mm ml r~a.. mlmlmmm Iii

Profile Line 55

Cumulative Above MLW Volume Change (yda)50

40

30

20

10

0

-10

a a a a a a a a a a

n n n n n n n n n

a 6 S 8 a a a 6 91 2 3 4 5 a 7 6 9 0

Survey Date

Profile Line 55

5Cumulative Above MLW Volume Change (yda)

40-

30-

20

10

-10

-20 LWAILWU

a a a a a a a an n n ni ni ni ni n n

a 4 6 a a a a a a 91 2 S 4 5 e 7 a 9 0

Survey Date

D21

APPENDIX E:

BATHYMETRIC CONTOUR MAPS

LITTLE RIVER INLET, SCCONTOUR MAP

APRIL 1981 0

-200

-5

-10

SURVEY ASELINE

-15

-- 2

ATLANTIC OCEAN

E3

LITTLE RIVER INLET, SCCONTOUR MAP

MAY 19820

5 -20

-15-10

SURVEY BASELINE

05

-10

0 -20-10

ATLANTIC OCEAN

(20

E4

LITTLE RIVER INLET, SCCONTOUR MAP

JULY 1982

-20

-5

-106

-15

SURVEY BASELINE 0

-2

10(

ATLANTIC OCEAN

SCAr

lown * Im ,

---------

LITTLE RIVER INLET, SCCONTOUR MAP

APRIL 1983

0 -20

-5

1

-15

SURVEY BASELINE -- 20

-55

-0

-10 -15

ATLANTIC OCEAN

E6

LITTLE RIVER INLET, SCCONTOUR MAPJANUARY 1984

0 -1-20

-5

SURVEY BASELINE _1

-10

0 1

-5

-10

-15

ATLANTIC OCEAN

-20 SCALlow ie low am"

E7

LITTLE RIVER INLET, SCCONTOUR MAP

APRIL 1984(

-5-25

-5 -20

SURVEY DASEUNE

-5.

ATLANTIC OCEAN

E8

LITTLE RIVER INLET, SCCONTOUR MAP

JUNE 1985 0

-15

10

SURVEY BASEUNE -20

-5 -0 ,5

ATLANTIC OCEAN

E9

. ..... ..... ........

LITTLE RIVER INLET, SCCONTOUR MAP

JUNE 1986

-15

01

0 --5

-- 10

-- 20

ATLANTIC OCEAN

E10L

LITTLE RIVER INLET, SCCONTOUR MAP

JULY 1988

-15u

-1ii

15VE BAELN -i5 /2

Ell

LITTLE RIVER INLET, SCVOLUME POLYGONS

SURVEY RASEUNE

EAST FLOOD .:~TFIL

WEST FLOOD

AETLATIR OEA

. . . . .. . . .

.... .. ..

LITTLE RIVER INLET, SCCONTOUR MAP

JULY 19870

10

-55

-20

SURVEY ASELINE

0

--10 r~-5

-20

-10

-1 ATLANTIC OCEAN

E13

LITTLE RIVER INLET, SCCONTOUR MAP

JULY 1988

-Su

SL*V~IV E4S5 E- I

SEB5ERT

E140

APPENDIX F:

NUMERICAL MODEL METHODOLOGY AND LONGSHORE TRANSPORT PLOTS

(Pages F12-F23 represent pre-project longshore transport plots,

1981 bathymetry; pages F24-F36 represent post-project longshore

transport plots, 1985 bathymetry; pages F37-F49 represent post-

project longshore transport plots, 1988 bathymetry.)

APPENDIX F: NUMERICAL MODEL METHODOLOGY AND LONGSHORETRANSPORT PLOTS

Selection of Wave Inputs to RCPWAVE Model

1. Selection of wave height, period, and incident angle to

define the wave climate in the numerical model RCPWAVE is crucial

to obtaining satisfactory results from the program. This

appendix describes the rationale used in this study for selection

of these criteria.

2. A wave hindcast study has been conducted for the US

coastlines through the Wave Information Study (WIS) for the 20-yr

period from 1956 to 1975 (Jensen 1983). Using barometric

information, the program determined both seas and swells at

three-hour intervals at several deepwater locations, then brought

the waves shoreward to the a depth of 10 m (32.81 ft). Aseparate nearshore station was determined for each 10-mi stretch

of shoreline along the Atlantic coast. Station A3108 is the

Atlantic coast nearshore station for Sunset Beach on the

northeast side of Little River Inlet (Figure F-i); inputs to

RCPWAVE were determined from WIS data for station A3108.

3. At each 3-hr interval, WIS provides the significant wave

height, period, and incident angle relative to the shore of both

the seas and the swell. Thus, for the 20 years of the study

there are 58,480 wave conditions for seas, plus 58,480 wave

conditions for swell, for a total of 116,960 wave conditions.

Because time and cost considerations dictate that only a limited

number of wave cases could be run through RCPWAVE, it was

necessary to select wave conditions that would produce

representative results.

4. A common means of selecting representative wave

conditions is to group the data into bands of wave height,

period, and angle, determine the percent occurrence of waves

falling within the bands, and select the midpoint of the band as

representative of those waves. For example, for WIS station

F3

LLr

0nuj C0

Mi 1eatV0

0 c

0, 0

4J tU

w .. 4

in

0 0%

-J4w 0

00

08 0*a L .4

P4.

A3108, 2.061 percent of the waves were predicted to have an anglebetween 30 and 59.9 degrees with a wave height between 0.50 and

0.99 m, and a period between 7.0 and 7.9 sec (Jensen 1983).

Information of this type has been compiled and is presented inJensen (1983) for the Atlantic coast WIS stations. This listingprovides data based on 6 ranges of wave approach angle, 11 rangesof wave height, and 10 ranges of wave period for a total of 660bands, with waves at station A3108 occurring in about one-thirdof the bands. This information may then be grouped into largerbands to reduce the number of wave conditions to input intoRCPWAVE.

5. While banding of this type is very useful for wave data,it cannot used for sediment transport calculations withoutbiasing the results. As an example, consider using the wavebanding to determine wave energy. As wave energy is a functionof wave height squared, using the midpoint of a band wouldunderestimate wave energy from the larger waves in the band.While wave energy from smaller waves would be overestimated,calculated energy for the band (assuming an even distribution ofwave heights within the band) would always be too low.

6. While it is possible to group wave data based on thesquare of the wave height to eliminate this bias, sedimenttransport is a function of the energy flux in the surf zone.This is considerably more complex than a simple function of waveheight squared, and includes a function of wave period and angleof incidence. Thus bias is induced in the sediment transportcalculations by banding of wave heights, periods, or incidentangles. As an added complication, banding typically assumes auniform distribution across the band, which will seldom be thecase in practice.

7. In an attempt to minimize the potential bias, analternate means of selecting the wave inputs to RCPWAVE wasemployed. The potential sediment transport for each of the116,960 wave conditions was determined using standard equations,assuming straight and parallel bottom contours. Wave conditionswere then determined that reproduced the average transport rates.

F5

Wave information was then grouped based on potential sediment

transport rather than wave height, period or angle. Selected

wave conditions were then entered into RCPWAVE to determine the

effects of the actual bathymetry in the area. In this manner a

reasonable number of inputs for RCPWAVE were determined while

minimizing any inherent bias.

a. The first step was to determine the potential sediment

transport for each of the 116,960 wave conditions using equations

in the Automated Coastal Engineering System (ACES) (Leenknecht

and Szuwalski 1990) and in the Shore Protection Manual (1984).

These equations solve for the energy flux factor at the surf zone

based on known breaking or deepwater significant wave conditions,

then determine the longshore transport rate based on an empirical

equation with the energy flux factor. Derivation of the

equations may be found in either of these references and will not

be repeated here, but the equations themselves are written below

for reference.

a. Energy flux factor based on breaking wave

conditions:

Pjw= (pg/16)Hb2Cgsin(2ab) (1)

b. Energy flux factor based on deepwater wave

conditions:

Pb - (pg/16)L]Cbsin(2ao) (2)

c. Longshore sediment transport rate:

Q - K Ph (3)

where P. is the energy flux factor, p is the mass density of

water, g is the acceleration of gravity, H. is the

significant breaking wave height, CO is wave group celerity at

breaking, a, is the angle of wave advance at breaking, H, is

the significant deepwater wave height, a. is the angle of

F6

deepwater wave advance, Q is the potential sediment transport

rate, and K is an empirical coefficient. In non-SSI units, K

is equal to 7500 (yd3-sec)/(lb-yr), P, is calculated in units

of (ft-lb)/(ft-sec), yielding potential sediment transport in

terms of yd3/yr.

9. Because WIS information is presented at a depth of 32.81

ft, equations 2 and 3 were used to estimate potential sediment

transport based on deepwater wave conditions. Snell's Law was

used to refract the wave conditions from 32.81 ft to deepwater

conditions, and the potential sediment transport rate was

determined for each of the 116,960 wave conditions.

10. To minimize bias which may be induced by the

bathymetry, seas and swell conditions were stored separately, and

wave conditions causing sediment transport to the left was stored

separately from wave conditions causing sediment transport to the

right. This created four main groups of data: seas left, seas

right, swell left, and swell right.

11. To reduce the number of RCPWAVE inputs to a reasonable

number, it was then decided to average the 20-yrs of sediment

transport information by month. As no banding of wave conditions

had been employed, the transport rates could be grouped or

averaged in any manner, but it was hoped that averaging by month

would provide seasonal information. Each month therefore

included wave conditions for that month from each of the 20 yrs

of data. Thus the WIS information was separated into 48 groups

(12 months times 4 main groups).

12. For each group of waves, a single wave condition was

sought to input into RCPWAVE. This was determined by finding the

average potential sediment transport rate for all wave conditions

in a group, then selecting a wave condition that reproduced the

average rate. The average potential transport rate was

calculated only from those wave conditions that produced sediment

transport. Wave conditions with a perpendicular angle of

incidence at breaking or with a wave height or period of zero

were excluded from the calculations.

F7

13. Rather than randomly select a set of wave conditions to

reproduce the average transport rate, it was preferable to select

a wave closely represented the actual wave conditions in each

group. Therefore, wave conditions in each group were averaged

for all wave conditions that produced a potential sediment

transport rate within ten percent of the average transport rate.

This "average wave" did not reproduce the average transport rate

for the same reasons that banding the wave data will bias the

transport rates. However, given the average wave period and

angle of incidence it was possible to adjust the wave height to

determine a "representative wave" that reproduced the average

potential sediment transport rate and closely reflected actual

wave conditions in the group.

14. Inputs to RCPWAVE were thus reduced to 48 wave

conditions, one for each of the 48 groups. Sediment transport

was then recalculated with output from RCPWAVE, at which time the

frequency of occurrence of wave conditions in each group was

taken into account.

15. For the simplified case of uniform sediment

characteristics, no currents, and no aeolian transport, sediment

transport will be affected by the deepwater wave height, period,

and incident angle, and by the bathymetry. Using the equations

given above for each wave condition minimized bias from wave

height, period, and incident angle. Processing seas and swell

information separately, and transport to the east separately from

transport to the west, was done to minimize bias caused by

bathymetry.

Calculation of Sediment TransDort Based on RCPWAVE OutDut

16. Output at each nodal point from the numerical model

RCPWAVE includes water depth, wave angle, wave height, wave

period, and an indicator of whether or not the wave has broken.

This appendix describes the process used to determine sediment

transport at Little River Inlet based on this information and the

input bathymetry. The grid used at Little River Inlet was

F8

200 cells 150 ft wide along the coast (grid lines i=1 to 201,

numbered from west to east) by 154 cells 75 ft wide (grid lines

j=l to 155, numbered from shore seaward), and thus included

30,800 cells covering 5.7 miles along the coast and 1.2 miles in

the offshore direction.

17. Shoreline location was determined by reading the

bathymetry input file shoreward along each grid line from theoffshore edge of the grid. The shoreline was defined as the

first location where the zero datum was reached. For the input

bathymetry used here, the zero datum was mean low water. Linear

interpolation was used to determine the location of the zero

crossing between nodal points. Note that depths at each nodal

point were determined from the input grid to RCPWAVE rather than

from the output. RCPWAVE defaults to a depth of one foot for all

depths less than a foot and all positive elevations. This

default is reflected in the output, thus no shoreline is

indicated in the output file.

18. Shoreline angle was determined by averaging the angle

between the shoreline location along a grid line and the

shoreline location al-,ng both adjacent grid lines. This gave the

angle of the shoreline relative to the grid at each grid line.

19. Location of the wave at breaking was determined byfirst reading the RCPWAVE output file shoreward along each grid

line until the first breaker index was encountered. Wave height,

period, and angle were then determined at the grid point previousto the one with the breaker index, that is, the next grid point

seaward of the one with the breaker index. The wave was then

"marched" shoreward in small increments through the cell to more

accurately determine the breaking point.

20. The marching algorithm began by determining the bottom

slope from the depth at the starting cell (one cell seaward of

the breaker index) and the depth at, and distance to, either the

next cell shoreward along the grid line or either of the cells

adjacent to the next cell shoreward, depending on the incident

angle of the wave. That is, the depth was determined for cell

(i,j) then, depending on the angle of the wave at the cell, the

F9

* -

depth at cell (i-l,J), (i-lJ-1), or (i-l,j+l) and the distance

to the appropriate cell were used to determine the bottom slope.

This next cell was termed the "target cell."

21. Each step in the marching algorithm advanced the wave

one-tenth the distance between the starting cell and the target

cell. At each step, the wave was refracted and shoaled and

compared to a breaking criteria. Due to refraction at each step,

it was possible that a wave would require more than ten steps to

traverse the distance to the target cell, therefore fifteen steps

were allowed. If the wave had not met the breaking criteria

within fifteen steps, the location of the target cell was taken

as the breaking point.

22. With the breaking point determined, the depth, breaking

wave height, and wave angle at the point were also known. The

angle between the wave and the shoreline was then determined, and

the sediment transport could then be calculated by equations 1

and 3, above.

23. It should be noted that numerous offshore bars were

located in the ebb tidal delta at Little River Inlet. By

stepping shoreward along a grid line, it was very possible to

cross an offshore bar along one grid line and miss the bar on the

adjacent grid line. In these cases, the shoreline locations

differed significantly causing a very steep shoreline angle.

This then had a significant effect on the sediment transport

calculations at that location. Thus at a given cell, or small

group of adjacent cells, a significant change or reversal in the

calculated sediment transport might be seen. This is misleading

and does not reflect the actual sediment transport at that point.

It is important to realize that due to this and other effects,

the sediment transport calculations should be averaged over a

range of cells and used only to determine trends in the

transport. The procedure described herein is considered more

qualitative than quantitative, and any individual numbers should

be used with caution.

FlO I

Jensen, R. E. 1983. "Atlantic Coast Hindcast, ShallowWater, Significant Wave Information," WIS Report 9, US ArmyEngineer Waterways Experiment Station, Vicksburg, MS.

Leenknecht, D. A., and A. Szuwalski. 1990. "AutomatedCoastal Engineering System, Technical Reference, Version 1.05,"US Army Engineer Waterways Experiment Station, Vicksburg, MS.

Shore Protection Manual. 1984. 4th ed., 2 vols. US ArmyEngineer Waterways Experiment Station, Vicksburg, MS.

FIL

LT

NET AN4NUAL SEDIMENT TRANSPORT12

c1 ogf SM 31 -" t I b - ma -o

8 NM 2: Rsimud In lbS vib*b CO"

Gme d s mf

-3

-

500 -IT

400TNI

-300om M

is 200

Soo

400

3:--00

W 200

00

I.C

-300

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 17? 180 190 200

7f0 LINE

F13

NET SEDIMENT TRANSPORT FOR FE90LIARY500

400

200

0

0

'd -300

-400

1C 2 0 3 0 4 0 50 C 0 _O 80 9 0O 0 ' 30 14 C 16 0

NET SEDIMENT TRANSPORT FOR MARCH500

400

300

20-

It

0.

I-

hi -200

In -300

-400

10 20 30 40 50 60 70 Lul 90 100110 120 130140 150 160170 eC' 190 700

GRID LINE

F14

NET SEDIMENT TRANSPORT FOR APRIL500

400

. 300

ino 200

100

00IL 0

in 03zZOr<'.-It' - 100

zhi -2002in -300

-500MOI.....

10 20 30 4C 50 60 70 80 90 100I 110 120 130 140 '50 160 170 180 190 200

GRID LINE

NET SEDIMENT TRANSPORT FOR MAY500

400

-~300

o 200

00 o0a

000

zhi -200

In -300

-400

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

GRID LINE

715

NET SEDIMENT TRANSPORT FOR JUNE500

400

-~300

o 200-

100IDV

I 0 T-- 100

zhJ -200

In -300

-400

-500-

10 20 30 40 50 60 '70 80 90 100 110 120 130 140 150 160 170 180 190 200

GRID LINE

NET SEDIMENT TRANSPORT FOR JULY500

400

-~300

a 200

U~ 100-

00

I4,-

a: -100

zwi -200

ml -300

-400

So 20 30 40 So 60 70 80 g0 IM 110 120 130 140 150 160 170 180 190 200

GRID LIE

716

NET SEDIMENT TRANSPORT FOR AUGUST

40C

-~300

o 20C

I-

w- -100

u -200

-400

10 20 30 40 SC' 60 70 80 90 10C 110 120 130 140 '50 160 170 180 190 200

GRID LrIJE_

NET SEDIMENT TRANSPORT FOR SEPTEMBER

50

too

-200

-300

-400

~-5 00

10 20 30 40 5)0 60 70 80 90 100 110 120 130 140 '50 160 170 180 190 200

4000

30-

0a -200

000

-040-

-00

10 20 30 40 50 60 70 W0 90 100 110 120 130 140 150 160 170 180 190 200

CRM LINE

F17

.~- ~ -. ~. ~ -

NET SEDIMENT TRANSPORT FOR NOVEMBER500

400

-~300

o 200

-' 100c

0.-

a- -100

zhi -200

tn -300

-400

-0- 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

GRID UNE

NET SEDIMENT TRANSPORT FOR DECEMBER500

400

300

o 200

000

A -20020

01 -300

-400

-50010 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

GRID LINE

F18

NlET ANNUAL SEDIMENT TRANSPORT12-

NMI : T moo," dimid be umilibed ma Values - IF~p - 0o ie umgw10 quE pWut 0 M ui U.W orIroama Negut. vause twno IDU ow am ~l

of d o sftid not be conaW.reg qualtovely.

No te2: Rmpsi 4cliny d bisNo f uwa - , , be tuwuIde i.d

7 10 10 bolln P mU~ 00Vv u" d Illsseef of d" canird

6

4

2

-2

-3 W t

10 20 30 40 50 60 70 S0 90 1 00 11 0 120 130 140 150 160 170 180 101 :7(1 1

NET SEDIMENT TRANSPORT FOR JANUARY

400

300

o 200

100

00

va

-00

"'-200

w'4 -300

-400

-50010 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

GRID LINE

719

NET SEDIMAENT TRANSPORT FOR FEBRUARY

400

- 300

200

S 100

00 0

I-

zIhii -200

-50

-400

- -500 -......

5 00

4 00

000

loo -10

W0

IG -30

-400

-500110 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

GRID LINE

F20

4.

NET SEDIMENT TRANSPORT FOR APRIL500

400

300

o 200

00aLL& 0 0In 0

--

zhi -200

Liin-300

-400

-50010 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

G3RID LINE

NET SEDIMENT TRANSPORT FOR MAY500

400

L 300

S 200

0)0 100 ALIn 0

00-30

4-40

t - 5-00

F2

NET SEDIMENT TRANSPORT FOR JUNE

500

400

-~300

a 200

D

- 100

in0

-400

-400

3500 1......

500

400

-100

IG-

00 -20

10

'~-300

-400

10 20 .'O 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

GRID LINE

F22

NET SEDIMENT TRANSPORT FOR AUGUST5500

400

o 200

00-

zhi -200

0

il -300

-400

-500 -1 ...... . ..a ... REM_________________________

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

GRID LINE

NET SEDIMENT TRANSPORT FOR SEPTEMBER500 - ______________ __

400

300

o 200

lo -10

-400

102 04 06 08 0101010101010101010100

-200 LIN

72 [

NET SEDIMENT TRANSPORT FOR OCTOBER

500

400

300

o 200D'

00

zhIr -200

-20

'n -300

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

GRID LINE

NET SEDIMENT TRANSPORT FOR NOVEMB3ER500

400

300

N,

ta

00'o

zhi -200

0to-30,0

-400

10 20 30 40 50 00 70 80 90 100 110 120 130 140 150 160 170 180 190 200

GRID LINE

F24

NET SEDIMENT TRANSPORT FOR DECEMB1ER

500

400

-~300

200

00IL1 0

S-100

hi -200

WI -300

-400

-500

10 20 30 -:0 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

GRID LINE

NET ANNUAL SEDIMENT TRANSPORT:1 NM N1: TmmutdoWhesbW wa ine o - W&"W I* feGw~10 -. db Newe wS Im cwaap"omv -fqwut bUSiWIg Ual af od vlU not be W~u

ads JW'e dinewn be 1 0- d

of 9" aomwt

-2

-3

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 100

am

725

NET SEDIMENT TRANSPORT FOR JANUARY500

400

S 300-

Ntoo 200

2- 100c

00I,-z Ir

l-o

zw -200a

Yi-300

-400

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190200

GRID LIE

NET SEDIMENT TRANSPORT FOR FEBRUARY500-

400

300

z

o 200

0~100-

0

) no4'1-

lK--100

z

U~-300-

-400

-510 20 30 40 50 60 70 90 90 100 110 120 130 140 '50 160 170 180 190 200

IF26

NET SEDIMENT TRANSPORT FOR MARCH500

400

£ 300NU) o 200

-- 100-

c-

1)-00

5200

-400

3 5 0 07 7 7 7

500

000

20

loo

-10

li -20

-10

him

U) -300-

-400

-5001

10 20 30 40 50 60 70 80 90 100110D 120 130 140 150 160 170 180 190 200

ONm UWE

727

NET SEDIMENT TRANSPORT FOR MAY

400

0o 300

N,200

U~100

00 0

-10

zhi -200

w

hit

U~-300

-400

-500

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

GRID Loc

NET SEDIMEN TRANSPORT FOR JUNE500-

400

-' 300

in

o 200

0100

vi -300

-50

10 20 30 40 50 60 70 S0 90 100 110 120 130 140 150 160 170 'so 190 200

F28

I

500- NET SEDIMENT TRANSPORT FOR JULY

400

300

O 200

2- 100

00 0(L 0VA 0

zia -200

(Al -300

-400

10 20 30 40 50 60 70 80 90 100 110 120 130 140 50O 160 170 180 190 200

GRID LINE

NET SEDIMENT TRANSPORT FOR AUGUST500

400

300

a 200

m c00 I

0a

-100

zhI -200

Wn -300

-400

-500 ....

10 20 30 40 50 Go 70 g0 g0 100 110 120 130 140 50 160 170 180 190 200

-W LINE

F29

NET SEDIMENT TRANISPORT FOR SEPTEMBER500

400

300

200

U- 100

000

4'.t--100

zhi -200

U' -300

-400

-500.................

10 20 30 40 50 60 70 80 90 100 110 120 150 140 50O 160 170 180 190 200

GRID LINE

NET SEDIMENT TRANSPORT FOR OCTOBER500

400

300

o 200

100

00 0A

-100

zhi -200-

0hi4fl -300

-400

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 190 190 200

GM ID NE

730

NET SEDIMENT TRANSPORT FOR NOVEMBER500

400

In o 200

100

0t -100

0

-100

50-

h -200

-400-

500c

010 1100

i-Um

00

V1 -300-

-4-0

050

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 160 190 200

GRID UNW

731

APPENDIX G:

LITTORAL ENVIRONMENT OBSERVATIONS

(Pages G3-G22 represent data for LEO Station 39098, Ocean Isle

Beach, NC; pages G23-G42 represent data for LEO Station 39099,

Sunset Beach, NC; pages G43-62 represent data for LEO Station

48002, Cherry Grove Beach, SC)

0- O C a- Caa W0 fftem0 00 m339 C- a.&-et- .0 .0

% . C!

U e 0 C 3. '.CC e CON C-CN .oaeC e*e N . N

N, CW -- P4N * 03 e4o foo r O S

* P 0 C 49.5 .a .oa'

r.c4 - e oan - 1 a a..

I ao at-a ata ~ooo.. . .oot-c oo oo.......-- 403 00o of.o C

~~ . aoo o ooo t- oooo~ '.o.'aoooo o o o o

$4 0N 0 O a N0 .VC a0 W. f a t- C 0 3%03439

4J0 20 00e e~ e - e OWl 00 an•coa V

o -

a a- ea Coa t-N Ct-Ca Jo oat.- oooCoCoo 0..o CoC oo C

0 a 0 1 . 999 0 :9 9 30 CCOCo C

.. ... . o .. . . . ... . . a

Z~~ .. .C 99t- 99 C!NCN-C

0 0

1 .. Co o -mu

443

On moo ... .CC CCC .. ... . . . . C C cc

00v

14 2 cc C C CC 0000 00 COCO 000000000 CC 0 CC L C C 0

2 .. ... .... ...

04 00 44 Cd

in aa 0 0 l c o 0, 9 10949l 9 9 9 9 9 0o d W a S 292 CC C . . . . . .. . . . . C C

00

02: "W a:

* a C C C n. . . . . . . C CC0 .;: 0

4z

00

0 ~ ~ ~ ~ ~ 1 2a:O I- WCe 0C 0C C 0C COCCO CC CC C

at 0 0 0 w 0 a ~ : % i i a . a. l

: 2 VA W. a 6- "-r OZ we -9 a W a* T

.2 0 3b M= 0. 3 0" 1.. -.

Va-a ma Q 2mE a-U a.. m 2.4 U tqu, mai a0 04 30 4h - 34. 30 m

20 S-.. W~ .2 2 ~ 2 0 -C a4 G3

0.. 4 CP. .0

r I 4 at ft ge

o3 do r 0 ON 1f 0

-~31 doN Pa a CC 0 - 0

ev t 0

3~~ ZI. 0 44ON 0. WNOz 00 on no no 40 0

C~~~w w -.S. 2 0

S 0 C! m te maw

o .t .0a 0 .0- no 0..- cc 2CI WO . W

Sain .0 m .0 - w m . u ta

no~U 0bGt.E on no0 0ma-~~~.D -*N0 .0-J3

00% 1.- 00 . m z ~ 3 -

* a 2 Z - WO2 *N 0.0 no0 DoV 00 nog 4N 05 . 7"s5 2

no 002t 000W 0

00 N .0- .0 * 00 0 0o g-0W

Z_ a0z IN 0.0.0

m ,-m a 2

1W 00 0 0 00a 0

.j .0. -p o - 05V

:a Oo o a Owa 1211.C I 0 0 00 00 00S 00 %0-0m V

.03 := :;a 92I 00Cw A ~ l t~I

G4-. 4.O eem

nn ear 0: a C! r.m

Cn ea a: n -- n -7

N. C30 C n~ 0.c m999 Waa 0 9i 0a:cn ear I% a a 0.0 m IO -.0 -' 9

a 10 at 10 Wom a: e.m nnn t-40

0

0. o o O - o i c

VI 00 * a, C O Ca ae Moe m Or 01 ar som mm t an s p,. 0 ~ a.G a

w Do af O - aaC a a CeD nin. P- a mra9 ea n e9 *n ac m -

(Jo'

Ma ao Dom a aoo o 0 eL Du-a...........9":fl7 Oa a a%n m Pbf -oe6; mm D a.am

cc 0 o-I4 4 m

@3 @3 0a 0 nt F.e a -eoa.

:- an: en rn %.r r

(3 -

.an en . et a - F- ar w I F

0.0 Ia-

ft~~~N on a a cc m m cm 1@3o 0z e an- 3o e o a m- I. -

w. w "a at t ow'46

w a3 0% a r& ano . aee on oa- a c -e o nm 3 3 a - ne aw3a e- at-r ao s a....................o a anw

woo V& w a .0 o = rn a n -. o

w a r " u n. t- W f a=:9-a I10 .6

94G5

4- 0 - C2

.- m~~~r W.. n7. e i. n

-z z

o : ZZ. WOW. 0- c .. ..

N 4D 0 r 0110 0 N 0 n

F- 4 o-0

0 ft .0 ft3- z O

o~Ol *m 41m m 0 ey 0W, Nl . 40 a w 1m 0.

W: OZ =0 *I"00N

P4 4 4"= C

-A m :1 Oz z " -j I CO SIc wD*

0 0 0 N 4 -s . XO 0-

ft SD 45 D0 C

0~~~z 0 WI"W NS SWA C S4 , .0 4w -x - o N . O 0.

4-v NNow:00 S C0 5-

Uy a 9 2 z w 0

oft W 4 N 0 0 00. III I *s-

4~~& -0 N 0SDS 0 4- MEON

It C 3s-COE SDc

16 C5 0 S Ow F l.* W O.0 Ny 44 am N- ft C, N

- ; & .- 4wo0 to-N 4.- OW *E MW;"a

.33 4m 1= Wj 01 N Z"

0- 4j 4 0- 0 4N W C K4

so e a Io :0 "00 s- .j 020

to A n. 4"0 1 ON lot m. W- -s 2.4 ~ ~ 4 '0 0 4S l W mS

a 1 V J 0-5W I 0

0 0 4 - 0 0C CCCW 44n

I S I0*4 O N5-G6

9fl 1 .9 Ad -M,0 Nn .eflmd,-fti

d 0 0.110 C . 00 1: f C91.- o0C9 0:9n9O rP~ Pf f

M. 00 fiN 0:- 0179% .... 99,1- ll 99 7Nzd p.% *wo -- - o m

W OM0 0flf: 0fr OmON 9 o 9 ~ f 9m ol.C n- f~~ o

Gof in- em N . -

0

cc "- 00 OMd CO: 0r.ON ;;0 0,! n O15,rN~. 0ef . O 0I. P m fl .00 .. . . m m ft. -

0 C, .CI,. C, '0 CIZ On: 01-

u 0 m- ~ P

;;It9 f; 900tz 9%9ni,edv nN

(A 4.5

- ny r~n ,Z n rn 9l. 0 orm. .

*0 - d-0 f

K l i 0 0 m 0fln .0 Pdnr.. *LI r., in- . 0 - - r.- -

044

* ~O V 0 0r-. 0.0SM 0,-Cm 0o CPr N N m-m 0 N O V'V- ~ '~0 .. 0 . . ~ . . . . . . m. -n- ~

41 .0 rfC. .0 0 r,~

0C C, 0. 00 fl, m *- P -- .

I'd ~ ~ ~ r a 8v fn- r

4i 0 4 C 0 '

0: l

0o%

if03-

aw a a

I" 4W "w -: ::z Pd"& : . - , S. elb

in~~~0 0 .009 V00 .0 0 -5.bo UOa 0 a A VWSWs 0 a - * W **J

- if t 5 ::: -: 4- O - It & P

b-dR zoo a4"SU atr aft :a:-3 .0,P b .

~U -e 3100 45. .4 KOSJ 5. .0 .

-4J

's t-e 0, inQ

I~~ft NNNo

40. a0 a;a N

Iw z

wW. . NO.0

- N . 002 4

0I 0 0 , - C ; 0 ft Nft m- ILw

*P fl 4.W4 0 00 00- OO

PP .0 0 NoN 0 w4 am -ftbe

we WO..~eC N

N~ If PP- 0 .00 e4 20 "1-,a - 0 m3 N4.0 z At-.t z

4D 0 N- #1 -4 o. a. 21 2 NN %.&0 .0 0 0 r CC -- l 0 ONOW 0"

N 65 0 .0 Cl x .j 1 2j05

P-0 -- ' ~ Ne6 P .0 OWa .1N4 me N-' ~ ~ f .10 10Na . N5 P

- Sn N 95 0 -N U~.OSfu

at N 1 w .0 . e .2 mN O-

o 4 Sn 0 - 4 be la0 abe Ia

I- w W e XN

U0 .- 0 aa a"Wff 56- *. 0N sVS 6

'~f I- I- 5 0 N e * am I- aO 0 P NaP- .m O-O C4I PP .0 00 a .I.. US 5V.

*0 :e to No Z.5 0226. 00hto be W0 or IF 0 0 I a

N 0 me We 4 .me6me

:sa.W 0 a Nt N "0 N91. NP WN0Nm4~- '1 09 N9 NZ 1 .. o m

-. N0 CwzF4 Do-.5 i 0 .

!Wm. 0 CZN0 m

I PPO...4 N 63am240 4I~aeII

-- *P----P-------N .0 .W ~ e be 0.b inN

%UIc! 0

ou in inC C! mm oel .. .=ft..so: "Inon- a10,- ft F0- ..-

.. e - C 0 cON C,00 It- cam. 4. ON0.n an ' 0,i #4.mai im 00 ft** Om ... i zo 9.- 9m. .

* ~ - o. oftn s.. o.o c~enmm ft. wn do .0 on=. M fe

o m i in@: .0i In.. %ome.n .f- meft otmon= ff .0 9 ni in . n'i0

00 Go

o v -e 004 0:m- -O 09- oem.- monno .Ooi 0 n N.- 0 0Z ~ ~ ~ ~ ~ C iC. # n 0 4 US in* . o-n . .oZ". ci 0mm 4

co 0

w J in -n4 a0- in '0 . o ... mm - 0 i

"-4

0 " .1 0 on acm iMno0i.00.0 mm am. no an - - 4.-.- f

OM000 0

0 * N . 0 0 N 00in mO a. m - om-c Ne 04'we1 . 0 4

mm:,f 02m zi 'f n- P!4 ".- M -0 0

Mo -.. '00 ma .. m 000 -Z c-~a 000@ini Ni ~ 0 0

dlof-.............. 0l 4.0 o- ~ i mA&: . "wa u s

0 0& m Na in in otm - i.-n -4 4 1

2",j cm.- Cm. 0004 .- : . 4N-.'0 -' ~niso0 0.-,0 NO. inC04 m @e0i

- ~ o 4- a mto.N NN N

ft *4 r44l 4 N. - -*0

ft ow 0f 0 . ~w. 0 % 0 .0

A I. ft 10 1. 0%

94 *N C! h a:;. 06% NW@X al We- N 0 if '

I ft .44

.0

4o w0 Al M.. v~ ownAD 4

b- 0 4 4 - ON.

* l l 0 N 2 4W I-

*~~~o -a 0 Alx4 f

&ww a -40

Mf AlUlON 43 0 .% C @

N A @ 0 W 4 O EO 06.0Al Al 0' 0 4 N 3.Jo W4

0~~- *Al a' aN aN "A I N WUw.

W ow Z W: 0 4 owl 00 %a&

- 0 Al- o~t Wp% 0.6 a 0 W @ N

* I Co. - 3 if W

a on 0 0

4 0 0% . on .90 a 49 3 W N 2Mw o

-l Al 0 4. 3 0

.5 .*4 -- Al M~ 00 . -w 0 & N: w 33W ~

z 0-0 Al l.-A 00 W P W W

'C~; of to t W N c o.

U -alC 04A 306N 0000 Z

to go% ob 40 w 4 4 20

4 4 4 4 N .. 6 N WO S @

o - A 0 N 0% W WEEZ Of

a a .. OW OW N ifE

0-D

91 0 0 CD0,- 9 t0 C! - V.-

.0.- 4.- 39 t-N -

0 0 a.3 04 C)0O *

0.0:0 .00. Id wN -0 p

41

mrw WON 00

m.0

0n 90 0,40t 0:N 99. tO n00 -0O. n 9.C 40.. 90 %9in IN 0.0. C97 . I. . . ."4.:-.0 .a0 NL ft N 000 E 0.09

*~ 9" VM4- .00 i . .-. N3 U

o cc-w a

a 00 a ai. 1-0 0- 6. 1- w--. a- - :.

P000 6

I 39 - 39 0N0 1 . .0N.0 * .0. 39. .0- 3:. j93tto 40,aatoi a W- -0

0.-U

.J 00 CN .0 0900 9E 04. 0.0390.0 .0NGil. 9

o~W 00 .o mo 0 N N. 0 .

-~0 o.9. V... I9 II.

go 0 * 9. 90IV N. W

9. W a-~ 41 as.

-y ft fv r-a r ..

99 IWO 4 00 owl V.0 001 0 . 4 a. a

4M a. C a0 a

p .e ew o ee . c *P4 &- a a w. I ma

.0~~m W00 0 0 9. 00

4 9.9 9. .0 o- W 3O -:z3

0 * s- M N0 rd- 9

a-M a~.- 0- 0 a0 =... 91 .. 4 **9~ ..- w. ew0 ew we

* a~ a W Z:M993.J 09N ~ ~ ~ ~ -NN O0* 0.33 0

orw a- e e U - 0 Ne 0 9 2 9 . 9

.0 0 0 NU I 0 ...a V .oao "Z IM

* 0 2 2 . 0

M 9N 90 Vs 0 VO0. 0900 0 2 0 3

ft 9. me"9 V 02 2 92fV -o 002. z 09.9

0 09.0 2 .9.~~~ ~ P,.0e. 2 9 959

do N9 a N 0 a a . to&W*o' o 29 9W 09 "@ VI . a x a.

tJ~' U9. Nm 00003. N 9 N*

so VI$- .0 4 N C N9 0 9 9 0 6 0HH Ni inI - VI 0 H000024

M* a W 6.. a0N 2

N C1209

a 0

a,* in.

W191 lnlw9 ": 01 nit9 On:4%-ft 10 lvie:iVi0 0

0 a a0 emv CiW 000 vi. 9a. tiv v n0Y "!% 9. i%0

0: 9 0 1 OV 4 l15 4"Do

0

in if 00 Mvi. 0 4 0fO 0 0140 t-liONbv 0009f 10"4

to 4fvi 00~f

cc w o - @4.- a. 9 i - z 9

vifil @4. no 4 9 0: 10 -t

00m 00

RA ;o 19 .iv .O .. . .v

'-4-

44lI-I~W: an4 1 0W 0 15 1. N fi - 2l ~nP.S~fO 050 N. 10 0

0 IL

:00 3 o : 0 0 o vi mcvi OR vi atC go, t ab- a fi1 g- .. * a "-.- 1 - g- s- t.I

.4 .4 00 ~00 toi alv 0Nv 409 0.0,02 aPPvi-iv V'1W. i V'0W

:i5 0. 15 "-- .- Ii : 151R sm s W5 O

C1

0- o

4NOft

04 m0 -m no IC

0* SO. =Aw -

mlai 0000

0~~4: N '0. '0 M. 0. .. 00 m T0 -C, t0 2 W.

3. .0 0 .

49 00A.0

N - .0 aw,0 a

OI I Iw .0mN9 .. C

N~w w.00 3.05 '0 '..

f'l Im n Q0 -9 a ON, 3. 2 0

00 0.0.J.0O a 0

a a00 10 * AN 4O ::*VI~'d 40 w%0 _N4j0 OU 0 4.

Im 0. w 90

N 0 - ' 00.003 40 O- '0 N ~ ~~0 N N* 0

*6 2 S.* - z 19.30 0.rd W,.. ft nW... WOWOW0 .

*'0 ~~ ~ ~ ~ = 9-~ '0- '. 0:Z .0 .. 0 N2 N ..0 4- .0 '0.0 '01. N.-a l- . 3.00 N

Z4 NOW00 0. a.J.3 ~ ~ O mm~ 00 400NN,0 j .0.3 a *

o N W .- %:-.IN :* =% 0 . .aW 0

N M NNO 40 W0 N a 3.01

30*0 N NO 0.0 NO '00 '00t 2N 034wQ m .. *- . 3.a N 00 '0 0.- f, @9l -a ""NOW N I

s.0 30 . 0 4aW 5'3%

- ~ ~ O N' 0 f'O N NOa 09 SN3 35 50

0 Go 40 No U. at 0Z . 03 .0 0

* 1- - .NV WOJ'a".aI a.

O"* NVW.0 .NWZ00

3 0 ... 900.0 4 300

5, '0 -- '0. '0 .- 0. 0 .J WW 5.OJW.14

4 :0N ~ ~ ~ ~ ~ n 40 C0t 04 IN0 @.N 04 . 4 4.. . % 44 01 0o ~ ~ ~ ~ w 46 MOt- avom "... .46N~4 N

1 0: me. . - -~

..L -0 IV-a o -.. .- 0-1 -~.t 0 N0 N

14~0 . N -4 .. * N . N 4

0,0 a,- d 4 . 9 S

u0t"

00

0

a - a s0o 440 4J0

44 . - .9a

0 4 A w0 O O 0 :co 0 0t- C, It 9. 4 . *" . . . . 1 -a

41 en 04 4 .1 f9

-a oo a,

0l = C !0 ;4 C. ., ;1

4j-

0

.1 00 0 0 W4- 10 00O9 40 O4 O 0 0 40-D 4 4' 4

ft 4 0"- 4b a - -@0 4 4 -101 3 00 044 64- a- ON O 4 4- t-0 .t-O z4- 0 0:Z S. 00 V" .f 44 . . . . . 0 Owl N 0 9

KZ a"

- a -% N 2 .0 0" W 4 4 4 -.wo 4N 21 4 "M - 4

4-N a 4.- w 90 I- 4b.0 N0 M a:

20 - a a -nw a "bo z fl es- 0 N -1N 1 a

am ;Z :Wl 4000 loo Ov.. M l- a

do .e a mN 3 -

o w * ~ CAU V aC Na ft fGa s

4q 4

a- OfNO

ft 4 .0 0 a

*O a

.4~~~ ... , a.- a-0 4t N

w. 0 . 0. N 0 fN

0 ~~ XU' .4 1.4 IM' I.- O

-j Z 0. '0 .

r4 w * .4

I Ow N:

w 0 04N

* : 0 ID w. Z. 4, 0 4 w0 0 4 .

VI 44 it.

. ~ 0

ty, ft305 of~a,, o-. ,' O

0-~~~~z " I000 w4*..,3 11

Mc*' .0 .4 NO .0 .4 4 . 2' .0

W N 0. 0 ON N .4 60 a. Wo .40- 1.1.4 ' P. Wi 0 0 -= .1.4 S w

41. .410

-l Z4 4& .0 WO .4 Z0 21 0 2

-~~~m NW a4 - 0 0 . I 2 M-

Iz" 6. M a 1102 0 10

Ox: 40-0w aow

3 N 4.4 4 C00- 00 a- 4 l 44. .

44 N 0 b. I. .0x0 .. 00 3..

No 4i 4. 0. 0- eft4.. ..

o~w s4 go0 4 - J 0- 04

Ob a a a a. .a-- .1

0 a o4 0 a.a-A

V c a N w. 0'.0. 00 r c . a4- 0-

a-0 4.5 s- 410 .0 . 33 05 I

.9 af a 5 3 2215 I

G106 0 404

o 0 0om .0 20 z 9%9i% . in.900

0.- o .0 .0 aI -0-

*c 0 0i0'a 0 n *~

0

00 0 e Ct, n 0- ! --PI

W 0

00

. a - -. :, ;; -:, 9 ' n

0 -4

1-4 41 _ . 00 an.- no- O 0" Nto Onflo of, n ON n0o aI0- 0 0 g 0

In .0. n0 s!i-. .00na0cc 0 - n- m. if-n-.

0~

44.

00

00

00-in.- a" 0- m - n

-~~~ 0. 00 c -O- N. no .02, 00 n 0 :f2i - *

a4A-,'c

-C 0. 3; a K A0r aM. Za I.: a- c Sa 1 I I

,si .~ f 460" CI.' -i w- OK -- 5 -

S-I .K .0MZ hSM h- UBS.SMMSM..'G17 N .

W- C.SIO

491 "N 0 0 NN

4 0 N N 0

0, wft Ni o

0p. 0 wN 6- =- w a

N 4o 0 &

-~~ 27 C4 0

4 0 N ) 0 0 N 0 "=WOW 01-

to2 N10 J 0@

KO4-...

NN0O 0 w42 0m42

lbS C, wn 0=-T4N N

9 0 0 00 0

00 a 2 2 -

x9 NNCV IK z4 O*111 40 0 0. 00NO 0 00 0020 23

C ~ ~ ~ ~ ~ ~ ~ ~ g NI,~N- N 0 0 N4 44- C.

4 0 ~' 00 2x2* I4 ~~ ~ ~f Z; 4 34 O

- - N - 02 2 m4

I 4 2424 40w CN 0 It

-~~ 4 a 4w arcN i.

0)~~~~x b Nz 0bI 0 b 2 N-S I0 I- Oj NW "1 0 9

N0 0:0 .40C.&MZWO -M

w :NwO%;

7 ~ ~ ~ ~ ~ ~ ~ 5s aw4wO N N O N3.s2=4 9*

0 a 4 C NOW

N" 4AO. XO 13"r 02C .11 N. 40 .- ..- 0 4-Nb- 2C *CO:

V ~ ~ ~ ~ ~ ~ ~ ~ W N r . N 4 y NO O I

-~~~~ ~ 0 = 0 . 0 * 34 .0

00- 2 04.

0 ~~~ ~~~~~~~~ N 091 4- O 11 . 4 - - 0 N.-

a I -b m.2 00 J:~~ r~f ONR C4 a4- z 0

Cm 25 :?2C 222 ONNO

4 .0. 4404 49-44 O .24 42..JbG18

4D F..;4

nh Ih. n oC N -o i --t z

on. ftC CN Oe4010N 0- O t 0 0- .N . e~C a . a

od N0 N" Q= ;;;a 0 0*i.

en' f. i '

4- Go00-CN 00 0 NO eeeOnOO ~0 i. .o OD Cn- . -. ff N W0 mn Ven% n .0 .

pai S. ni N -- -O Nc Nt% C-N l ft

vi 0' h 0-- N e.

00

U 4 c CC 90 000 OniON9 a CO.r OC9~iOe %nm 9O at 0,e

w t e 0 40 .0e m enen 0 ~

3r W- C s W SOS - *n N0'. Soo 00N %

4j -n S ON. e-n VtN I-n eni.

041

S.' 000 0 00N 00 enO 9-.C WiOOiN 0- en.- nC C .

U ~ ~ ~ ~~ f a.. . . . 00 - n. n .- nC0n

14 en 1nm 'eC en . 0. . . . . .S4 om. :"ni U

0

0%0as Ot: W:: CC 04 0.a00 N eo eINNO Nnn ae 0

0. en 0.~ C 0 en- .- 3. . ia . . . . . . N . 0

U ~ ~ .0 4N 0. ne o-- W-92 Iw 0 V w o

2: we 00-e seno aO N- eno*- ONNON iN'.. N.&& ia&N eno 0$.a eno. - .0aC en 1 0 . aiI . . . . . O. NN-

en. " n.. 4 en : : N ~ N. - " -0 W "

0- N en. '.0 a 01 1 a aN. . . . . O . .00 ON

U~ ::p 0*.- M en . 4or0

as MM" 0.04 C 4 EftO 9 i, a- e-9 WiC.N USC a.. am. I n

4 n nO .40 e .. on. . . . . . . 0-CNN9e

'o Un O_ 0 0 0

4~ j 4" - P

4L #, ;r SE z "n

.. , o j w N.

lo o 04 -

41% NI N..

0 ~ o. cm0

14 c: 0m D

-~m --rA 4 0 '

* I I -

N~~~~o *a 10- 4 ,2

.- ~g usDV~ a 4 0 V

c) -ml 's a0 *m -- "0 a Z0

w c..D 4

-o a

0 N C 1 "t

r4 ft 3 2 . a .

0~~ NNO - o.-4 o " _

*y rqN 1 . . N0@ 6 0 2

on 15Iwi M

*~w w _ caN NV V 0 Of 4 4z2=*4 0 N N 9' V

- fiiO w1 2D zO

-gh -c Viz0 .

* 0 1- MI W0 I.MI

a. 41 -1 0 .. i 09156

.0 ox N * 4 0 A"

O~~ N, N 0 4 0 4 646eMfu 06.- 2

U I I 20

-hp ft- W

a fC C!W CpC . * P P C t e P

... Cn O-V a~. N-C CC C1 a CC0CP:. 17 PC-1 I.-

W~ .. N --. : C! n": I. - ~ P-. 'We,

O4 IV Cfm mP C0 C.2 .. PC PP. C P 0V C

-4 0

0

ft1'JR

'0

0 10 CO 0 a P 0 0 0 . Pt C . C C . C C a P' 0 C.. Cto 3 Go - I C C C C . - . . . . . . 0 C C .

o0 0

100.4C

0

O 4C , P. . . . .P C . aa P. 9C O aC . . . . P

41 -MU * 3 O 0- C .O S' OC4 PC.P.-a PC PC-nP

341

- P C.-C C4"DP. Cu. . . . . C P wCg

a i c u CC.- C:* :PC P .'

0

go CS . CZ .P .. P.

a a u, , a 0 a-Ct9 P. . r, P. P. I

C: -~:: ,- *-O - -C- a - N

6-1 Z a a 1- 2 a 23 N. a-I0 .0.b

o a ma CA S 0 aC aa O a %AP.w. :w ONl j; -C 0 I .

IC I m. 5.5C s-m OR a&s- aSZh Cf

CC SMO CC CC C 0 0C *~ G21

.. .... P .C .... ... N O C C -

S-i aaO

Ia 4.00.

*~~~ I.-..i

-. -j 3o aN. a

8-S 2 zSi -0

01i fts20 a4-

Si w~ Sz t 02

10 4 4) , 23 O W aft~ ~~~~~~~~ *. ? 4 4? N 5 4Si S2 .

Si N .0 O NO 0.0 8-0 O a ~aa - Mo~Si, N S - N S -0-= W S

W 3-SF. N 0 Z ..- O V,0 S* 0 - -

N~~~~a z - Ir -. 0. E K50 0 45. 0 v

Ca 0 - OJ- j W siE i *00S

8- N.22 0- Ei W Wb

9 Z-5 Tti ra -. - tSi j

Si 2 2 .Siciv .1 as:-;-5- Si 2 0 wW

2 -CP OrCo a. 5. O :EW wS *

4 NNl ~ .4W~ M- . M 0 *. -258

a Si2 w0-

S9 a Si 4540 N3. 0 4 3-- z I 058, w . 22j o 0 1"

s-i~~~ 20 - 0 U

- *4 ee .at 21 mo a . NO no ZO msa

W- w 0 : :l ft "M W 00:5 .w -"5

2 .- OO ~a 40 a 0 2 0 a E W

so 54 40 to. "N 0S. Z" W. 0- to~ 20J-t x 2a SN - a- 0.iw - .i .10 8

:. . SOL%-0 1 01% 0 0 It *1 001~~ PC~-S a we JK0 -2 **a 9

Io vs-e m* ;8 5 -8 g i S. ma S -Si*0 0 0 b4 0 - O0J 2 K E 5 3 39

- N S 40 .0 . if?. .0Cai~..' 0.5W622 2

I- V P* on *m o hN - S . V " n1

-- inC. -in 0s !I nig9

.z .1 t0 06 WC M Op-.. %00 pe V%. a-. e

0 . n W 400 ~

n .1 04 . sow .4 ... .ft .& *4 ofCta N % % 0 *

4J 00.- 0 02: 01r' 51 Og v% W i 0.7P in0 ew..pO ov, SI C O P.. Woa 0. 44 0: .50 .0 P P..-, 6fm

0 aFM w'.. a.

0

4.1 0 00 0910 Ow C at 0%%%1 0p2O rn ~ P 00' 15 5 nnS'

o ~ . 0W%'O - a m 0 -&10 4

0 1

V . w' ' : 6 0: a'. 'o C'. '.% .. g z -cc -. n'' 0

*00 4 - v 0 .. 0- .14 .-. f111 6W~

aI .' 11 000 0: . 1: *." . .A ;M-, 1W. g-.4 %- - .

5. 0 coro 0051 00on1 00 0510. C.-.-c'...m0 00%6 90C2 0041. In 9g -~ SI.. 9W%0 1 .11I P1

.. M..m . a .

0% *q. 0 Coc o O~c cg a mmo c oa %0 00, 9 00 %99199C~c 0 0 0 0 8. . .0 .0 . . 00 cc 0C 0

*a OM MOO M0oo" 00: 00 0000 000000000 0000 000 00 0V 99 99 . .o .0 .. . . . 00 00 9

0. .0c CO 01 9 g g g ~ 9 0 00 10

000

a~ ~~~~ 00 z 0 0

- - a 69a

za :& -- mcc 1a - - -Z 1- -0O ass aa OAftao P. a& 0.0 N0.5 BP3 SWZ 1SI PS B aommoW... n UB :a a

w- .me 00, o e 3.0 00 t a20I w1- a- a . a .~2 so OOff 1j: C. B ~ Zi W N .a-SI. a-. EOVID 3.1 CO I 0b W W bPE .51

om.a a as 3m C o ma im -G23a

go V. IV44

o ~ ~ ff F. 00Q -V 1g 4 1

I-~~ 01 144W 4 t 4~

a. 44 to 4 0

4 0- :04.

1- -C!2NM-

P0 Me i W-N w a0 44 W 4

0~~ a. 41W 1- 1W 1N 1

I~w I Co 0 N.

"IC!- - - w NW

Wo 0: 01 _0

N ~ 6 4pN N 0 0

O~ ~~ awcW 01W 0 1 . N 3 0W

It4 4l 40 04 04 o.3 t N 9 N fir 4 D W11 -= 0N @ 0-~~ z Z.NW=33 W

0.11 .4 3 . OA....tAW MM £ 0.

U~ ~~~ OW 44 40 % 41 W 44c tMw 1W W =0 !4 0

cc Co 00 00 00 00-NNEx~fU~ 0 2 .K a

*~~.o '0 N iWNf

W 1.4 0 0 1W 00 0 00 j w w l . ...

- - 02 .3 1 0 -0=

0 w~l aw MN40 -S

z 00f00 4 O3 4 04 40 0 01W Co 04 O~tW -mWs N :a

N0 & U : M0 ww"

o~~~~g w 4*4o so to. so£N so

0040 Ow :W1 :: -0 0.

0 '0 4 0 1WN 0 I 4 . 4

I 3.3 33 02024 W

Iftmgo .4 .0 049 019 .ft !%%g9

o~9. 9 .. 9.9Z. % t o 04g9. ft.9 0 4. . .on"4 4.16 ft4.N - 9

W~ ~~~~ N, ftN P40. PA. N N* 99

*l0 OW9. N a N* c .40 *

301 9 9.0 Nf 9. :49 9 0 9 :

P.049..- . .4 409.e NON, 10. 04

-4 00 D 9i- so 000 w0. 000 9.0 09 0 0 . 4 N .. PP .

w ~ ~ ~ Z W -. a.. 0.0 a. I N * *.99 '9N P

0

494~ ~~~ ON. 94 9 9

~10

9..- -*0 ; %*9

00 59 0094 0000 -- % f0t. 0"9 o- ~ .0 n.4 .N. N

0 0 000:4!4 ~ .. .9 .NW O .& 0 ;:. 1.-9 Nw .9t

to v-4Z

3w I. w o 00W O N .. . ~ - O ~ sO 4 . . N 4 . . v 9 4~' 9 9.0 9 0 9. - 9 .... 9.9. . 109 . . . 9 . - 9 9 ~ Oow .0 9 94 9 . 9 4 N 9 9

-l5 i4~. M, CNN4 9444- N M94~~: j NO 0 . 4 . 94 .4 0. 0 4:NN . O4 94 . 9 9 .

r 9.09 j4 was;9 .o 4 ... 99. . . . . . 99- 9~ ~

at a a Z a. a a a

- 09N - f N a29

44

t- ob w

06 Nt N 0 3--:4

U .-.- :.t

0 a.

o'e at aO zv owWoo 0N~~" 0: N 00

N~-C Z 0 a.-000N

M 0 :WSW% c

a -1 aI

N~W V:Cu- 4wow 0 0VU *0 'a "O a- o- :4 '-CMUO

42 NW 0i

-a *.U0 W 0

ft-. 40, 4 0.*N NME 2 UO

N ~ ~ ~ 1 0 - N.8%00 0

Z S0 naz S It

0~ ~ 0 0 a

A ft - 4 - 0 00E225 S.0 0, N0 - 0 4 Na 1-06NE 2

-9 - I2 "WOO

a-0 -veu 6NW , awN

- 0 0 0 N N 2 C0

a - -S - N 42W.0 O a-

r. a-u so IA~ 0.0~0 W zW Z

.- ~~~ N NvW ~ O N

04 SO so .0 o S

N0 0 4 0 N 0 = w 4 42 NI S 'q0

. .. I 0

C26M O.

C! C

mo m z MA" On% 01 cwm 4-~~.nn c . .

0' 0m OPJC 0 nC! . n 00 ~m~~N Npmn 4 wW ILo n N O C n n

cn NC.cCm -

~0

o~ D 00 0 0 0Cm ONN N: VnO NOO~ n' ~ eo m

C4 a. in t Qo .9- m . A.. n m -cn0 -. C!9 n n C OC O m

en ILN - - mnn

T Om nECn 0O on C! .. 0C . ~~zni. ~n

0 b

I-. MoV I. wl ,pp. 0%. m . ~*wa Wm Ci mmei

4.34w, a 0 0 -S: -m zP a~a a-OC 0N eo O- mN ~ ~ ~ ~ ~ ~ ~ se n8244O.9 *N .P4- Cn9n

00 z mn 4nn Cr nN P 4

:Sr 4 0 P-n :rC zl 0. .. :: I

0% .x0 am? 0"C -W ~i am ane am- n N nt NC I a

o m n~n oo- m .. .m. . . . . . . .nG27 -

N 440

a-~0 Do,.. 0 a. . ~ - -

10 a ft3rw a

PW, a--0.

u - z a

a Iz

3 ~003~f - OW: S

* w 0- a

* ~~~ 07 O.

C) 0. C) 0 m m 40w.4-J , S

a, * 4 N 0 4 u14. - C Z O N E

a~~N toJ 61CMIII' 2 r

91 ov- MeNC.

- Or 0r ME. m-E 00 3. 3 C~

.. W.: - 0..f M4~ ~a to Z 4 8 4 0

w0 M CS 4-02

0a- 2- 0 wM .', plo- -J 0.w *Sa N. 00 N"n 44 j0wo 0 455 C, 43 0 W2a = - (- 4 N4 a % dc itAO 0nO 5

0 1NO 11: ;of 00 45. 7M W

az . a, C .N .4 .0 0 N ) 4 22 4 a C 'C -

CuO* O US N

- 4 N 0 C~0 23 G28

0::

A-I ,A-- A

o c oo 9;2 200 0000 00 040. ... NC N:P WE 00 ml %l tt i 2::!* S N ~ -z C. AC 4E' . .010- .0

Of - EK N10 8. 1- N

S0 0 0 2NO oWi 00 000.0. 9n..i":E C.i.4. N: No UW:.0 .. N' 0"10 .wf C30. " -otP ,,

CM r. t.. .00, b4 I

IL 0O0 ON4 0:0. Z~P t NO 0t. Lft.I'90l 9-E Ws .N

L. 9E n0 9 0: m-0z -4 4

0U a- M.*t Cv'. O .aC M

IVa 09 , 9

4.1 C: 0 -o 0 CNN CNN 0 - O a. 000e. N ~ ~ 0 0 .

N - . 0

14 to a .0- It. a . . . It- a.

ON5 , . 4 a. a 0 L,c.J a a0.0- 00 4f5-4 Va

0

41 .V-WCN .o~~vo0 l j 0 000 a 4o O .: -0 %%g %9 % 'm N

en 0,-

4J -

01 NCOT -. oN- .- N'

or -. o-4 t.NW AC aN NO wON VI O u51. N :If aN Na ": ft zs 5. N

0 . O a Em .0 OE.0 O ZZ W

* ~ ~ N s. 04 a . 0 :0 w.. . . . . . w -N .

0wo ' 03: Co.- 2aa ::;:O EN 00 4I .NN4 a% 40 aN 4

00 we w 0.00 .40. Nw- o w.a M .. N . . . . . a.- E I

W. WE N. 0 4.-.-i t

INN *N 2.- .0~ aus--

:. IN IaVaa% a a? 1 n

.0 0. N - K N a V

.0 w. mac' a .0 - -294

aJ

N~ aa.,N

VU =Wws u:s

aa 0. aa aa a0 .6oa -Ca two- N N

a 3. " a 0 04o 0 W:-:&

lb .10

of - O 0- - 0 K

N~ a- : N N0

0 4 aD 0 x .az 'go

0 4N 6. O

C, W 0 0 Zw w=

*a NO Om I0 wNm a Z N0 NO4 NN NN CN N~WW 01W

a ~0 0 ow 0 i 0 U

Z C, C, -, MI N *. I- fO K O

0 a. NW 1W WO_ z = w

:a W~. 0 wa .

N 00005'. BW JNN O !

0 N .0 I J NSo0or 00 p f N

ZW 0 a .I0 -00 .Nm ow NS aa..DZW

193 N jS 0 Na. 10

2C No I a 01 O

w- toEU 40 IWa

0 0000 Ws. -0 WOW 0wo:

a, a e aW 1 £ 0

4W a- a.J Z2

S2t at 0t a 0 N0 lotg, aWW

- N ' - N..J 8.00 S 0

o - I ssif fifOITW

U os. ... ONNG30

i 17 to Cn t nl It d~i !%% n::;olS

.. ft N.0 9N1 -01 mN .9I

9. - O.6! %N0 .-Mi N.. _0.. .' m m 'aO C m m Nft 10 mm ft In m~s ft.

a %z : . 400 nm ft 10, .9mm

0 -; a ,. iO %- tp~ oee %-.~ %W:- 9... 0:.~a.o . t a'. N. 0 me... %!" VI~tf ON.0 om m .. Nm. -O

1I- 40 -ft- ft N-

=. N nSN no % :; 9' . nf n . nn % N.

0U Ml .0 NVI ft~ -z

in0 .0F 0 a0 '0 N - 0c M.- me, 0, .0 wI'

0 . 0,0 m~. 00- r- 0.* NV.PP am ma- .' CN NO N1

w- 4.1 1 010 N-f - - ftf ft44

4 1 0 1 0 0 N 0 a. V N 0 F, M Nn a 0 a, Q NO t- aN

414

cn u IL 0. . 0- * m rM m . . .m. N O O

u 4 00 % 01,*. 0. 00.1 g ~ a %.Og %mw.. ."1N 0-t 0(U~ - ' m . .4 m *. N . * ..- N

U, *rto 0 ,010 ag itV 9-N-l n:.. 000. .- t .. 1p,t m I. 0o ..

no: i . C.m.; ft. .0 Z.0'.0..0 0 n %C 9f* 4.1 VI.- 0" ftm-- - N

KOo ~~w4Il 0 O~ 1 000~ -W ftee 0 eo O NC I

-, N 100 9a N C N O* .. at..- r11 O

- a a . a

.1 - 100 .1 - ll 20 02 :2 :W o . I- 0.

"a 0 :0 m - R .

o II a Oa N *o ma- M :::s Iwo NI-.,~WN .. .a - , n~- 13 4 M~ NO

46 1. 1140 4 4 020.. 300G314

oe of. 4 . a e

wzo0 10af -1 ON .~4a- 0

*z 6

z~ ~~~ E I~ ..- fC - .- c

cm -#. w 4

o- o & - soz , . a a...

oNoW I.W 54

do~m~- ar z

iS~ ~~~~~ - N '-'.. 4 j.

a ~ ~~ ~~~ a dN z .~Z is

do nN 4aaa 0 a w

4~. N Ac m. 0 ON .N 0 O .UIj 5Nj N a" a-~ a N zS I S *

N"2 aw-" w N- w o - " ~ N 4- KO

-j z w z .2.o za o 0

K 46-40

o o- z . 3- P II K1 as~~~.~ aX S 0

w~~ Nn 2 1.-165

o -0 N 4CO 0 a Ls a

N ~ ~ ~ 0 a . N~, I0

0N w 5!V 6. m4s, 45a06as s.UN I

G32 08'

t- 0 20Ev4 , CvO 0t- EvE 00- :9go.Ns 9-.%C 9i% "-C% mm .9 . . 0W WE ftgb f -7 l-v

4n- 'Ort ov In. , i.

00a ap.co m-o m 0-v.a .. Oe~ v. b~m O

0J iv v10 m4 E n~ n. vW ,C . no,. 9im t-n: -i %e 9 C. .0 C:~4n ~ v i

1-.0 0. zi -e- 4- 0v-. -g. N 0 ~ , m- .4 t

9b 1 Mn n100 1F. m ... mE.- i.. .-Et- 4ev. 1van . n 0 1 #

4.H em - meC10.nO 0 m I

.4 0, ~ V a. - iao;0 C , 0t % i 1

0

mN IV 00 E -C ama, "o aam a&em~.~ a0t 0 -

0 u. emI.- Lv. I

0-. 0 0ommZ 4 a- z -. 0 9va 04. % moe~~ at 040 t

0% ~ ~ ~ ~ ~ ~ ~ W ft4 m a'0 ft-i m 10 m . i.............in- n- .

m.- em V.-m e4 in.

0~~~~~~ m4VvEmm ne Ee a

a in 1 Or in P4 m. a s -000

ZO Cog :a.i m gnome o. a

-~~4 aE W iQ - ma - - I-2~wn r swa aog 7 0 3 - 2 a

o W ma CAMV C ~a W. a aG3Ev

.- ~ ~ 0 .- - .e %ma n1

06: In. i M .06 1. 14

'0 - I -

I -I

LI ififO' O~

o~~~~~I a NV0r- 610 N- M

'0zo 0. 10IW II z I

100 _C% - Os I

I II 9L ev S 4"L WW : 91-6

4-~~6 -4 - f4 S 6 11

a~~~~~6 .. =0-.i 10 e N 39 0 0591a e N xe v 0. o-j -t I L -10 4 N - I $-I = 1 O os-

40 zW -WL M LI

Illm 0L14

W 0 -

s- .OO I~ * *W~s ~ Calmft~ ~~~~~~ cc1 61 f4 41 - . 10L 1

.-.- a..0- 0 "1 .I

go Im. -f N0 af 4 M10 El I 5' *0 11% - 961 0 41. tO

z Cl-tat LIwe Of

9- 0.1 6110 10 C pz" NWm II 2 46

V0 ft S - =I £ 1 .0 216I- o-v SJ I L 61 MN M-

J iml 1-41 J 02

.02- MZ N I *.j O ISOL I 0

r LI -.04- 01

K~ ~~~~ -1 "01 101 0 OmN 100.a61 -I I

10 -1 0 MI aN LO I O 53E N a. - W s.t 04

3.~~ 05 6. I z MW0ADLI tOW W 1

- - 0 10 - -S (5191 401I 0 a WW40WW36il.a

I0 0W -.- O a 7 06 64 40 43 ifOuI a 006-- N 0IN ON alN 0-l 04x34 OS 0 0

10 W 0 I -. 1N . 0 4 5

* - 64400 5LI~lG341

1-if .0:0 0% *u..1. 1 9neo 9 001 9 % zXC 1 u 9.i~ . -WM- -1ft

.0 "f OS 0 00%J fu . rI. n n n

C: '.ifl 0:999 ft'S V,0... 9% 0 1.. - 0%:

0e I n t o e uCn. 2.. . n 9, 0: no2 f60. 40-0- a~. nn 0 '

.. % c c 0.f Wl Ii .. n "O non -

SC4

.4 :

o 0 O OVIPI 00.0 0.C.C V f 0 .0. OP O r. r- 0.0. .0.0

0 z 02 9-u c0.- oo:o 0 1ON r.. :. y1%s n . - . q

91 0 ~ - .. o~ .~v N. o~.- .. ,.--0'o' oo ~~ g.

o . 4 10~ne rf.'.

.ceN 01 01 N.-Wi* a

0 u v1. -10 'or.' - - n

0.

0- 0 ~ c .0'O V. am: w 4. .

09-0

0 Ma C

Cr'r

.04 - :I

":z P, Atgr, w.f IO-N e NP- w

sw Pa. u0t. .0z0 - - u

-0 0-n - 6n n a rto ..: .l. .100 *..U a =&a -: z

2: 02. !* ! :a:.. 2z ow 260. 2z a0 ~ - a -0 02 - - 0y* at me

2.13 6.504 0 0 4 W a N W 20 14 P. $ - 4 . W~

0;:. .* .6 01 0 M C 4 ,. .1404GPM :11 6 2 0 2 lo :s0& g 0 3U2 N 3NN 2 2 * 0 2.: fU

*05 21 w1 ~s 0 'W..1~ . . V .01G3511 20 1

4 1. I44 0 4 1 . I0 O

-a

4L. '04 so, CI 00 S .0 '

-. ~4 - -v w.0

I4 z -

I' I

*~~ w Apo. 'A w II

IW 0 w .. a: Ir

P~$ &N am W. WI.. -

w' C, _o a' S .0 - 20

I~~ Z

U .o w j _

o4 , m wwv .0 O. IN w. 52. 20 =W lILa. .e w N0 40 4 0 .. ' U

z 1 af~O- za

C. ftSu.J ' 8 I

* 0 2L z .. s

8j z z 2 2b zaam z. wo.. 080

-9 ts- 02 0N . - 0~ 2 0 - . . 5 1 8 0

Z01 -a0 a:@ z.-o~3 S o, a t N a N .0 vo~~ a I'9*

0 . 8.. I 8OL a. w ~ .i ' w000 mU0e at.,."

p ) iI - I VI &- 08 I 20, %'

I N I W 0.4 012N3 6

of,

t4 C

.- f-0 OU'i ey" f4Af em 0~-'t04~U ~ 44 LU . f

o~~~ Sn 0n. "t'f 11 * fP04 -' Uf

S.- ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ % 1~v.~. U vm.U00U0 .. ... f

9i U P4 -

Mi m On asa 000 O 040 ona..O~n' .-.-.. om UVS M

o, 9 9f- 04. -.. Sf-fC fO

0 '0 .4U U49iU'4

co %' fUf-p j - 5

Go 0 W. OL 'oft ft- '- 0 ,.a~ S

e 4J

0-~a. 4 a4. -4a 00 C: V 5 O ~

IV Cl 90' U4--

00

p. na fa l coon 04^ 0-f 00-f 4.- Oem . #I .0la ^ P-4 '0 .t' U

0 U'' f. - fe f* -

01C

.0 &ft Q. 010- r COW v.00 455. Of-CU' oncoco n :v.. .0- 4 4

00 C!U .0 4 0

C!.

If 0.-5.4~ ~ - -. :'' 4 p

000~ Ovw 5'UiO

a-U LU Mo UU a ' f--U a 0z aa

0': so :",4a U5,"f sw"I As ' La'a

* a 0 a m

49 w o r -1

.J 0 00 0'0 004 U'' 0-0 OW -'--40-' f-04 42 U'

N -U' ~44 L ' ~U'U... .. ... ~C 1G37-

C).00

.00 0 - I

N0 3-% 0a wo

*N 4. * 4 0.0 1-. f 0.0IL ev

:.0w w gbN.0 .

*q v

110 . .0 .. I : :I - .

03N.0 060

a2 0 919 a T .C

oo -a Nw N . 4 4 S 2000

*~~2 *a2.. wr.

N ~ ~ ~ ~ . a. 419 ... 2 ~

.0 ~ ~ ~ ~ ~ ~ ~ ~ 4 wN.4 0 .. 4 O 4 1 0.. .

.0 - 0911 N ' 0.0 0 4 * I '09. .0VS .4 . 0 - .2 W .0 0or

I- a W 0.

4~~~1 .0 C. 4 N *N .0 -gg ..N1 = 09 11% .0 09 N

.0~~~~ N ' 'a.o a a .-

a. gut W :M,."=

~.~00

09 4S 9- 0,1 0 N:m

9. 0.0 ow

W 0919 04 0 . 0.-

4 ~ ~ ~ ~ ~ ~ ~ ~ S No *N 0. 0 0 9 . - . 002 M

3. .0 4 .0 w0 3 .b05. Mg

a % 2 0 o n2 a :1n o t o ":0 :002. - - -- :

"1 .. 04 . 1.

11 0 to, 99 00 0

00 0. .1 220.

"*9 ata.a-aaaa.

a: 0 0..0 a low,2

-aw .0232 .00.as;.. 3

N.. 38.0a0m

8 .. 9 .9. .. I. P19 * 9WWc . Iw

z . ,9 ... i 9 .- -

00 ccc 0eo c%1 cc I c 000000 .. 99.1 .9

o a 000 0010 :19n x0 00, In0%~ l:~n o w

1= .0 spS 0* 9 n*9"n % % 0C

o4 . .0 . S

0 :: ti90 e %9.-Iinc! za t* *

~~~~~~~~~~~t - a--c - . S P . . . . . . 0 W.

IS. IMv 9. n0 0v: ! f! ti

* . -

* 0 C: 0V02 91VP Z904 9019f9IP9 00 4v V 0

OM4 0C W, ftI e *

I- 6 P. n vP:. 1: ft ~ r

2 ' C C , zeft 0 49.. 0: 0 4 0v.04 9.VIv C Cc0 1910 t O

0Sm 494 - v. R-09 f

ni.)

2. 40- 2c c r I"4. a- cen-4-~O~m cc *ewa, a. 0 . pc ., r.c-. 44

4o r's. W." 3.9 Z 0~W -

C Co 00 00.- Ceo zoo evzot'e .- W 2 1 :as 9 .IaW0 a- c v~~v. evsc 9 *.. p9W .. ~9W.. ... P1 a909 oW"a c..a 049W No a-0 .~~

4 . 200c.-- 1.-

300 S a," rm low a -9(Az:£ :a :a 03V @ ma@ aC a tW

.9 B- O, mm *3 - I *G39 -

-77 maim aa

o ~ a C2N cc am 04 . 0 cc

Of - 00. 4

9.. 0000 0. 6- 30:m 00 C CO 00 0

0jw

315Ca '

N 0 000 0 0 9. z SU.S

z0O . N U 91

-09.9-1 ONO

NUft Z.J.2 U.49.

U. 04 W W

N Cm S S U.J m 0.

Uw 0-.N0 .0. 00 N- to 7 .09

S~~~~~ fN N. I . I N9 UU

IrU. SI 45 j 0w o C zw 3 sU.0

* * 03 .1 1 7 & a

w- 0 59 0 .. U: ... 9.9;0Wj

-v 4 0 4 4t -n Nw z 11 0

. 0 04 18N Sz

2O 2 W_-N 0- 0 N N C..

N 0 -9 0 I- U. 75

o 4 40 SE a44U.Z 4U.N09. :-%.N9 . E

IN .n-C a0 aUO -9

""l *N 04 0 4 4 a0 C 40 - --14 -"aw ZO aN w $- z 9 s- $_ a- 9

a"9 a,, oW lot,.5

.. j 9 4 W U S IU0G402

3.a a 04 . 0.- ft .t-N VINVI VIC Fo a4- VVO 11V1N.Vz . OftN 0VI VIV

1.1~f fm0 01 0 0 N 0 N 011 1 V 0 ~ . 10 4

#,- N CSft aII Qco No NN N N E IE 01 44. V

EVI m1 "II 0. 4; - N0

xn 01 NVI4 .0 .n -0

*14 Q 9 r*a

00>

*00'

.1 La 0010 0 0 N . 1 5 P- . . . . N V N N

'd fu P* 00 sly - OLnS4j fu 040 Z01 W,0V: C 4 - .0 0 o o O

- O O 0 -0I0 N. 0 4 4'CI1Ut .0. 01 N '

a 00 OVV 0111 9nN 0= 0 4 - . tV .i nOVI'V NON CINV 14

2.4~~~ ~~ O . . . .SV N OVVNV..-SONI

a N

0 0 SC VIIIn 0o 0~V w.O4NI .pf :90I .5Wr- O- 041 VI 2I . . . . . . . .2p 2I - 0

0 ~ ~ ~ w 0 . . . .. W 0 N am=SI WoIIOSN I

022 40 0 IN 0.I a .11 W0 ....0 0I 0PVSE0 .04 44o 4 4 VION 0 0 4 wow. . .. . VN 19N 0 V

I=* Z: fill 0000 OW -30 . a -Wo.OV so" a =a Am a a 05 aw -go V .9 NC a

- O Ot - 02 - L SM .G41

o~~ ~ a _j 0. &~ 0 O 5

0 -WZ . =

0. N

=* - -

w IZ 4

*3 a . S an4

N~~~ ..-N - 0-Sn - * O. NO O. N 7-5 N E-.4.0OE

O ~ ~~~~ .N 2. w~ X0 w2 * ~..M7 -t ..-t ft540 aSK"V

z .S V S4S

_Ej30. 0.

Ln CC -w w & Mn0 o- 7, 7 "U3

4 N 0 50 0 N SO 5 up5 07O~ -

.0M~ 01, w5s to - I4~~a 0 a z Io 2 110,

10o . 0 1-5 ESM a X

N~~~1 - -0 I 3..- ,-

a( K 5.

0

000 S 30 aW

-4 ~0 0 Sn 0-4 a . X .l-

-5 50 N 0 5

OooomsI-

0. S Na S, .S~ 4E I. n Iso* 0246 :24

up60 . 3 ,J S

G42ES- 5 S

- o 0 ll ~ d N uN m , nn~j r 0 000 AOft 1-00 9

Cr C C314. mf W

3. 00 a5e ong cam .4 W:In. :,

.94 Mftf I~0- ~

o, n 0n0 00. 58 On f ft- 21010-

Cu 0- CC ~ --- -, - * n

0 C

I.- 00 aOO C:P00 0.0 O O 0 0 10 0- Nt. 000 -

*0 000 o Onl 0 000.

4.1

> 04* W 0 a N0 0.0% on0 Q!% %4 .0 o m.O o a ~ . mm O

9 0!m 90!lP.0 0

oI 0 1- fto 0C. a.-o - mu- a 00 .- 0 I.o O M ~ 0 4 0 - o 0

64 050 55 O

0 N 0 0 0 .0 o 09 4 00 cCO c Cnn 00 ccn

ao C-u- CC 09 - 9 9 9 941

0no on , u- )0 0m n nm no OC) ,N 0 a00C. C 000 C 40 0 C, ) n 0 r, r

4 00 C: .. C: . . .Cu. . . . . . . . f -.- u-: 4):

W 45

41 0 0 . 0 0 nnnn 110n 0 0 C ) C I C

7 00 C 000 0V)0 n 0000 00 0000 000000000 COO0 000o 00 010 ~ ~ ~ ~ ~ ~ ~ ~ 0 009 9%0 99

0%

al

14 ~ ~ W 000 _07 z . . . . . 00

Wa Ov a

We 0W0 0.I0 00 00c 0.

M1.3 - "Ma D. -W

W u 5 -W 3. a mI P- a sW% a . 1I00 V C Z

-o 'no 014 .1064oo W -z l Cl M 4 I419 0u CW ! 0. ~ Wp- a$0-" 21 00- I4 a:. a

209 1.9-1 M-- 22 M 0:0.l. 0-C0 awn -

j203 013 000 V. -0 00403: - 1-22. r *- I

00 ... 0C14 2.0 C 0 .. 3G43.

P4 0 to 4.4 p6 0 4 .0 N

N P. 441. .0

* ~ ~ D -- 00 0 - 09z 0 oW ' 0 as

a 1- -0 -

o~~~4. at aP . 0 - -

4 Co 4 4 .0

9p, a4 0e1 0 a .W 4

j 00 ' - 0 1 04 .J m- z ac

-. 0 0 4 .0 - =P4 .1- 0 0--. ~~~~ ~I - a .W 39.2 m4

*9 0tfl r W 0

64 ~ ~~~ Ws N 0 ' 0.2 mw 4j f0

40 .j C -:: -1 .0 all 64 0

W2 z3 464 r -0 1 3 3 * c9.

* 0 C. a 00 z u. 03 41 34

IL .0 5 1

009*0 40O- W.

N Nf O 9.-0 bC 3

N. 64 Q0 04D c zz so a.mu.o-W -1 IN a V43 w- 01 3

ro : e3 ca .04 ON n0 00 CC)9 .1.9 04.2 - .N NN- NN N 0 2 ac

o 0 0 N .0 0 mux~i0u 64u

p. N 0 .. 0 0 .90uW S04

0 e. 0 Q, 94 44 9 9

0 O . 0 - 061- -4 '

.g.. . . n 0 - "0 TO-490 S 3.9 30

p. b--= 0 p. evo - .9 404 3N j 0 go I u 44 90649

v~~~2 w2.. it mu . V-a 0

W.9 000 3. mu " VAu m

-r a 0 00 00 00 000 3 10

G449 *0 4- 09

-- --- - -- . .. ..... .. ......

4- 4~ e om 0.e -. 0 PiM. 0.o~. a- 9mv a

oo 9T an.-. 0W %%: '001 mi... C!99 9%99 : 0 nOwl a,4 PM iv 04 : C

0- 00 QMM1 600 ofv % 9P n. n. i.a~~: . o0.0 ft ~ . m . 4

0

000infn 0 9 v..p. 0mi %-.. mm .c .o- ma

*1 Mo o . 9o. mm C!oa

o : 14. -S 4,;4 g- r4 -- ;.

en0 e

0 - 0 o Fv. r4 iv 0C0 400v- mi.fU.) 0 40 6. 0

o J j

0 (100

mila 0. ..- 4 .9 9644 IV

41 .x~ ~ 814 ~ - iv 4J-L9 %; !t "o .c

00 @0 Ini M.400 0 0 0 40 onmo0~~- P'W T40 fi

44.

00 -, C C . 9 ;

X. 0 mC. r 004... 0 0h 91 4 W'.

-: .. nn~

ao 400m, mtm4 iv -e a 0 4

LI~~~~1 43 m.10nCr -- .- .

0.4

N.C.

4 T *.r 0. v 0 -a1 a S00

0~:2 2 44 0f v i f

a~ ~~ so 0 .. .4o 0 . ZOa 0A 90 8.0 0.. a 9 6O

wes -2 4-8 4-68 sea s *-ma198 wms a-

40 0~' 68v.~ 44.84 5004 4 4

N 0

a .0 C 40 '. 0 0 N @

@0 0M AG0 W 2. K0 0

I C 0

ff N W - I- W

Z0 N1 -ax 0 1la N -i lw :11 a I-.J

zwz -WO2

N ON. 3 z C2 . 0=a"

OP Nf a' o Oo o- v2 0I-RI o .O o

w .0 0 0 Z

N~~ 1'00 0 =. 3 W .2A

0~o o- IL I. 0 N a2 %W2Z lof N

0 0 R I 11 .20

- 0m N. 0 0 -2 zRK wfN

3 0 .0 0 40 EON r*~~~ o I R . 2 011

'.2 m 42 W 01M

A ~ ~~~ ~ ~ 0,.e ItaU 1 .6-O~ ;-4 .I

~~~~~r - 0- O. - 4 -0.0W Em - .

I I -1- W IR W rCN

10 *D ft0' 455 N01.R 00 *DmN ,2~~~m w~ 002 ON . 0 0 NN -0 2 0

o -N 0 -" z 0 22W= W5~

if .2 000

NO.20 W 2 WN 2..

KWO,0 a w2 '0- ON =NO 1.

0~~~w 0w - 0 N .5lI2 -5 1211

W ROW 0 at .

-0 *0 9C 0 NO a 2 ;N a N a 20 ONE 20

m 0 0$-0 A. (a2 00 O we *.- Nw

a 0-4 4 IV 6.2 I- N0 02025

- N I - 0 0 7 RR I0 0.1 01

on. " W. 0 . 0 M OW 0'1

2N.0 fm 2 255.0.302

PA fu 0 NO N 0 Nw a 0 0O 2011 .95owl W

2 0 N' war 0 0 4 .N .2 0.5 2R2 2

0 WE1S W.J O2 N

.2 N40 . W..NNEO NO.G46

Of;-0 It

o t e IVS .0 o n i nr0 f* e

.4 -e ft.. 0 4 0%904 4-wo aVo. 0 fr. -. q. .-~~ nn !n % ZM04 vN 4 f..- O

'0 ad m ft4 e4 a4 1. 0 .q ".fo 1

M C! 440 Ni ViV% 40, .94 44ft m mi -

0

0o 0 OwnV gift 0440 90 0C.0 99nn9":99%00 :;X:.t 44* :4 v*~f 0% 04 4NN fri . . . . O 4 4 -

CI 0 C- . " 40 . 0ti4 gVt lt q ft 02 s

4 9 n 94 4 W14-p

4r 94 1? ft4 0.94 t

-n 4. 44, 044% 9 ' g O4. Vt CLI g

Vin 4-fv4P t I

a

4J

o~ 4444 t.N 4 f t

~~~C t -0.~ -W4 4 4- --

, z.. . . . . 4 40a 0 4:

0.~~ '0.4 - 44 4 Vt ftf'tt

V.0 w .0't :4s&. au 0 V

4 z vt a4 ft - P dj a1- W* 4 . . . 4 40 304

- 044 ~~~4 7 4 4 4 4 9 . .

1. 4.. z

1.~~~~~Z OWE'0 N 40 15 N 1

W;-z 0- Z

n. 40,0 : 000W

a~4 &'. aaN4- 441 4 0

~ 0 Gtj

W -A a D o PN a 3 _

( 3 0 N .- a a n I .- I -' Oz

0' aT-..Z44~~ am 4b N '

4 ~ ~~~ *4 u0 4 lN ON Av # s !3 4 0

om 0r= N e. -

A .0 .- 04-~ ~~~ 401 .

, W 2J4

1.~~~w o .,rz W 4 4

42"o 42442 .

3. =M -90 lw 2 .44

It 4- It It .J I. Oar

0. 41l ' SE- 3- 0- 4I

-A~~ I4 I- E* 4 - - a W NW mow4

- 0 .J 4- * C. S0 2 4 -

- ft a 4c N 2 K 2,

cl. 4L L 4 I- *UhI 2-

Ip It N

_04 64

4 04 N00 04ZJN4

U0 W4N' 4 44 4 4 43J N 4 4 0

002 00-

1.. 404.- 40 42N 2

: ; 4 00 Z- No Z; O 4- - N

0 4 0 4 4 4

4- -N *' 0 - 4~I 4G484

left-P on~ 04 t ft ft~ @.04 . t 4 t 4

98% -j N t "$new" Pt Vtt~ 010 1 t 9

Z ;;a Ca 00. Ow il ca.. 9-:-9% .9 wtC ft. 0.a ft on4 ot*Pn 4 0O

wn 9t0 0 Ot t .. O *.Pt 9. :V- 2:- vt. v9C1 ., MzmN C; .z .4 Pt C 0 *4141 ft 4 ft4 .0 Pt Ny m Sn

0 C

tot - t 4PWt Na * t em a Ft 00- -14

o cn1

CC, C,,'

I" C,0 a7N'S 014 .09 00 9nt4. mmmmmN44oc fS. . 0n Q> W: 0 9 O.t7 maa W; 4 NM Ii .* 9.. . . N -- Ft t.

*0

o 4 0

0 j~P 00 Oft.- c.Sm 0000 C 00 0v0 a Mcoa tN000 P0 . Pf,~ NO. 0

10

-A U . - . 4 0 P - S U .. 0 .. t P N S P 4 0 - 0 4 F N tt -

9S .#91. t mp. 5. N 0 .O ..

411.

% - .N 9 ; C!. 9- 9 % - I n - t

0Z 4 n 0 W1 frnw

ft ZZ2S Pt ;:A- N :Z4414ft o N.. Xt -.- - t N. - I

.P.; o Pt w~t Pt' N 00 Pa N. Pt0 w ~ :a* 4 Nt w

ft~a-w Ftt 04Nt O.p . .. .P . . . . . . N

- i Ow.- Pt 4 t Q- i sN -: o o

o0 01N It4 astt-

-G4

N ne .0 wo-m V.- 0- n0* A 10, go IV, zl

am 10 0Z N

.- ~~a a

W a

'a -Z Z a a

Oft M - -Z

I I I I

a~~ w X - t.t 1

a w WSW

*~6 C- Vt qI .9 on 2 W

Wa~~~ .0 t 5 V 0

I- Vt4Vt Vt M. 0ta 4 U1 0 t. 0 V 27 2r6 tar-

01 w0 -t N W 45 a aiS 7 --0 a a orN., 3 t0 -

0 0 w o- 'I 00 w w2& 151* I W3 23 C rt 2 -

1 *t.~' o r 2%9040 wr we. sita.

* - N N 02 M.1 2 2 za

OZ 0C C-1&W0 oww

4. a- 0 db2*wt w On

-0,-.Saot 0

At, - goV I , S. 0WJ OK 440 O4 w~ 0a

~ 4 O~t 0 a.-itN"N 0.- 1-2.- 0 -V00 z a0 4 0 t5 ~ W 5

0Vt1 .0 Na 2.0 0 ~ 0. 2 Vj W99 In 02 V .J I

A* 2W 0 42-,I- PtN Ed wC gW3 9c :

I~t 0 ~ 44 V 1- N 2 72G502

40"

'. 00 O 0.- 0:2 1099C :.a 41 4 0 4 04 4 4 OI. w- V V9%%g V.4evg v. 0 6, V.0 C.

9. coo on' ftC4N 1 n .0 4 7

P 00 0 11 a 02"4 9,00 91 W:t- coo~tO IC 4-N N 44C .-. Vn M.. VIP 10 M1. 9.

V 0c . n~, ~ .. . 4cn ~ ~ 4 VII .-1 N %i%9 *-9 i: 2 ,1

0.C : . ... vf. .9 NVi 9 VV

01en

0

oc , -1C3

*0

LlM: Q99 00 fl4 M... V.. no no a

Lao

'Oft pn t

0

.0 f

u-f-M

*~ ~ ~~t C,0rVN (e ~ l . NO 04'O~- V0 0 4V.1 N V4 0l a... ON . . . . ..n.. .

C,'~~ 90m. V i 4 V .

. M-n :. 4 .- -2. V. 0

;:a Nx at- w n a "I4r10. 04 :2 7000 0 26O ZZ 2 V

w or Ca w t- M zX I. Z: -

445 .0 WIOO :too0 oa4 40

MW 11 0 WO2 ot z WNWft 20046N0 5W a t04' -- a ~ 36 0a 0 = aW 0N M

Nw "aW "aaw NOW, a0N 40 4 N4 3 4We ~ 4 V5.0 40 0a~ a a ft W s 2 aa 19 W Ow M IU

w00 P0 a. : 0 -. : 300 I3 "-W * 0 00 Na a am" NP W N N NN N N m s

own AS 0 aP aa0 0 @ 4 00 4 NO N

@00 Z 2 8 ain . 0**3 a30442E G51#

N ~ 1 aV4 N N 4 6 4

W 0I on W 0, .* a N 0

0 6I

p t a a

4 45.10

W 6 0 4 d 0

4 ~ l -. 0

N~ AV 0 --v 54 N 4O 4

14 W P .& - "

*~~ 44 w It w 4 04

a a 2 o. -m

o~~~~~~ 44v -p 7 . m4 452 ~ ~ ~ ~ w W4 4A' a0 mime N 0 5 5054 4 4 4.. 6 Pd. Pd 0,.. @404I*

N~.2 .d 4o *1 5 2 5S~~~~~o Pd"j 4 4 4 4

I-y m - zw2 3 6..

*Z WI 4o Aw a 6 4 2 3

ft ft0 0*A 4 _law 4 5

5 I - 44 34442 1- 440

04 *0544 wa l 52

4~tw Neo~ 4 0 NN o 3 4 .2t

ON 30. 0 *

4~ ~~~ WIIr w 6. a 4 4-~~~ ~ ~ ~ ' 4A af1 44 9 4 4 z5 S-

a.~~~~~~ #. W Zd0 5 0N 4 6.I 4 5

9bI. N%. 4e4* 4 a4-f. II ~ ~ t 44. 3 *440 4E

*w W W ~ 0 . P ~ . 3 4 2 4 5 .* 4 0~~4 4.- W w 8 0 1 .2 0 P

4 ~ ~ ~ ~ ~ ~ " .0 W P4S I-. 44am M vp so W 4 40 4 4 2

01 4 .w -" 440 I 2 ~ 2 2*~ I 474 2 @ ,4 4 4 2

ox3 4 w4 0a-We 44 0 4 4 6 34 04 .

51 Pd 49 44 0 0 04 O 4 1*2 074 40 42

o : . .4 9.P 4 . .; ; - ..- m 0 0Pff W% .* vm n d -OPl.4* * P

on p.n t~m a4 PI. n ! -aw i C ft 0 0 ft MPP 0 Is C!

ft Mo fZ O mP 40 ev 0C

0

cft o- a0 10P a~p oogwv .e0 a 0 0-.C* O-*0 P.C a0 tW f

>- . . n . 0Idd v

*C C! VSP 0p s e 9d

12 to0A a:, Sftp. -ft zsP

a.I.--a

6- -o co 04P. .- p.P- so S.- Oo d5 * Pn dSp G d

0- 6p. @- $- sag 4 4

"a : a 40 :I .

all- a4a 0Pd a -n wow 0 n. 005.200 0O zp.154 * 0 44~3,1 ni .S4 Vs4 -910;-. O ~ a-

* * - Pd~d d PS 4G53

-AA

#f CC! 0 -

in ft - e 4 a:of W% t! , P, D

* , I

W) 4C0

0- N C 0 4w z t-

*C~~o 40 04.0

C 4 *

do OS o

40 a 4. o0 4-~od

..N NU

It . oo 3.

z'% 0,4* 0 1 .4

C*W0 0 NN,..PlmO.

~ 4 4C N N 0 S 2 0t _ 4

N'o : m~m -to '~

c. 0wwlZ *.o

o.oN. 312 jr N -f w -0'j

r~"o0 a,~ w- $-...ao

2. -

.N

-NN

£,.

we f

U ~o so 0o4 0 N.4

4c a s. '0 . we ow..V 0 0

.11 AtN .30lo I4

N'54C.

44

10 ~ l 00 44 ewIy 0, 00"10 ft, .0 fl 1 40 001f 4 w 4w .

n0 91 #440 $o9 1 9 :l- Z:44

a f t14 10w 44 . . u0 0.- -.

2. ftw S *0 14 00

041

b- 00 0042 .054 005P 4 0 -. 0 0Nne N 0M 4V f4

90 :"t "a ..

0

0" 0 2 : 044 9* i4 to 9% 9 9 .O- 0w f r-

01 010 000 4

40 c

I00*~~~9 .3 %0 991 91 t1%4 99 %04. to-04N00 n4 @5%

>0 -*4 %D 40 0

0 :$~ c

0044 004

44w 4

0i 0 0w or, all. a 01 4 I I

IL.

4.

0c404

a 010 04 40 v w 4

a 0 01 4 N0 4r SO .7 :0. . . .. ,. ;e, .0

010 44 . -:w 54 ; I

0:0O0 ;-a am0 04F 10w30 1, 01"- ONOCO 040 so 40 z 4 Nw 1 04 *00 1. .Vff. . . . . .Pf00 -

04.0 0w 401 @04 040w *4 Zo 40w 44 41 - NIN

- C-0w - K #1 0G550

Do- ;Stt 11

melt~WM 01-,..N

.

-4 fn it N S

a Sa

-0 Nz U' ' NN U 0 mg- - 6

N- = N :tI7 XEwt C

0 .449 '00 N NO N. U'N 0

o 0 14 aN 4 N zw-.. UVt~~~ MS MWP I 4- '

o U'N4. v 60:DO - z

m 61-1. si 01 U' U'E

41 w Nt,0. 0

Ut~tOO ' UW.Jw2 w l2

1, a ' "a' . !(S~2 ayt "3r 14b C ' ~ I

U'~~~~~t -4 as-t M9 t @ ' JO (W~b'8M3 NO xU' wwo' 0 11S *

Vt - N Pt '0 05. ::= 0N -1:O-~~ z - -j .'U'90--w I'JZW 4490

U'wN OK 4.N *4 t4' .- IN t M.. .. o wa

'~4 -J *t Vt S N. ' 00zt O z rO~~ ~ -1 wtr tJ 3 -Nro r w44 b'0 ( C. 4 U I I 0 2.

U' ~ ~ ~ ~ 0 0=0tNN- W .Vt N N - A l b N C NOw K . bb. . 1

Pt J. _IN0 CU0 14-bU U'01~ sN5 0 ' N t . 'o 3 b O t l . ' *

Vt ~ ~ ~ ~ ~ --9 Ut N wk 5 ON O A I

Z' 01 0091N ~ ~ Z 3wEt. 6C *W N V3-0 *P Wr . 99 P4 '0 't N 9 l .7 0 t N V~ N ' - ' 0 U

Vt 0 C V V N .4 I 54G56.9

8. 0 0 '~- ot.. 0 0- v 4 . 4 A0 '09- 988I. PM at1a M4 -0,&* 0 8~ a ~ a

4-n . . . 00 0, M44 6=!NN4 ..

no- Qma ao- aONg 4.. 000.. On0NOISO00 Man 4SD PS 440 . 4 9 W, C, NO NX0 l~ 0j 9 1

-M 04 9. 91% PM .6 99sN . 14N 4.4 - 4

P- 00 00 044 44O M4 Q 0"

4N 00 584 4

W I 0e. go az4 0 4

(v0

C!.0 -Nn 0 '0 .9.

V411

0 -0 ago. 04N P, 0." .~v-f~ o . 4. . . . . . . 0~ N0 -0

9.% n It0 N X 44 04. m- P. .u% 9

OD Qt 9999w = 70 4

x C N, 0N P_ P40 0 4 0 IV w.

Li~~~~~~ -i .0 009 044 9.mt 9 09. Vtt-. 0 1! '4 04

44 g 9 4 T040 g' a

-, 44 44 q4 of I I'

S ~ ~ M 2'. ft w4 6. a4 . .0 40 W4 NO wP

IL 0

dt 4 0 N .IS.I- ; % 0". . . . o .. . . . r i .0%a I00 4 -z 0%0 '0 4 .

"2. ON 44 '(INN ..N .00

0-0 4 la: a4 3D 4a - N.

20 a 40 .4 wl0 #8 0.N 84*' t.~4#8 (',, 04.' 000 4440 00. 440 90

* M N 0 4fC N~ . N. . . . . . . .. ~ G0 N7

0- 0.0 6 0o ~ ~ ~ p Pat a e o a ~

a a

a) Cb . 0T V,£ .a 0 4 f 0.-

M~ CC -an a

a 00 .0 w- a01

0 Z NL UACmino n Na 00 N ~ 00 N a)-2.

Q.- Os an ODe&2~-~a

0 an O~a 4 4 EN a m . Z 5

- ,nn.- 0 : 0w = an =. . :n :~ O

an I a 0 a a. 00 toC'2 a 3

,cc~W C, Can 02 WO

- an San an N a..- tan N a -ob a - C

4 0,sC Zial w Wa CaCO a

a ao c * an N6NN tW.2O

*0~~~: -an-_ anN * NJ fl W)

C anN w-a- an 0a a

a 3a Z ~1 bO N Ew 4NN COU N t).

a a ~~a za.J a a5)z ZOSS 00 a S02*0 annO. e a) 2a *W *(.n w . it 4 an a. Na I C CNC ~ ~ ~ ~ ~ ~ ~ 0 it ana 0a N O a0 n1 .C *0 C .. i

* a 4 N S - Nn.. an aN.D s

C S 0 0 Nz O ,... a anoas658

N 04 M.04 - - m 0

z ft 4-.11 CFO a.5 00 .- .-. O

0;;0 U' ,I0 0

0! a gym mft*MN I** 00. ~ - -

0

r -1

0 0

.0 . 0S00 05 0

C)

.0f ON. 041N

0 tn

0 0045 0 0

U. 0 50 CONo 0 m .0 a 00 00 0 C.

4-0 N00 0. 0. M04 04

0405 04 04 014

*0 10 -A 0 c c I 03 w~ r-- N- 05- O O N O O @O 0 0 .4 0 CO 0050 m C Or mc w0 c c O N -

14 05 044 -1 m. m N)

001:

wS 0 0050 0005 co m~ 0o00N: It4 Z C!490 00

00l m0

40 44-- -

VO 4N 04 ;r N MI a

00

Ow 0 z 0 ONM

ft 40 0O a4 N

-~ ~~~ 0.: f

co a -Z 200 2 ;; 20 a- 1 -MZ~owslat

o Ow- 0e so r.5 .2 z 5 - -

20 455-5 22 Fs t5'.,- ir.~ .. I

00 25 (.4 lt. 2 0.45-0 O55-59 P

-0

-ft 01NCSo ~ ~ ~ ~ ' .'-0 4 o@ ON OC N

9- 00 Si N . 0 N

9a 10 Si '0 0 MW

4 Si -4 Si

40 to Si .9 0

Si - I i z a ~o) C5 NCi

N 4N0...

O3 NtW- 009.

23 -3-

N 440 CA iM'.J~0933

-- J fI . 0 -oo0 o M r -A

N 4 , '0 Si N .a 22

ft a>CO =n za 4.:D

.3 -a - 4S 0 00o 40 wo3 00 n o - 2

1. -0 Si ft =2 - - j

N .N Si K- 93 1-T WN 6OiC= 02 SW Sm on3 N 3

N 93 m r z3

-~ 9' 40 N~ SN SN SO O 05 ~ J1 i

U *S 3.3 9-09.293G60*

z C o~ CC "10C 0' pV W 1 U

nn~ C3 09 tm, .C fl ID o,. 0Nc a~-N~FP -. 0- 'C -

cc N %CN! Sit? SNN-P iO wol ii Cf i e ng N .NtO .

41~ 00 4 ~ i a -

m 00 sa N lVO Sp 0 4 0i0l4 m- 0n N.

0C 4 t CC 4 ..4N *. i-, N-- -

Z i-N N. W C iui 4 . .. i

0

0:0

4.1

C 0 0 C) 0iO O0~ o PuC Ni: C:- CC FN

0

V) I-4 0 C

0 0

0 ~ ~ ~ ~ ~ I X zi Ofi W4Z&UNuU4 CN0 NUOO-N -0 Ci i

At v iO l~n -t... 4 CN. . . . 'c- iNf,-. :.. . . N fiN i-4 N NiNi 0 2 00 C

*- o WT. Si,? w-, N: i-Si C

Zo, 3.2- W4 -0- i Nc i-in S I

N ~ I ON 00 4i -O,? 00 00- 0i0-Ni :!Ci-- 0 4 C *'

0. an. a0. i-c. .- nn -01.ai0 1 . z X * Z

N3.- U, ZS I.1-a

4im aPC p -C -9 zI a

4.61

on .1

a-~~ *r.9

o *4 00 CVI4N '0 40 4

6- .0 0 WI ON . 0- N

6*1 -~ .0 00.-zx z

86*~~~~~~Z *N .N * 91W 4 000

o *N 0.u~ON 0 .- Pb .90

ws 2 0

oo C 31 gs

a-~w .o-4 i

row C-0 , C -

wa68* a4 6u C,

9-7 -0~4 09.8

00 68*,O -41huOV3 an 2

64 6fl4N C 0 2 2 .flXi0=-b .960 449.iW

*N~~~~~_~ 4.iIl 0 4 N640 O 5 9f001

C PIN 6 68 eN C 64 e rO ~s0 .9-00- 46

N 6 - 6*9& .26 Sb68*n 3 968 246

31 " .,W - 0-

a IL I8- in Z-

. j WN 40 00 hV 6*,0 420 0 0 9-0 22f

~ p1N .- 6 -1* 4d 4*9 N 0A f5S n

.11 -0~V

84zw ft 6-4 _ 9- a9- a- 4161 We-ti an W*6 *b

WXW= ol w0C

meS ~f .ai

9- CC 68-G62