CN2116-HW7-Solution (XJP_ 2011)

download CN2116-HW7-Solution (XJP_ 2011)

of 12

Transcript of CN2116-HW7-Solution (XJP_ 2011)

  • 8/11/2019 CN2116-HW7-Solution (XJP_ 2011)

    1/12

    CN2116 Homework Set #7 (due 14-03-2011) CN2116-XJP-2011-HW7

    1

    1. The F curve is shown below for a real reactor

    What is the mean residence time?

    Solution:

    min5.2)4)(5.0()2)(5.0(2

    1)(

    )(

    )()(

    1

    00

    0

    =+===

    =

    =

    tdFdtttEt

    dttEdF

    dttEtF

    m

    t

    2. The following data were obtained from a tracer test to a reactor.

    t (s) 0 5 10 15 20 25 30 35

    C(t) (mg/dm

    3

    ) 0 0 0 5 10 5 0 0

    (a) Plot C(t), E(t) and F(t) curves.

    (b) Evaluate the mean residence time and the variance.

    Solution:

    (a)Plot C(t)

    Plot E(t)

  • 8/11/2019 CN2116-HW7-Solution (XJP_ 2011)

    2/12

    CN2116 Homework Set #7 (due 14-03-2011) CN2116-XJP-2011-HW7

    2

    100

    )(

    )(

    )()(

    100)10)(2030(2

    1)10)(1020(

    2

    1)(Area

    0

    30

    tC

    dttC

    tCtE

    dm

    smgdttC

    ==

    =+==

    t(s) 0 5 10 15 20 25 30

    C(t)(mg/dm3) 0 0 0 5 10 5 0

    E(t) (s1) 0 0 0 0.05 0.1 0.05 0

    0)(,30For

    )30(01.0)()(,3020For

    )10(01.0)()(,2010For

    0)(,10For

    2

    1

    =

    ==

    ==

    =

    tEt

    ttEtEt

    ttEtEt

    tEt

    Plot F(t)

    5.33.0005.0)30(01.05.0)(5.0)(,3020For

    5.01.0005.0)10(01.0)(0)(,2010For

    )()(

    2

    202022

    2

    101011

    0

    +=+=+=

    +==+=

    =

    ttdttdttEtFt

    ttdttdttEtFt

    dttEtF

    tt

    tt

    t

    (b) sdtttdtttdtttEdtttEdtttEtm

    20)30)(01.0()10)(01.0()()()(30

    20

    20

    10

    30

    20 2

    20

    10 1

    0=+=+==

    2230

    20 2

    220

    10 1

    22

    0

    2

    0

    22 6.16)()()()()( stdttEtdttEttdttEtdttEttmmm

    =+===

  • 8/11/2019 CN2116-HW7-Solution (XJP_ 2011)

    3/12

    CN2116 Homework Set #7 (due 14-03-2011) CN2116-XJP-2011-HW7

    3

    3. A pulse input (N0= 1 mol, v = 4 liters/min) to a vessel gives the results shown in thefollowing figure.

    (a)Check the material balance with the tracer curve to see whether the results areconsistent.

    (b)If the result is consistent, determine the volume of the vessel V, the mean residence

    time tm, and sketch the E(t) curve.

    Solution

    (a)Check to see if the results are consistent

    By material balance:lit

    mol

    lit

    mol

    v

    NArea

    min25.0

    min/4

    10 ===

    From the graph:lit

    mol

    lit

    molArea

    min25.0min)5)(05.0(

    ==

    So the results are consistent.

    (b) 1

    0

    min2.025.0

    05.0

    25.0

    )(

    )(

    )()(

    ====

    tC

    dttC

    tCtE

    lit10min)/lit4min)(5.2(

    min5.2)2.0()(0

    5

    0

    =====

    ===

    vtVv

    Vt

    dttdtttEt

    mm

    m

  • 8/11/2019 CN2116-HW7-Solution (XJP_ 2011)

    4/12

    CN2116 Homework Set #7 (due 14-03-2011) CN2116-XJP-2011-HW7

    4

    4. The first-order reaction, BA , with 1min8.0 =k is carried out in a real reactor with thefollowing RTD function

    For 20 t then 22 )()( = ttE min-1(hemi circle)

    For 2>t then 0)( =tE

    (a)What is the mean residence time?(b)What is the variance?(c)What is the conversion predicted by the segregation model?(d)What is the conversion predicted by the maximum mixedness model?

    Solution

    (a)Mean residence time

    By definition

    =0

    1)( dttE . The area of the semicircle representing the E(t) is given by

    12

    2

    ==

    A and

    2

    = . For constant volumetric flow min8.02

    ===

    mt .

    (b)Variance

    ==

    2

    0

    222

    0

    22 )()()()( dtttdttEt

    Using polymath:

    159.02 =Polymath results

    POLYMATH Report

    Ordinary Differential Equations 29-Nov-2010

    Calculated values of DEQ variables

    Variable Initial value Minimal value Maximal value Final value

    1 E 0 0 0.7980869 0.0166534

    2 E2 0 0 0.7980869 0.0166534

    3 sigma 0 0 0.1593161 0.1593161

    4 t 0 0 1.596 1.596

    5 t1 1.596174 1.596174 1.596174 1.596174

    6 tau 0.7980869 0.7980869 0.7980869 0.7980869

    Differential equations

    1 d(sigma)/d(t) = (t-tau)^2*E

  • 8/11/2019 CN2116-HW7-Solution (XJP_ 2011)

    5/12

    CN2116 Homework Set #7 (due 14-03-2011) CN2116-XJP-2011-HW7

    5

    Explicit equations

    1 tau = (2/3.14)^0.5

    2 t1 = 2*tau

    3 E2 = (t*(2*tau-t))^(1/2)

    4 E = if (t

  • 8/11/2019 CN2116-HW7-Solution (XJP_ 2011)

    6/12

    CN2116 Homework Set #7 (due 14-03-2011) CN2116-XJP-2011-HW7

    6

    8 Xbar 0 0 0.4447565 0.4447565

    Differential equations

    1 d(Xbar)/d(t) = X*E

    Explicit equations1 tau = (2/3.14)^0.5

    2 t1 = 2*tau

    3 E2 = (t*(2*tau-t))^(1/2)

    4 E = if (t

  • 8/11/2019 CN2116-HW7-Solution (XJP_ 2011)

    7/12

    CN2116 Homework Set #7 (due 14-03-2011) CN2116-XJP-2011-HW7

    7

    Ordinary Differential Equations 29-Nov-2010

    Calculated values of DEQ variables

    Variable Initial value Minimal value Maximal value Final value

    1 E 0.0166534 0 0.7980866 0

    2 E1 0.0166534 0 0.7980866 03 F 1. -0.0005053 1. -0.0005053

    4 k 0.8 0.8 0.8 0.8

    5 lam 1.596 0 1.596 0

    6 tau 0.7980869 0.7980869 0.7980869 0.7980869

    7 x 0 0 0.4445289 0.4445289

    8 z 0 0 1.596 1.596

    Differential equations

    1 d(x)/d(z) = -(-k*(1-x)+E/(1-F)*x)

    2 d(F)/d(z) = -E

    Explicit equations

    1 k = .8

    2 lam = 1.596-z

    3 tau = (2/3.14)^0.5

    4 E1 = (tau^2-(lam-tau)^2)^0.5

    5 E = if (lam

  • 8/11/2019 CN2116-HW7-Solution (XJP_ 2011)

    8/12

    CN2116 Homework Set #7 (due 14-03-2011) CN2116-XJP-2011-HW7

    8

    [Discussion Topics]

    1. A liquid macrofluid reacts according to RA as it flows through a vessel. Find theconversion of A for the following flow patterns and kinetics.

    Solution

    (a)Using the segregation model, dttEtXXbatch

    )()(0

    =

    For a batch reactor we have

    0A

    A

    C

    r

    dt

    dX =

    From the reaction kinetics, we have

    zero order reaction, minmol/lit3 = Ar and mol/lit60 =AC

    Solving for X(t), we have

    2minfor t1,X

    min2for,5.05.0)(

    >=

    == ttXttX

    From the flow pattern (a), we have

    3t0for,min3

    1)( 1 = tE

    Therefore, the mean conversion for a zero order reaction is

    3

    2)

    3

    1()1()

    3

    1()5.0(

    3

    2

    2

    0=+= dtdttX

    (b)For a batch reactor we have

    0A

    A

    C

    r

    dt

    dX

    =

    From the reaction kinetics, we have

    zero order reaction, minmol/lit03.0 = Ar and mol/lit1.00=AC

    Solving for X(t), we have:

    min33.3for t1,X

    min33.3for,3.03.0)(

    >=

    == ttXttX

  • 8/11/2019 CN2116-HW7-Solution (XJP_ 2011)

    9/12

    CN2116 Homework Set #7 (due 14-03-2011) CN2116-XJP-2011-HW7

    9

    From the flow pattern (b), we know nothing leaves the reactor before 4 min, so

    everything has reacted. 1=X

    2. A step tracer input was used on a real reactor with the following results:

    For 10t min, then CT= 0

    For 3010 t min, then CT= 10 g/dm3

    For 30>t min, then CT= 40 g/dm

    3

    The second-order reaction BA with min/moldm1.0 3 =k is to be carried out in the realreactor with an entering concentration of A of 1.25 mol/dm

    3at a volumetric flow rate of 10

    dm3/min. Here kis given at 325 K.

    (a)What is the mean residence time tm?(b)What is the variance?(c)What conversion do you expect from an ideal PFR, an ideal CSTR, and a real reactor

    with the same tm?

    (d)What is the conversion predicted by the Segregation model and the Maximum Mixednessmodel?

    Solution

    (a)The cumulative distribution function F(t) is given:

    The real reactor can be modeled as two parallel PFRs:

    The relative 30minmin,10),(43)(

    41)( 2121 ==+= tttE

    Mean residence time

    =+==1

    0min25)75.0)(20()1)(10(tdFtm

    or

  • 8/11/2019 CN2116-HW7-Solution (XJP_ 2011)

    10/12

    CN2116 Homework Set #7 (due 14-03-2011) CN2116-XJP-2011-HW7

    10

    min254

    3

    4

    1)(

    4

    3)(

    4

    1)( 21

    0 021

    =+=

    +==

    dttttdtttEtm

    (b)Variance:

    2222

    2

    2

    1

    0 021

    222

    min75)2530(4

    3)2510(

    4

    1)(

    4

    3)(

    4

    1

    )(4

    3)(

    4

    1)()()(

    =+=+=

    +==

    mm

    mm

    tt

    dtttttdttEtt

    (c)Conversion X from an ideal PFR, an ideal CSTR, and a real reactor.

    For a PFR, second-order, liquid phase, irreversible reaction with min/moldm1.0 3 =k ,

    min25= and 30 mol/dm25.1=AC

    758.01 0

    0 =+

    =A

    A

    Ck

    CkX

    For a CSTR, second-order, liquid phase, irreversible reaction with min/moldm1.0 3 =k ,

    min25= and 30 mol/dm25.1=AC

    572.0)1(

    02 ==

    XCk

    X

    XA

    For two parallel PFRs, min101= and min302= , 001 4/1 AA FF = and 002 4/3 AA FF = ,

    second-order, liquid phase, irreversible reaction with min/moldm1.0 3 =k , min25=

    and 30 mol/dm25.1=AC

    3

    01

    0101 /556.0)

    11( dmmol

    Ck

    CkCC

    A

    AAA =

    +=

    3

    02

    0202 /263.0)

    11( dmmol

    Ck

    CkCC

    A

    AAA =

    +=

    731.04

    3

    4

    1

    00

    201000

    =

    =A

    AAA

    Cv

    CvCvCv

    X

    (d)Conversion predicted by the Segregation model.

    731.014

    3

    14

    1

    )(4

    3)(

    4

    1

    1)()(

    20

    20

    10

    10

    021

    0

    0

    0

    =+

    ++

    =

    +

    +==

    A

    A

    A

    A

    A

    A

    kC

    kC

    kC

    kC

    dttttkC

    tkCdttEtXX

  • 8/11/2019 CN2116-HW7-Solution (XJP_ 2011)

    11/12

    CN2116 Homework Set #7 (due 14-03-2011) CN2116-XJP-2011-HW7

    11

    Conversion predicted by the Maximum Mixedness model

    XF

    EXkC

    d

    dX

    XkCkCr

    XF

    E

    C

    r

    d

    dX

    A

    AAA

    A

    A

    )(1

    )()1(

    )1(

    )(1

    )(

    2

    0

    220

    2

    0

    +=

    ==

    +=

    We need to change the variable such the integration proceeds forward:

    XzTF

    zTEXkC

    dz

    dXA

    )(1

    )()1( 20

    =

    Solved by Polymath:

    706.0=X

    POLYMATH Report POLYMATH Report

    Ordinary Differential Equations 29-Nov-2010

    Calculated values of DEQ variables

    Variable Initial value Minimal value Maximal value Final value

    1 ca 1.25 0.3593529 1.25 0.3672986

    2 cao 1.25 1.25 1.25 1.25

    3 E 0 0 1.25 0

    4 E1 1.25 1.25 1.25 1.25

    5 E2 1.25 1.25 1.25 1.25

    6 E3 0 0 0 0

    7 EF 0 0 2.427988 0

    8 F 0.9999 -0.0001081 0.9999 -0.0001081

    9 k 0.1 0.1 0.1 0.1

    10 lam 40. 0 40. 0

    11 ra -0.15625 -0.15625 -0.0129134 -0.0134908

    12 t1 10. 10. 10. 10.

    13 t2 30. 30. 30. 30.

    14 x 0 0 0.7125177 0.7061611

    15 z 0 0 40. 40.

    Differential equations

    1 d(x)/d(z) = -(ra/cao+E/(1-F)*x)

    2 d(F)/d(z) = -E

  • 8/11/2019 CN2116-HW7-Solution (XJP_ 2011)

    12/12

    CN2116 Homework Set #7 (due 14-03-2011) CN2116-XJP-2011-HW7

    12

    Explicit equations

    1 cao = 1.25

    2 k = .1

    3 lam = 40-z

    4 ca = cao*(1-x)5 t1 = 10

    6 t2 = 30

    7 E3 = 0

    8 ra = -k*ca^2

    9 E2 = 0.75/(t2*2*(1-0.99))

    10 E1 = 0.25/(t1*2*(1-0.99))

    11E = if ((lam>=0.99*t1)and(lam=0.99*t2)and(lam