CLBottasso Short Course PartII Wind Turbine Control

download CLBottasso Short Course PartII Wind Turbine Control

of 78

Transcript of CLBottasso Short Course PartII Wind Turbine Control

  • 8/6/2019 CLBottasso Short Course PartII Wind Turbine Control

    1/78

    P O L I

    P O L I

    d i

    d i M

    I M I t e

    c n

    i c o

    t e c n

    i c o

    l a n o

    l a n o

    Short Course on Wind Turbine

    Modeling and Control- Part II: Control -

    C.L. BottassoPolitecnico di Milano

    Milano, Italy

    Korea Institute of Machinery and Materials

    &Kangwon National UniversityOctober 18-19, 2007

    Short Course on Wind Turbine

    Modeling and Control- Part II: Control -

    C.L. BottassoPolitecnico di Milano

    Milano, Italy

    Korea Institute of Machinery and Materials

    &Kangwon National UniversityOctober 18-19, 2007

  • 8/6/2019 CLBottasso Short Course PartII Wind Turbine Control

    2/78

    P O L I

    P O L I

    d i

    d i M

    I M I t e

    c n

    i c o

    t e c n

    i c o

    l a n o

    l a n o

    Control System Architectureontrol System Architecture

  • 8/6/2019 CLBottasso Short Course PartII Wind Turbine Control

    3/78

    W i n d T u r b

    i n e

    C o n

    t r o l

    W i n d T u r b

    i n

    e C o n

    t r o l

    W i n d T u r b i n

    e C o n

    t r o l

    POLITECNICO di MILANO DIA

    Control System Architectureontrol System Architecture

    Windindturbineurbine

    SensorsPositions, speeds,accelerations, stresses,strains, temperature,electrical & fluidcharacteristics, etc.

    SensorsPositions, speeds,accelerations, stresses,strains, temperature,electrical & fluidcharacteristics, etc.

    SupervisorChoice of operating condition: Start up Power production Emergency shut-down

    SupervisorChoice of operating condition:

    Start up Power production Emergency shut-down Active control

    systemControl strategy

    Active controlsystemControl strategy

    ObserversWind, tower & blades

    ObserversWind, tower & blades

    Wind farmsupervisorWind farmsupervisor

    Communication and reportingommunication and reporting

    ActuatorsActuator controlsystem

    ActuatorsActuator controlsystem

  • 8/6/2019 CLBottasso Short Course PartII Wind Turbine Control

    4/78

    W i n d T u r b

    i n e

    C o n

    t r o l

    W i n d T u r b

    i n

    e C o n

    t r o l

    W i n d T u r b i n

    e C o n

    t r o l

    POLITECNICO di MILANO DIA

    Supervisory Control Systemupervisory Control System

    Main tasksain tasks : Operational managing and monitoring Diagnostics, safety

    Communication, reporting and data logging

    Operational statesperational states : Idling Start Up Normal power production Normal shut down

    Emergency shut down

    Main input dataain input data : Wind speed Rotor speed

    Blade pitch Electrical power Temperatures in critical area Accelerations

    but also Stresses, strains (blades, tower) Position, speed (yaw, blade, actuators, teeteringangle, rotor tilt, )

    Fluid properties and levels Electrical systems (voltages, grid characteristics, ) Icing conditions, humidity, lighting,

  • 8/6/2019 CLBottasso Short Course PartII Wind Turbine Control

    5/78

    W i n d T u r b

    i n e

    C o n

    t r o l

    W i n d T u r b i n

    e C o n

    t r o l

    W i n d T u r b i n

    e C o n

    t r o l

    POLITECNICO di MILANO DIA

    Supervisory Control Systemupervisory Control System

    Idlingdling Power

    production

    Power

    productiontart uptart up

    Normal shut downormal shut down

    Emergency

    shut down

    Emergencyshut down

    V > V cut-inV > V cut-in RPM > cut-in

    RPM > cut-in

    V > V cut-offV > V cut-off

    V < V cut-inV < V cut-in

    Failures Overspeed & high rotor accel.

    Vibrations

    Failures Overspeed & high rotor accel.

    Vibrations

    Representative operational state monitoring logic:

  • 8/6/2019 CLBottasso Short Course PartII Wind Turbine Control

    6/78

    P O L I

    P O L I

    d i

    d i M

    I M I t e

    c n

    i c o

    t e

    c n

    i c o

    l a n o

    l a n o

    Control Strategiesontrol Strategies

  • 8/6/2019 CLBottasso Short Course PartII Wind Turbine Control

    7/78

    W i n d T u r b

    i n e

    C o n

    t r o l

    W i n d T u r b i n

    e C o n

    t r o l

    W i n d T u r b i n

    e C o n

    t r o l

    POLITECNICO di MILANO DIA

    Basicasic wind turbine control strategies and power curvesower curves : Constant TSR strategy Constant rotor speed strategy Below and above rated speed control Variable speed pitch-torque regulated wind turbine Stall and yaw/tilt control

    Control Strategiesontrol Strategies

  • 8/6/2019 CLBottasso Short Course PartII Wind Turbine Control

    8/78

    W i n d T u r b

    i n

    e C o n

    t r o l

    W i n d T u r b i n

    e C o n

    t r o l

    W i n d T u r b i n e

    C o n

    t r o l

    POLITECNICO di MILANO DIA

    0.00

    0.05

    0.10

    0.15

    0.20

    0.25

    0.30

    0.35

    0.40

    0.45

    0.50

    0 2 4 6 8 10 12 14 16 18 20

    Control Strategiesontrol Strategies

    C P

    Power coefficient:

    Tip speed ratio (TSR):

    C P =P

    1/ 2AV 3

    = RV

    C P = C P ( , ,Re,M )

    C P

    = const.

  • 8/6/2019 CLBottasso Short Course PartII Wind Turbine Control

    9/78

    W i n d T u r b

    i n

    e C o n

    t r o l

    W i n d T u r b i n

    e C o n

    t r o l

    W i n d T u r b i n e

    C o n

    t r o l

    POLITECNICO di MILANO DIA

    0.00

    0.05

    0.10

    0.15

    0.20

    0.25

    0.30

    0.35

    0.40

    0.45

    0.50

    C P

    Control Strategiesontrol Strategies

    Constant rotor speedonstant rotor speed : = const. =

    V = R

    V

    C

    P

    V = R/

    0.00

    0.05

    0.10

    0.15

    0.20

    0.25

    0.30

    0.35

    0.40

    0.45

    0.50

    0 2 4 6 8 10 12 14 16 18 20

    C P

    max

    = const.

    Direct grid connection:Generator provides whatever torque requiredto operate at or near given angular speed

    V aero cut in =

    R/ max < V cut in

  • 8/6/2019 CLBottasso Short Course PartII Wind Turbine Control

    10/78

    W i n d T u r b i n

    e C o n

    t r o l

    W i n d T u r b i n

    e C o n

    t r o l

    W i n d T u r b i n e

    C o n

    t r o l

    POLITECNICO di MILANO DIA

    Control Strategiesontrol Strategies

    Constant TSRonstant TSR : = const. = = V

    R

    P =12

    AV 3C P

    =

    V

    Constant rotorspeed strategy

    Constant TSR strategy

    = const. =

    V

    V r ( const. )

    Indirect grid connection: Through power electronic converter Allows for rapid control of generator torque

    V, C P ( const. ) C P ( const. )

  • 8/6/2019 CLBottasso Short Course PartII Wind Turbine Control

    11/78

    W i n d T u r b i n

    e C o n

    t r o l

    W i n d T u r b i n e

    C o n

    t r o l

    W i n d T u r b i n e

    C o n

    t r o l

    POLITECNICO di MILANO DIA

    Control Strategiesontrol Strategies

    V

    P

    P r

    = Constant TSR strategy (cubic)

    = Constant rotor speed strategy

    = const.

    Powerower -wind speed curveind speed curve :

    V aero cut in ( const. ) V aero cut in ( const. )

    Power deficit for constantspeed wrt constant TSR

    V r ( const. )

    V r ( const. )

  • 8/6/2019 CLBottasso Short Course PartII Wind Turbine Control

    12/78

    W i n d T u r b i n

    e C o n

    t r o l

    W i n d T u r b i n e

    C o n

    t r o l

    W i n d T u r b i n e

    C o n

    t r o l

    POLITECNICO di MILANO DIA

    Control Strategiesontrol Strategies

    P

    P P

    V V

    V

    1 2

    =

    = =

    =

    1

    = 2

    Constant rotor speed strategy 2 vs.onstant rotor speed strategy 2 vs.strategy 1trategy 1 : Higher cut in speed

    Lower wind speed to reach rated power Smaller power deficit

  • 8/6/2019 CLBottasso Short Course PartII Wind Turbine Control

    13/78

    W i n d T u r b i n

    e C o n

    t r o l

    W i n d T u r b i n e

    C o n

    t r o l

    W i n d T u r b i n e

    C o n

    t r o l

    POLITECNICO di MILANO DIA

    Control Strategiesontrol Strategies

    P P

    V V

    = =

    = 1

    = 2

    Annual energy yield: E = Y Z V

    out

    V inP (V )f w dV

    f w f w

    Weibull distribution

    E

    V

    = 2

    = 1Constant rotor speed strategy 2vs. strategy 1:

    Smaller power deficit wrt toconstant TSR, but at improbablewind speeds Higher energy yield

  • 8/6/2019 CLBottasso Short Course PartII Wind Turbine Control

    14/78

    W i n d T u r b i n

    e C o n

    t r o l

    W i n d T u r b i n e

    C o n

    t r o l

    W i n d T u r b i n e

    C o n

    t r o l

    POLITECNICO di MILANO DIA

    Control Strategiesontrol Strategies

    Control above rated speedontrol above rated speed :

    0.00

    0.05

    0.10

    0.15

    0.20

    0.25

    0.30

    0.35

    0.40

    0.45

    0.50

    0 2 4 6 8 10 12 14 16 18 20

    V > V r

    C P

    C P

    Constant power constant rotor speed curve(cubic)

    C P = C

    P

    3

    P = P r = 12AV 3C P ( , ) = const.

    = = const.

    T =P = const.

    = R

    V

  • 8/6/2019 CLBottasso Short Course PartII Wind Turbine Control

    15/78

    W i n d T u r b i n

    e C o n

    t r o l

    W i n d T u r b i n e

    C o n

    t r o l

    W i n d T u r b i n e

    C o n

    t r o l

    POLITECNICO di MILANO DIA

    V

    Control Strategiesontrol Strategies

    P

    V r

    P r

    =

    V r

    V V r

    V V r

    = V /RRegion 2 - below ratedspeed: constant TSRstrategy

    Region 3 - above ratedspeed: constant powerstrategy

    Below rated speed:torque control

    Above rated speed:pitch control

    Variableariable -speed pitch/torquepeed pitch/torqueregulated wind turbineegulated wind turbine :

    T = 1 / 2ARV 2C P

    / T T = P r /

    0.00

    0.05

    0.10

    0.15

    0.20

    0.25

    0.30

    0.35

    0.40

    0.45

    0.50

    0 2 4 6 8 10 12 14 16 18 20

    C P

    V cut outV cut in

    Regio

    1

    No torque to promoterotor acceleration

    V

    Often, smoothing for mildertransition between regions

  • 8/6/2019 CLBottasso Short Course PartII Wind Turbine Control

    16/78

    W i n d T u r b i n e

    C o n

    t r o l

    W i n d T u r b i n e

    C o n

    t r o l

    W i n d T u r b i n e

    C o n

    t r o l

    POLITECNICO di MILANO DIA

    V

    Control Strategiesontrol Strategies

    P

    V r

    P r =

    Below rated speed:constant TSR strategy

    Above rated speed:(roughly) constantpower strategy

    Variableariable -speed passivepeed passive -stall/torquetall/torqueregulated wind turbineegulated wind turbine :

    Stall region, highdispersion

    V r

    V V r

    V V r

    = V /R

    Below rated speed:torque control

    Above rated speed:torque-stall control

    T T = P r /

    V

  • 8/6/2019 CLBottasso Short Course PartII Wind Turbine Control

    17/78

    W i n d T u r b i n e

    C o n

    t r o l

    W i n d T u r b i n e

    C o n

    t r o l

    W i n d T u r b i n e

    C o n

    t r o l

    POLITECNICO di MILANO DIA

    V

    Control Strategiesontrol Strategies

    P

    V r

    P r =

    Below rated speed:

    constant rotorspeed strategy

    Above rated speed:

    (roughly) constantpower strategy

    Constant-speed passive-regulation wind turbine:

    =

    Stall region, highdispersion

    V

    P

    V r

    P r =

    Below rated speed:

    constant rotorspeed strategy

    Above rated speed:

    yaw or tilt rotor toreduce effective wind

    =

    Stall regulation Yaw/tilt out-of-the-wind

    regulation

    V

    V cos

    Rotor disk

  • 8/6/2019 CLBottasso Short Course PartII Wind Turbine Control

    18/78

    W i n d T u r b i n e

    C o n

    t r o l

    W i n d T u r b i n e

    C o n

    t r o l

    W i n d T u r b i n e

    C o n

    t r o l

    POLITECNICO di MILANO DIA

    Further wind turbine control goalsurther wind turbine control goals : Fatigue damage reduction in turbulent wind Gust load alleviation Disturbance rejection Resonance avoidance

    Actuator duty cycle reduction Periodic disturbance reduction (gravity, wind shear, tower shadow, )

    Usually, these goals should be achieved together with the basic controlasic controlstrategiestrategies deriving from the power curves, i.e. Region 2: maximize energy capture Region 3: limit output power to rated value

    Control Strategiesontrol Strategies

  • 8/6/2019 CLBottasso Short Course PartII Wind Turbine Control

    19/78

    W i n d T u r b i n e

    C o n

    t r o l

    W i n d T u r b i n e

    C o n

    t r o l

    W i n d T u r b i n e

    C o n

    t r o l

    POLITECNICO di MILANO DIA

    Yaw Controlaw ControlOrient the rotor in line with the windn line with the wind field to increase powerNote: some small wind turbine will also yaw out of the wind to reduce loads in high winds

    Passiveassive or free yaw, used in small wind turbines:

    Activective yaw:- If V < V cut in = no action- If V > V cut in :

    - Compute yaw error averaging over window (typically tens of sec.s) to reduce duty cycle- Region 2 = realign if yaw error > yaw threshold 2 (typically ~15 deg)- Region 3 = realign if yaw error > yaw threshold 3 (typically ~8 deg)- Realign at low yaw rate to reduce gyroscopic loads- If yaw error < small threshold (typically a fraction of a deg), engage yaw brake to eliminatebacklash between drive pinion and bull gear

    Downwind rotorail fin

  • 8/6/2019 CLBottasso Short Course PartII Wind Turbine Control

    20/78

    P O L I

    P O L I

    d i d i M I M I t e

    c n

    i c o

    t e

    c n

    i c o

    l a n o

    l a

    n o

    Reduced Modelseduced Models

    R d d M d l f M d l B dReduced Models for Model Based

  • 8/6/2019 CLBottasso Short Course PartII Wind Turbine Control

    21/78

    W i n d T u r b i n e

    C o n

    t r o l

    W i n d T u r b i n e

    C o n

    t r o l

    W i n d T u r b i n e

    C o n

    t r o l

    POLITECNICO di MILANO DIA

    Reduced Models for Model-BasedControllers

    Reduced Models for Model-BasedControllers

    Equationsquations : Drive-train shaft dynamics Elastic tower fore-aft motion Blade pitch actuator dynamics Electrical generator dynamics

    Statestates :

    Inputsnputs :

    T el eT el c T l

    J G

    J R

    c

    e

    T a

    F a

    M T , C T , K T

    Non-linear collective-only reduced model:

    c , T el c

    d

    d, d, , e , e , T el e

    Reduced Models for Model BasedReduced Models for Model Based

  • 8/6/2019 CLBottasso Short Course PartII Wind Turbine Control

    22/78

    W i n d T u r b i n e

    C o n

    t r o l

    W i n d T u r b i n e

    C o n

    t r o l

    W i n d T u r b i n e

    C o n

    t r o l

    POLITECNICO di MILANO DIA

    Reduced Models for Model-BasedControllers

    Reduced Models for Model-BasedControllers

    Equations of motionquations of motion :

    Tip speed ratio: Wind: (mean wind + turbulence)

    (J R + J G ) + T l ( ) + T el e T a ( , e , V w d, V m ) = 0M T d + C T d + K T d F a ( , e , V w d, V m ) = 0

    e + 2 e + 2( e c) = 0

    T el e + 1 (T el e T el c ) = 0

    = R/ (V w d)

    V w = V m + V t

    Reduced Models for Model BasedReduced Models for Model Based

  • 8/6/2019 CLBottasso Short Course PartII Wind Turbine Control

    23/78

    W i n d T u r b i n e

    C o n

    t r o l

    W i n d T u r b i n e

    C o n

    t r o l

    W i n d T u r b i n e

    C o n

    t r o l

    POLITECNICO di MILANO DIA

    Reduced Models for Model-BasedControllers

    Reduced Models for Model-BasedControllers

    Rotor force and moment coefficientsotor force and moment coefficients :

    computed off-line with CpLambdapLambda aero-servo-elastic model, averaging periodic response over one rotor rev

    Stored in look-up tables

    T a =12

    R3C P e ( , e , V m )

    (V w d)2

    F a =12 R2C F e ( , e , V m )(V w d)2

    V m Dependence of and

    on mean windaccounts for deformabilityeformability of towerand blades under high winds:

    C P e ( , e , V m )C F e ( , e , V m )

    C F e ( , e , V m ), C P e ( , e , V m )

    Reduced Models for Model BasedReduced Models for Model Based

  • 8/6/2019 CLBottasso Short Course PartII Wind Turbine Control

    24/78

    W i n d T u r b i n e

    C o n

    t r o l

    W i n d T u r b i n e

    C o n

    t r o l

    W i n d T u r b i n e

    C o n

    t r o l

    POLITECNICO di MILANO DIA

    Reduced Models for Model-BasedControllers

    Reduced Models for Model-BasedControllers

    Rigid body Beam Revolute joint Actuator Boundary condition

    Blade

    Generator

    Nacelle inertia

    Yaw

    actuatorPitchactuator

    Torqueactuator

    Tower

    Equivalenttowerstiffnesses

    Equiv

    en

    sh

    s

    fne

    Equivalent flap hingeand spring

    Statestates : 3 flap angles (or blade modal amplitudes) Rotor azimuth Shaft torsion

    3 tower angles (fore-aft, side-side, torsion)(or tower modal amplitudes)

    Yaw angle

    (and their rates)

    Inputsnputs :

    Examplexample : individual-pitch modelT el c

    c1 c2

    c3

    c1 , c2 , c3 , T el c

    Reduced Models for Model BasedReduced Models for Model Based

  • 8/6/2019 CLBottasso Short Course PartII Wind Turbine Control

    25/78

    W i n d T u r b i n e

    C o n

    t r o l

    W i n d T u r b i n e

    C o n

    t r o l

    W i n d T u r b i n e

    C o n

    t r o l

    POLITECNICO di MILANO DIA

    Reduced Models for Model-BasedControllers

    Reduced Models for Model-BasedControllers

    Model linearizationodel linearization : needed for implementation of controllers(e.g. LQR) and model-based observers (e.g. Kalman filter)

    Possible approaches: Analytical Automated (e.g. Maple, or directly from software usingAutomatic Differentiation tools like ADOL-C, ADIC, etc.) Numerical, by finite differences

    P T

    V V V VLinearization trim points

    x = f (x , u , p) x = A (x , u , p ) x + B (x , u , p ) u u = u u x = x x

    x u p

  • 8/6/2019 CLBottasso Short Course PartII Wind Turbine Control

    26/78

    P O L I

    P O L I

    d i d i M I M I t e

    c n

    i c o

    t e

    c n

    i c o

    l a

    n o

    l a

    n o

    Observersbservers

  • 8/6/2019 CLBottasso Short Course PartII Wind Turbine Control

    27/78

    W i n d T u r b i n e

    C o n

    t r o l

    W i n d T u r b i n e

    C o n

    t r o l

    W

    i n d T u r b i n e

    C o n

    t r o l

    POLITECNICO di MILANO DIA

    Tower State Observerower State Observer

    q = vv = ( T ) 1 T (a + n w )

    Accelerometer

    Strain gage

    c = 00 q n v

    q

    n w , n v

    Kalmanalman modalodal -based tower observerased tower observer :

    Accelerations:

    Curvatures: Unknown modal amplitudes: Modal bases: Process & measurement noise:

    Remarksemarks : Fore-aft and side-side identification Multiple modal ampl. (sensor number and position for observability) Formulation applicable also to identification of flap-lag blade states

  • 8/6/2019 CLBottasso Short Course PartII Wind Turbine Control

    28/78

    W i n d T u r b i n e

    C o n

    t r o l

    W i n d T u r b i n e

    C o n

    t r o l

    W

    i n d T u r b i n e

    C o n

    t r o l

    POLITECNICO di MILANO DIA

    Tower State Observerower State Observer

    State space form:

    with

    Optimal Kalman state estimate:

    Filter gain matrix Propagated states and outputs based on accelerometric reading: Curvature reading:

    x = Ax + Bu + W n wy = Cx + Du + V n v

    x k = x

    k + K k (y k y

    k )

    x = ( q T , v T )T u = a y = c

    A = 0 I 0 0 B = 0 C = 00 0 D = 0 W =

    0

    V = I K k

    x k , y

    k

    y k

    b

  • 8/6/2019 CLBottasso Short Course PartII Wind Turbine Control

    29/78

    W i n d T u r b i n e

    C o n

    t r o l

    W i n d T u r b i n e

    C o n

    t r o l

    W

    i n d T u r b i n e

    C o n

    t r o l

    POLITECNICO di MILANO DIA

    Tower State Observerower State Observer

    Filter warm-up

    Tower tip velocity estimation:

    S Ob

  • 8/6/2019 CLBottasso Short Course PartII Wind Turbine Control

    30/78

    W i n d T u r b i n e

    C o n

    t r o l

    W

    i n d T u r b i n e

    C o n

    t r o l

    W

    i n d T u r b i n e

    C o n

    t r o l

    POLITECNICO di MILANO DIA

    Tower State Observerower State Observer

    Accelerometers

    Strain gages

    Kalmanalman modalodal -based tower and bladeased tower and bladestate observertate observer :

    Compute or measure modal bases for

    blades and tower

    Integrate tower kinematic equationsfrom accelerations Correct with tower strain gage curvaturereadings Integrate blade kinematic equations

    from blade and tower accelerations Correct with blade strain gage curvaturereadings

    i d Obi d Ob

  • 8/6/2019 CLBottasso Short Course PartII Wind Turbine Control

    31/78

    W i n d T u r b i n e

    C o n

    t r o l

    W

    i n d T u r b i n e

    C o n

    t r o l

    W

    i n d T u r b i n e

    C o n

    t r o l

    POLITECNICO di MILANO DIA

    Anemometer: Cup, but also laser, ultrasonic, etc. Measurements highly inaccurate because of

    Rotor wake Wake turbulence Nacelle disturbance

    Sufficient accuracy for supervision tasks and yaw alignment Not sufficient for sophisticated control law implementation

    Need ways to reconstructeconstruct wind blowing on rotor from reliableeliablemeasurementseasurements (pitch setting, rotor speed, etc.)

    Wind Observerind Observer

    Wi d Obi d Ob

  • 8/6/2019 CLBottasso Short Course PartII Wind Turbine Control

    32/78

    W i n d T u r b i n e

    C o n

    t r o l

    W

    i n d T u r b i n e

    C o n

    t r o l

    W

    i n d T u r b

    i n e

    C o n

    t r o l

    POLITECNICO di MILANO DIA

    Wind Observerind Observer

    Extendedxtended Kalmanalman wind observerind observer :

    Wind equation: Output measurement torque-balance equation:

    Non-linear state-space form:

    with

    Extended Kalman estimate

    with measured output to enforce torque-balance equation

    Mean wind reconstructed with moving average on 10 sec window

    V w = nw

    y = ( J R + J G ) + T l ( ) + T el e T a ( , e , V w d, V m ) + nv

    x = f (x, u , n w )y = h(x, u , n v )x = V w

    u= (

    ,

    ,

    e ,

    d, V m )T

    xk = x

    k + K k (yk y

    k )

    yk = 0

    V m

    Wi d Obi d Ob

  • 8/6/2019 CLBottasso Short Course PartII Wind Turbine Control

    33/78

    W i n d T u r b i n e

    C o n

    t r o l

    W

    i n d T u r b i n e

    C o n

    t r o l

    W

    i n d T u r b

    i n e

    C o n

    t r o l

    POLITECNICO di MILANO DIA

    Wind Observerind Observer

    Hub wind estimation:

    Turbulent wind ( m/sec)V m = 15

    EOG1-13 case

    Wi d Obind Obser er

  • 8/6/2019 CLBottasso Short Course PartII Wind Turbine Control

    34/78

    W i n d T u r b i n e

    C o n

    t r o l

    W

    i n d T u r b i n e

    C o n

    t r o l

    W

    i n d T u r b

    i n e

    C o n

    t r o l

    POLITECNICO di MILANO DIA

    Wind Observerind Observer

    Simple mean hub wind reconstruction from torque balance equation

    More in general:The rotor system is a sensorensor which responds to temporalemporal as well asspatialpatial wind variations

    Model-based interpretation of response can be used for reconstructingvertical and horizontal wind shear for improved rotor control

    Example: introduce spatial assumed modes and wind states

    V (t, ) = V 0 (t) + V s (t)sin + V c(t)cos

    Rotor disk

  • 8/6/2019 CLBottasso Short Course PartII Wind Turbine Control

    35/78

    P O L I

    P O L I

    d i

    d i M I M I t e

    c n

    i c o

    t e c n

    i c o

    l a

    n o

    l a

    n o

    Simulation Environmentimulation Environment

    Control Laws: Virtual TestingControl Laws: Virtual Testing

  • 8/6/2019 CLBottasso Short Course PartII Wind Turbine Control

    36/78

    W

    i n d T u r b i n e

    C o n

    t r o l

    W

    i n d T u r b

    i n e

    C o n

    t r o l

    W

    i n d T u r b

    i n e

    C o n

    t r o l

    POLITECNICO di MILANO DIA

    gEnvironmentEnvironment

    Virtual plantirtual plant

    Sensorensormodelsodels

    CpLambdaCpLambda

    aero-servo-elastic model

    Windgenerator Processnoise

    SupervisorupervisorChoice of operating condition:

    Start up Power production Normal shut-down Emergency shut-down

    Controller

    Feedback controllereedback controller PID MIMO LQR RAPC Adaptive reduced model

    Linux real-time environment

    Kalmanalman filteringilteringWind & tower/blade state estimation

    Measurementnoise

  • 8/6/2019 CLBottasso Short Course PartII Wind Turbine Control

    37/78

    P O L I

    P O L I

    d i

    d i M I M I t e

    c n

    i c o

    t e c n

    i c o

    l a

    n o

    l a

    n o

    Control Lawsontrol Laws

    Control Laws: Three Case Studiesontrol Laws: Three Case Studies

  • 8/6/2019 CLBottasso Short Course PartII Wind Turbine Control

    38/78

    W

    i n d T u r b i n e

    C o n

    t r o l

    W

    i n d T u r b

    i n e

    C o n

    t r o l

    W

    i n d T u r b

    i n e

    C o n

    t r o l

    POLITECNICO di MILANO DIA

    Case studiesase studies : PID: gain optimization and wind scheduling LQR: handling region 2-3 transition and wind scheduling Adaptive non-linear predictive control A simple LQR approach to cyclic pitch control

    Control Laws: Three Case Studiesontrol Laws: Three Case Studies

    Control Laws: Optimal PIDontrol Laws: Optimal PID

  • 8/6/2019 CLBottasso Short Course PartII Wind Turbine Control

    39/78

    W

    i n d T u r b i n e

    C o n

    t r o l

    W

    i n d T u r b

    i n e

    C o n

    t r o l

    W

    i n d T u r b

    i n e

    C o n

    t r o l

    POLITECNICO di MILANO DIA

    Control Laws: Optimal PIDontrol Laws: Optimal PID

    Optimal windptimal wind -scheduled PIDcheduled PID :

    Tabulated electrical torque

    Optimization of gains

    based on aeroelastic analyses inCpLambda

    c = K p(V m )( ) + K i (V m )

    Z t

    t

    T i

    ( )d + K d (V m )

    T el c = T el c ( )

    K p(V m ), K i (V m ), K d (V m )

    Control Laws: Optimal PIDontrol Laws: Optimal PID

  • 8/6/2019 CLBottasso Short Course PartII Wind Turbine Control

    40/78

    W

    i n d T u r b

    i n e

    C o n

    t r o l

    W

    i n d T u r b

    i n e

    C o n

    t r o l

    W

    i n d T u r b

    i n e

    C o n

    t r o l

    POLITECNICO di MILANO DIA

    Control Laws: Optimal PIDontrol Laws: Optimal PID

    Gain optimization procedureain optimization procedure :

    For each mean wind in region 3, define cost function

    Equivalent fatigue loads for tower and blades

    based on rain-flow analysis ( ASTM E 1049-85 ):

    Tunable weighting factors:

    V m

    M eq T

    , M eq Bi

    J (V m ) = M eq T + M eq Bi =(1 , 3) +Z 600 sec0 w 2e + wd d2 + w ( )2 + wP (P P )2dt

    w , wd , w , wP

    M eq =

    Xi

    M mf,i N i /N tot

    !1/m

    Control Laws: Optimal PIDontrol Laws: Optimal PID

  • 8/6/2019 CLBottasso Short Course PartII Wind Turbine Control

    41/78

    W

    i n d T u r b

    i n e

    C o n

    t r o l

    W

    i n d T u r b

    i n e

    C o n

    t r o l

    W

    i n d T u r b

    i n e

    C o n

    t r o l

    POLITECNICO di MILANO DIA

    Control Laws: Optimal PIDontrol Laws: Optimal PID

    PID gain optimization procedureID gain optimization procedure (continued):

    For each mean wind :

    Regard cost as sole function of unknown gains

    Minimize cost (using Noesis Optimus): Evaluate cost with CpLambdapLambda aero-servo-elastic model Global optimization (GA) Local refinement (Response Surface + gradient based minimization)

    V m

    J (V m ) = J (K p(V m ), K i (V m ), K d (V m ))

    Optimizerptimizer Global & local algorithms Functional approximators

    CpLambdapLambdaAeroelasticresponse inturbulent windfor given gains

    K p (V m ) , K i (V m ) , K d (V m )

    J (V m )(possible constraints)

    Control Laws: MIMO NonLinear-Wind LQRontrol Laws: MIMO NonLinear-Wind LQR

  • 8/6/2019 CLBottasso Short Course PartII Wind Turbine Control

    42/78

    W

    i n d T u r b

    i n e

    C o n

    t r o l

    W

    i n d T u r b

    i n e

    C o n

    t r o l

    W

    i n d T u r b

    i n e

    C o n

    t r o l

    POLITECNICO di MILANO DIA

    Control Laws: MIMO NonLinear Wind LQRontrol Laws: MIMO NonLinear Wind LQR

    Windind -scheduled MIMO LQRcheduled MIMO LQR : Reduced model in compact form:

    where Wind parameterized linear model:

    where

    Remarksemarks : Model linearized about current mean wind estimate Non-linear dependence on instantaneous turbulent wind Wind not treated as linear disturbance (as commonly done)

    x = f (x , u , V w , V m )

    x = ( d,

    d, , e ,

    e , T el e )T

    u = ( c , T el c )T

    x = A (V w , V m ) x + B (V w , V m ) u

    x = x x (V m ) u = u u (V m )

    V mV w

    Control Laws: MIMO NonLinear-Wind LQRontrol Laws: MIMO NonLinear-Wind LQR

  • 8/6/2019 CLBottasso Short Course PartII Wind Turbine Control

    43/78

    W

    i n d T u r b

    i n e

    C o n

    t r o l

    W

    i n d T u r b

    i n e

    C o n

    t r o l

    W

    i n d T u r b

    i n e

    C o n

    t r o l

    POLITECNICO di MILANO DIA

    Control Laws: MIMO NonLinear Wind LQRontrol Laws: MIMO NonLinear Wind LQR

    Windind -scheduled MIMO LQRcheduled MIMO LQR (continued):

    Regulation cost:

    where

    MIMO formulation: tracking quantities for reg. 2 & 3:

    J =12

    Z

    0

    x T Q x + u T R u

    dt

    x (V m ), u (V m )

    x = x x (V m ), u = u u (V m )

    Control Laws: MIMO NonLinear-Wind LQRontrol Laws: MIMO NonLinear-Wind LQR

  • 8/6/2019 CLBottasso Short Course PartII Wind Turbine Control

    44/78

    W

    i n d T u r b

    i n e

    C o n

    t r o l

    W

    i n d T u r b

    i n e

    C o n

    t r o l

    W

    i n d T u r b

    i n e

    C o n

    t r o l

    POLITECNICO di MILANO DIA

    Control Laws: MIMO NonLinear Wind LQRontrol Laws: MIMO NonLinear Wind LQR

    Windind -scheduled MIMO LQRcheduled MIMO LQR (continued):

    Closed loop controller:

    with Kalman estimated states and wind

    u = K (V w , V m )(x x (V m ))

    Control Laws: NonLinear Adaptive Ctrl.ontrol Laws: NonLinear Adaptive Ctrl.

  • 8/6/2019 CLBottasso Short Course PartII Wind Turbine Control

    45/78

    W

    i n d T u r b

    i n e

    C o n

    t r o l

    W

    i n d T u r b

    i n e

    C o n

    t r o l

    W

    i n d T u r b

    i n e

    C o n

    t r o

    l

    POLITECNICO di MILANO DIA

    Control Laws: NonLinear Adaptive Ctrl.ontrol Laws: NonLinear Adaptive Ctrl.

    Design controller which: Can handle nonon -linearitiesinearities of plant Is adaptivedaptive :

    - Can adjust to off-design conditions (e.g. ice accretion,specifics of installation, hot-cold air variations, etc.)

    - Can correct for unmodeled or unresolved physics and

    modeling errors Can handle constraintsonstraints (e.g. max loads in blades or tower) Can be implemented in realeal -timeime (no iterative scheme, fixednumber of operations per activation)

    Nonon -linear modelinear model -adaptive predictive controldaptive predictive control

    Control Laws: NonLinear Adaptive Ctrl.ontrol Laws: NonLinear Adaptive Ctrl.

  • 8/6/2019 CLBottasso Short Course PartII Wind Turbine Control

    46/78

    W

    i n d T u r b

    i n e

    C o n

    t r o l

    W

    i n d T u r b

    i n e

    C o n

    t r o l

    W

    i n d T u r b

    i n e

    C o n

    t r o

    l

    POLITECNICO di MILANO DIA

    Control Laws: NonLinear Adaptive Ctrl.pNonon -linear Model Predictive Controlinear Model Predictive Control (NMPC):

    Find the control action which minimizes an index of performance,by predicting the future behavior of the plant using a nonon -linearinearreduced modeleduced model .

    - Reduced model:

    - Initial conditions:- Output definition:

    Cost:

    with desired goal outputs and controls.

    Stability resultstability results : Findeisen et al. 2003, Grimm et al. 2005.

    L(y , u ) = ( y y

    )T

    Q (y y

    ) + ( u u

    )T

    R (u u

    )

    minu ,x ,y

    J = Z t 0 + T p

    t 0L(y , u ) d t

    s.t.: f (x , x , u ) = 0 t [t0 , t 0 + T p]

    x (t0) = x 0y = g (x ) t [t0 , t 0 + T p]

    ()

    Control Laws: NonLinear Adaptive Ctrl.ontrol Laws: NonLinear Adaptive Ctrl.

  • 8/6/2019 CLBottasso Short Course PartII Wind Turbine Control

    47/78

    W

    i n d T u r b

    i n e

    C o n

    t r o l

    W

    i n d T u r b

    i n e

    C o n

    t r o l

    W

    i n d T u r b

    i n e

    C o n

    t r o

    l

    POLITECNICO di MILANO DIA

    FuturePast

    Steering window

    Prediction window

    Prediction errorState tracking error

    Control tracking error

    t0

    t0 t0 + T p

    t0 + T s

    Computed control u (t)Goal control u (t)

    : p .p

    Goal response x (t)Predicted response x (t)

    Plant response

    ex (t)

    x 0

    Control Laws: NonLinear Adaptive Ctrl.ontrol Laws: NonLinear Adaptive Ctrl.

  • 8/6/2019 CLBottasso Short Course PartII Wind Turbine Control

    48/78

    W

    i n d T u r b

    i n e

    C o n

    t r o l

    W

    i n d T u r b

    i n e

    C o n

    t r o

    l

    W

    i n d T u r b

    i n e

    C o n

    t r o

    l

    POLITECNICO di MILANO DIA

    pp

    1. Tracking problem

    Plant response

    3. Reduced model update

    Predictive solutions

    2. Steering problem

    Prediction window

    Steering window

    Tracking cost

    Prediction error

    Prediction window

    Tracking cost

    Steering windowPrediction error

    Tracking costPrediction window

    Steering window

    Prediction error

    Goal

    response

    Predictive modelredictive model -adaptive controldaptive control :

    Reduced modeleduced model adaptiondaption : Predict plant response with minimum error (same outputs when same inputs) Self-adaptive (learning) model adjusts to varying operating conditions (ice, air density, terrain, etc.)

    Past Futureast Futureast Future

    Past Future

    Past Future

    RAPC: MotivationAPC: Motivation

  • 8/6/2019 CLBottasso Short Course PartII Wind Turbine Control

    49/78

    W

    i n d T u r b

    i n e

    C o n

    t r o l

    W

    i n d T u r b

    i n e

    C o n

    t r o

    l

    W

    i n d T u r b

    i n e

    C o n

    t r o

    l

    POLITECNICO di MILANO DIA

    For any given problem: wealth of knowledgenowledge and legacyegacy methodswhich perform reasonably well Quest for better performance/improved capabilities: undesirablendesirable

    and wastefulasteful to neglect valuable existing knowledgeReference Augmented Predictive Controleference Augmented Predictive Control (RAPCAPC): exploit availablelegacy methods, embedding them in a non-linear model predictiveadaptive control framework

    Specifically: Modelodel : augment reduced models to account for unresolved orunmodeled physics Controlontrol : design a non-linear controller augmenting linear ones(MIMO Nonlinear-Wind LQR) which are known to provide a minimumlevel of performance about certain linearized operating conditions

    RAPC: MotivationAPC: Motivation

  • 8/6/2019 CLBottasso Short Course PartII Wind Turbine Control

    50/78

    W

    i n d T u r b

    i n e

    C o n

    t r o l

    W

    i n d T u r b

    i n e

    C o n

    t r o

    l

    W

    i n d T u r b

    i n e

    C o n

    t r o

    l

    POLITECNICO di MILANO DIA

    Approach:pproach: Choose a reference model / reference control laweference model / reference control law Augment the reference using an adaptivedaptive parametric functionarametric function Adjustdjust the function parameters to ensure good approximation ofood approximation ofthe actual system / optimal control lawhe actual system / optimal control law (parameter identification)

    Reasons for using a reference model / controleasons for using a reference model / control: Reasonable predictions / controls even before any learningven before any learning hastaken place (otherwise would need extensive pre-training) Easier and faster adaption: the defect is typically a small quantitymall quantity ,if the reference solution is well chosen

    RAPC: Reduced Model IdentificationAPC: Reduced Model Identification

  • 8/6/2019 CLBottasso Short Course PartII Wind Turbine Control

    51/78

    W

    i n d T u r b

    i n e

    C o n

    t r o l

    W

    i n d T u r b

    i n e

    C o n

    t r o

    l

    W

    i n d T u r b

    i n e

    C o n

    t r o

    l

    POLITECNICO di MILANO DIA

    Plantlant

    u , V w u , V w

    Reduced modeleduced modelAugmentedugmentedreduced modeleduced model

    + Neural NetworkNeural Network

    Dissimilaroutputs

    Same wind,same inputs u , V w

    Same wind,same inputs

    Similaroutputs

    Trained on-lineto minimizemismatch

    x

    ex x

    ex

    The principle of reference model augmentationeference model augmentation :

    RAPC: Reduced Model IdentificationAPC: Reduced Model Identification

  • 8/6/2019 CLBottasso Short Course PartII Wind Turbine Control

    52/78

    W

    i n d T u r b

    i n e

    C o n

    t r o l

    W

    i n d T u r b

    i n e

    C o n

    t r o

    l

    W

    i n d T u r b

    i n e

    C o n

    t r o

    l

    POLITECNICO di MILANO DIA

    Neural augmented reference modeleural augmented reference model:reference (problem dependent) analytical model,

    Remarkemark : reference model will notot , in general, ensure adequatedequatepredictions, i.e.

    when = system states/controls,

    = model states/controls.Augmented reference model:ugmented reference model:

    where is the unknownnknown reference model defectefect that ensureswhen i.e.:

    Hence, if we knewf we knew , we would have perfect predictionerfect prediction capabilities.

    d

    d

    eu = u ,

    ex 6= x

    x , uex ,

    eu

    ex = x

    f ref (x , x , u ) = 0

    f ref (x , x , u ) = d (x , u )

    eu = u

    T el eT el eT el cT el c T lT l

    J GJ G

    J RJ R

    c c

    e e

    T aT a

    F aF a

    M T , C T , K T M T , C T , K T

    dd

    Referencereduced model

    f ref (

    ex ,

    ex ,

    eu ) d (

    ex ,

    eu ) = 0

    RAPC: Reduced Model IdentificationAPC: Reduced Model Identification

  • 8/6/2019 CLBottasso Short Course PartII Wind Turbine Control

    53/78

    W

    i n d T u r b

    i n e

    C o n

    t r o

    l

    W

    i n d T u r b

    i n e

    C o n

    t r o

    l

    W

    i n d T u r b

    i n e

    C o n t r o

    l

    POLITECNICO di MILANO DIA

    Approximate withsingleingle

    -hiddenidden

    -layer neural networksayer neural networks :

    where

    and

    = functional reconstruction error;

    = matrices of synaptic weights and biases;= sigmoid activation functions;

    = network input.

    The reduced model parameterseduced model parameters

    are identified on-line using an Extendedxtended Kalmanalman Filterilter .

    d

    ( ) = ( (1), . . . , (N n ))T

    W m , V m , a m , bm

    i = ( x T , u T )T

    pm = ( . . . , W m ik , V m ik , a m i , bm i , . . . )T

    d (x , u ) = d p(x , u , pm ) +

    d p(x , u , pm ) = W mT

    (V mT

    i + a m ) + bm

    RAPC: Reduced Model IdentificationAPC: Reduced Model Identification

  • 8/6/2019 CLBottasso Short Course PartII Wind Turbine Control

    54/78

    W

    i n d T u r b

    i n e

    C o n

    t r o

    l

    W

    i n d T u r b

    i n e

    C o n

    t r o

    l

    W i n d T u r b

    i n e

    C o n t r o

    l

    POLITECNICO di MILANO DIA

    Tower-tip velocity for multibody, reference, and neural-augmentedreference with same prescribed inputs:

    Black: CpLambdamultibody model

    Red: reference model

    Blue: reference model+neural network

    Fastast adaptiondaption

    RAPC: Reduced Model IdentificationAPC: Reduced Model Identification

  • 8/6/2019 CLBottasso Short Course PartII Wind Turbine Control

    55/78

    W

    i n d T u r b

    i n e

    C o n

    t r o

    l

    W

    i n d T u r b

    i n e

    C o n

    t r o

    l

    W i n d T u r b

    i n e

    C o n t r o

    l

    POLITECNICO di MILANO DIA

    Defect and remaining reconstruction error after adaption:di i

    Red: defect

    Blue: remainingreconstruction error

    RAPC: Neural ControlAPC: Neural Control

  • 8/6/2019 CLBottasso Short Course PartII Wind Turbine Control

    56/78

    W

    i n d T u r b

    i n e

    C o n

    t r o

    l

    W

    i n d T u r b

    i n e

    C o n t r o

    l

    W i n d T u r b

    i n e

    C o n t r o

    l

    POLITECNICO di MILANO DIA

    FuturePast

    Prediction window

    x 0

    t0

    t0

    t0

    + T p

    Goal response x

    (t)

    Goal control u (t)

    x (t), t < t 0

    u (t), t < t 0

    The principle of neuraleural -augmented reference controlugmented reference control :

    Optimal solution u NMPC (t)

    Optimal solution x (u NMPC (t))

    Sub-optimal solution u ref (t)

    Sub-optimal solution x (u ref (t))

    Augmented sol. x (u ref (t) + NN )

    Augmented sol. u ref (t) + NN

    RAPC: Neural ControlAPC: Neural Control

  • 8/6/2019 CLBottasso Short Course PartII Wind Turbine Control

    57/78

    W

    i n d T u r b

    i n e

    C o n

    t r o

    l

    W

    i n d T u r b

    i n e

    C o n t r o

    l

    W i n d T u r b

    i n e

    C o n t r o

    l

    POLITECNICO di MILANO DIA

    Prediction problemrediction problem :

    Enforcing optimalitynforcing optimality , we get:

    minu ,x ,y

    J = Z t 0 + T p

    t 0L(y , u ) d t

    s.t.: f (x , x , u ) = 0 t [t0 , t 0 + T p]

    x (t0) = x 0y = g (x ) t [t0 , t0 + T p]

    f (x , x , u , pm ) = 0 , t [t0 , t 0 + T p],x (t0) = x 0 ,

    d( f T

    ,x )

    dt + f T ,x + y T ,x L ,y = 0 , t [t0 , t 0 + T p], (t0 + T p) = 0 ,

    L ,u + f T ,u = 0 , t [t0 , t 0 + T p].

    Model equations:

    Adjoint equations:

    Transversality conditions:

    State initial conditions:

    Co-state final conditions:

    RAPC: Neural ControlAPC: Neural Control

  • 8/6/2019 CLBottasso Short Course PartII Wind Turbine Control

    58/78

    W

    i n d T u r b

    i n e

    C o n

    t r o

    l

    W i n d T u r b

    i n e

    C o n t r o

    l

    W i n d T u r b

    i n e

    C o n t r o

    l

    POLITECNICO di MILANO DIA

    FuturePast

    Prediction window

    x 0

    t0

    t0

    t0

    + T p

    Goal response x (t)

    Goal control u (t)

    u (t)

    Optimal control u (t)

    x (t), t < t 0

    u (t), t < t 0

    (, , , )

    It can be shown that minimizing controlinimizing control is(Bottasso et al. 2007)

    u (t) =

    x 0 , y

    (t), u (t), t

    RAPC: Neural ControlAPC: Neural Control

  • 8/6/2019 CLBottasso Short Course PartII Wind Turbine Control

    59/78

    W

    i n d T u r b

    i n e

    C o n

    t r o

    l

    W i n d T u r b

    i n e

    C o n t r o

    l

    W i n d T u r b

    i n e

    C o n t r o

    l

    POLITECNICO di MILANO DIA

    Reference augmented form:eference augmented form:

    where is the unknown control defect.

    Remarkemark : if one knew , the optimal control would be availablewithout having to solve the open-loop optimal control problem.

    Ideadea :- Approximatepproximate using an adaptive parametric element:

    - Identifydentify on-line, i.e. find the parameterswhich minimize the reconstruction error .

    pc

    u (t) = u ref (t) + x 0 , y (t), u (t), t (, , , ) (, , , )

    (, , , )

    x 0 , y

    (t), u (t), t

    = p

    x 0 , y

    (t), u (t), t, p c

    + c

    p(, , , )

    RAPC: Neural ControlAPC: Neural Control

  • 8/6/2019 CLBottasso Short Course PartII Wind Turbine Control

    60/78

    W

    i n d T u r b

    i n e

    C o n

    t r o

    l

    W i n d T u r b

    i n e

    C o n t r o

    l

    W i n d T u r b

    i n e

    C o n t r o

    l

    POLITECNICO di MILANO DIA

    Iterative procedureterative procedure to solve the problem in real-time: Integrate reduced model equations forwardorward in time over theprediction window, using and the latest available parameters(state prediction):state prediction):

    Integrate adjoint equations backwardackward in time (coco -state prediction):tate prediction):

    Correctorrect control law parameters , e.g. using steepest descent: pc

    u ref p c

    p c = J ,p c p newc = p oldc J ,p c

    d( f T , x )

    dt+ ( f ,x + u T ,x f ,u )

    T + y T ,x L ,y + uT ,x L ,u = 0 t [t0 , t 0 + T p]

    (t0 + T p) = 0

    f (x , x , u , pm ) = 0 t [t0 , t0 + T p]x (t0) = x 0

    RAPC: Neural ControlAPC: Neural Control

  • 8/6/2019 CLBottasso Short Course PartII Wind Turbine Control

    61/78

    W

    i n d T u r b

    i n e

    C o n t r o

    l

    W i n d T u r b

    i n e

    C o n t r o

    l

    W i n d T u r b

    i n e

    C o n t r o

    l

    POLITECNICO di MILANO DIA

    Remarkemark : the parameter correction step

    seeks to enforce the transversalityransversality conditionondition

    Once this is satisfied, the control is optimalptimal , since the state and co-state equations and the boundary conditions are satisfiedatisfied .

    pc = J ,p c

    Z t 0 + T p

    t0

    T ,p c (L ,u + f T ,u ) d t = 0

    RAPC: Neural ControlAPC: Neural Control

  • 8/6/2019 CLBottasso Short Course PartII Wind Turbine Control

    62/78

    W

    i n d T u r b

    i n e

    C o n t r o

    l

    W i n d T u r b

    i n e

    C o n t r o

    l

    W i n d T u r b

    i n e

    C o n t r o

    l

    POLITECNICO di MILANO DIA

    Tr ac k i n g c o s t

    Fu tu re Targe t

    Predictredict state forward

    Predictredict co-state backwards

    Predictredict control action

    p c = J ,p c

    Updatepdate estimate of control action, based on transversality violation Advancedvance plant Updatepdate model, based on prediction error

    Past

    Op t i m a l c o n t r o l

    Pr e d i c t i o n e r r o r

    Repeatepeat

    Futu rePast

    Pred ic t ion hor i zonSteer i ng w indow

    S t a t e

    Con t ro l

    x (t)

    (t)

    u (t)

    RAPC: Neural ControlAPC: Neural Control

  • 8/6/2019 CLBottasso Short Course PartII Wind Turbine Control

    63/78

    W i n d T u r b

    i n e

    C o n t r o

    l

    W i n d T u r b

    i n e

    C o n t r o

    l

    W i n d T u r b

    i n e

    C o n t r o

    l

    POLITECNICO di MILANO DIA

    - Drop dependence on time history of goal quantities:

    - Approximate temporal dependence using shape functions:

    - Associate each nodal value with the output of a singleingle -hiddenidden -layerayerfeed-forward neural networkeural network , one for each component:

    where

    Output:

    Input:

    Control parameters:

    px 0 , y (t), u (t), t, pc px 0 , y (t0), u (t0), t, pc px

    0 , y

    (t0), u

    (t0), , pc

    (1 ) pkx 0 , y (t0), u (t0 ), pc+ pk +1 x 0 , y (t0), u (t0), p co c = W T c (V

    T c i c + a c) + bc

    o c = ( T p0, T p

    1, . . . , T p

    M

    1)T

    i c = x T 0 , x T

    (t0), u T

    (t0)T

    pc = ( . . . , W c ij , . . . , V c ij , . . . , a c i , . . . , bc i , . . . )T

    RAPC: Neural ControlAPC: Neural Control

  • 8/6/2019 CLBottasso Short Course PartII Wind Turbine Control

    64/78

    W i n d T u r b

    i n e

    C o n t r o

    l

    W i n d T u r b

    i n e

    C o n t r o

    l

    W i n d T u r b

    i n e

    C o n t r o

    l

    POLITECNICO di MILANO DIA

    FuturePast

    Prediction window

    x 0

    t0

    t0 t0 + T p

    x (t), t < t 0

    u (t), t < t 0

    u (t0)

    x (t0)NN pk

    x (t)

    u (t)

    RAPCAPC

  • 8/6/2019 CLBottasso Short Course PartII Wind Turbine Control

    65/78

    W i n d T u r b

    i n e

    C o n t r o

    l

    W i n d T u r b

    i n e

    C o n t r o

    l

    W i n d T u r b

    i n e

    C o n t r o

    l

    POLITECNICO di MILANO DIA

    RAPC can handle constraints on inputs and outputs (not covered inthis paper)

    Present resultsresent results : Reference model: collective-only, Reference controller: MIMO Nonlinear-Wind LQR

    Work in progressork in progress : Reference model with individual blade pitch, flap dynamics

    Reference controller: periodic MIMO Nonlinear-Wind LQR Constraints on inputs and outputs

    x = ( d, d, , e , e , T el e )T

    Resultsesults

  • 8/6/2019 CLBottasso Short Course PartII Wind Turbine Control

    66/78

    W i n d T u r b

    i n e

    C o n t r o

    l

    W i n d T u r b

    i n e

    C o n t r o

    l

    W i n d T u r b

    i n e

    C o n t r o

    l

    POLITECNICO di MILANO DIA

    Two consecutive EOG 1-13 in nominal conditions:

    ResultsesultsNormalized total regulation error in 600 sec turbulent wind

  • 8/6/2019 CLBottasso Short Course PartII Wind Turbine Control

    67/78

    W i n d T u r b

    i n e

    C o n t r o

    l

    W i n d T u r b

    i n e

    C o n t r o

    l

    W i n d T u r b

    i n e

    C o n t r o

    l

    POLITECNICO di MILANO DIA

    Normalized total regulation error in 600 sec turbulent wind Cold air & ice accretion (degraded airfoil performance):

    Resultsesults

  • 8/6/2019 CLBottasso Short Course PartII Wind Turbine Control

    68/78

    W i n d T u r b

    i n e

    C o n t r o

    l

    W i n d T u r b

    i n e

    C o n t r o

    l

    W i n d T u r b

    i n e

    C o n t r o

    l

    POLITECNICO di MILANO DIA

    Observationsbservations : Significant advantage of model-based (especially non-linear andadaptive) controllers in

    - Turbulent off-design conditions- Strong gusts

    It appears that adaptive element is able to correct deficiencies of

    reference reduced model, even in the presence of large errors In nominal conditions, and for the collective pitch case:

    - Differences in turbulent response of PID, LQR and RAPC are lesspronounced

    - It appears difficult to very significantly outperform a well tunedsimple controller (PID)

    Cyclic Pitch Controlyclic Pitch Control

  • 8/6/2019 CLBottasso Short Course PartII Wind Turbine Control

    69/78

    W i n d T u r b

    i n e

    C o n t r o

    l

    W i n d T u r b

    i n e

    C o n t r o

    l

    W i n d T u r b

    i n e

    C o n t r o

    l

    POLITECNICO di MILANO DIA

    Case studyase study : a simple LQR approach to cyclic pitch controlConsider individual-pitch model

    where

    = rotor azimuth

    = all other states

    Model linearization:

    Remarkemark : azimuth dependent coefficient matrices

    x = ( , x T )T

    x

    x = f (x , u , p) = f ( , x , u , p)

    x = A ( , x , u , p ) x + B ( , x , u , p ) u

    Cyclic Pitch Controlyclic Pitch Control

  • 8/6/2019 CLBottasso Short Course PartII Wind Turbine Control

    70/78

    W i n d T u r b

    i n e

    C o n t r o

    l

    W i n d T u r b

    i n e

    C o n t r o

    l

    W i n d T u r b

    i n e

    C o n t r o

    l

    POLITECNICO di MILANO DIA

    Possible approachesossible approaches : Full state feedback:

    a) Integrate Riccati eq. until periodic solution to obtain

    optimal periodic feedback gain matrixb) Solve steady Riccati eq. for severalthen interpolate resulting gain matrices

    c) Average periodic coefficient matrices over one revolution

    solve steady Riccati eq. to get averaged gain matrix Output feedback: a), b) or c), but governing eq. more complexthan Riccati eq., approach a) complicated

    K ( , x

    , p

    ) i , 0 i 2

    K ( i , x , p )

    bA (x , p ) = (1 / 2 )Z

    2

    0A ( , x , p ) d

    bB (x , p ) = (1 / 2 )

    Z 2

    0

    B ( , x , p ) d

    cK (x , p )

    Full state feedback collective pitch vs. individual pitch LQR

    Cyclic Pitch Controlyclic Pitch Control

  • 8/6/2019 CLBottasso Short Course PartII Wind Turbine Control

    71/78

    W i n d T u r b

    i n e

    C o n t r o

    l

    W i n d T u r b

    i n e

    C o n t r o

    l

    W i n d T u r b

    i n e

    C o n t r o

    l

    POLITECNICO di MILANO DIA

    p p Q

    Steady wind, wind shear, tower shadow, rotor up-tilt

    Observationsbservations : Very similar behavior for a) and b) strategies, c) slightly worst Significant peak-to-peak reduction for cyclic control, at the cost ofincreased duty cycle

  • 8/6/2019 CLBottasso Short Course PartII Wind Turbine Control

    72/78

    P

    O L I

    P

    O L I

    d i

    d i M I M I t

    e c n i c

    o

    t e c n i c

    o

    l a n o

    l a n o

    Hardware Implementationardware Implementation

    Control System Hardwareontrol System HardwareDecentralized PC/PLC based architecture

  • 8/6/2019 CLBottasso Short Course PartII Wind Turbine Control

    73/78

    W i n d T u r b

    i n e

    C o n t r o

    l

    W i n d T u r b

    i n e

    C o n t r o

    l

    W i n d T u r b

    i n e

    C o n t r o

    l

    POLITECNICO di MILANO DIA

    Main controller

    Remote visualization www access

    Decentralizedcontrol module

    Pitch regulator

    Ethernet Wireless,ADSL

    Realtime fiber optic network(FAST-Bus, Profibus, Ethernet)

    CAN-Bus, RS485

    Ethernet

    Remote visualization

    Decentralized PC/PLC based architecture

    Control panel

    Slip-ring orwireless bridge

    RIO = Reconfigurable I/O PLC = Programmable Logic Controller PROFIBUS = Process Field Bus CAN BUS = Controller Area Network RS485 = Serial communication

  • 8/6/2019 CLBottasso Short Course PartII Wind Turbine Control

    74/78

    PoliMi Control Research PlatformoliMi Control Research PlatformPLC-based decentralizedcontrol module cabinet

  • 8/6/2019 CLBottasso Short Course PartII Wind Turbine Control

    75/78

    W i n d T u r b

    i n e

    C o n t r o

    l

    W i n d T u r b

    i n e

    C o n t r o

    l

    W i n d T u r b

    i n e

    C o n t r o

    l

    POLITECNICO di MILANO DIA

    Leitwind 1.2 MW Wind Turbine Hub height 65m Rotor radius 38m

    control module cabinet

    PC/104 architecture, Pentium M 1.6 GHz Linux real-time operative system

    Hardwareardware for supporting researchesearch and fieldieldtestingesting on advanced control laws, state andwind estimators, integrated diagnostics

    V l i Ch t h PC104 SBC ith I t l

    PoliMi Control Research PlatformoliMi Control Research Platform

  • 8/6/2019 CLBottasso Short Course PartII Wind Turbine Control

    76/78

    W i n d T u r b

    i n e

    C o n t r o

    l

    W i n d T u r b

    i n e

    C o n t r o

    l

    W i n d T u r b

    i n e

    C o n t r o

    l

    POLITECNICO di MILANO DIA

    Data acquisition module 16-bit A/D

    Versalogic Cheetah PC104 SBC with IntelPentium M 1.6 GHz and Extreme Graphics 2Video (-40 to +60C), 2 configurable serialports, 1 Ethernet interface, 2 usb ports

    HE104 High Efficiency PowerSupply 50 Watt, +5V@10A,+12V@2A, -40 to +85C

    Hard disk 44 pin (replaceablewith a solid state disk)

    Internal communicationPC/104 bus

    To servos:From sensors:

    PoliMi Control Research PlatformoliMi Control Research Platform

  • 8/6/2019 CLBottasso Short Course PartII Wind Turbine Control

    77/78

    W i n d T u r b

    i n e

    C o n t r o

    l

    W i n d T u r b

    i n e

    C o n t r o

    l

    W i n d T u r b

    i n e

    C o n t r o

    l

    POLITECNICO di MILANO DIA

    Torque Rotor speed Azimuth Blade pitch angle Wind

    Serial communication RS485 @1Hz

    Pitch control Torque control

    Pitch, yaw, torquesetpoints

    Anemometer, inverter,pitch regulator, yaw

    Analog inputs:

    Tower accelerations andstrain gauges

    Collect data, interface withservos, compute yaw control

    Controller and observer algorithms,interface with on-board industrialcontroller

    Complete compatibility with andminimum impact on existing on-boardsystem Substantial computing power On-board system can give control toand regain control from researchplatform at any time

    Referenceseferences

  • 8/6/2019 CLBottasso Short Course PartII Wind Turbine Control

    78/78

    W i n d T u r b

    i n e

    C o n t r o

    l

    W i n d T u r b

    i n e

    C o n t r o

    l

    W i n d T u r b

    i n e

    C o n t r o

    l

    POLITECNICO di MILANO DIA

    Wind Turbines Part 1: Design Requirements, IEC 61400-1, 2005

    Manwell J.F., McGowan J.G., and Rogers A.L., Wind Energy Exp lained: Theory, Design andApplication , John Wiley & Sons, New York, NY, 2002

    Burton T., Sharpe D., Jenkins N., and Bossanyi E., Wind Energy Handbook , John Wiley & Sons, New

    York, NY, 2001Stol K.A., and Fingersh L.J., Wind Turbine Field Testing of State-Space Control Designs, NREL/SR-500-35061, 2003

    Findeisen R., Imland L., Allgower F., and Foss B., State and Output Feedback Nonlinear ModelPredictive Control: An Overview, European Journal of Control , 9:190206, 2003

    Fausett L., Fundamentals of Neural Networks , Prentice-Hall, New York, 1994