Classification Master Class - web.math.ku.dkweb.math.ku.dk/~rordam/Masterclass/slides/Slides -...

81
Overview C * -algebras associated to C * -correspondences and applications to noncommutative geometry. Overview of the presentation. C * -algebras associated to C * -correspondences Restricted direct sum C * correspondences and pullbacks Even dimensional mirror quantum spheres Labelled graph algebras David Robertson (Syddansk Universitet) Classification Master Class November 18, 2009 1 / 25

Transcript of Classification Master Class - web.math.ku.dkweb.math.ku.dk/~rordam/Masterclass/slides/Slides -...

Page 1: Classification Master Class - web.math.ku.dkweb.math.ku.dk/~rordam/Masterclass/slides/Slides - junior seminar... · David Robertson (Syddansk Universitet) Classi cation Master Class

Overview

C ∗-algebras associated to C ∗-correspondences and applications tononcommutative geometry.

Overview of the presentation.

C ∗-algebras associated to C ∗-correspondences

Restricted direct sum C ∗correspondences and pullbacks

Even dimensional mirror quantum spheres

Labelled graph algebras

David Robertson (Syddansk Universitet) Classification Master Class November 18, 2009 1 / 25

Page 2: Classification Master Class - web.math.ku.dkweb.math.ku.dk/~rordam/Masterclass/slides/Slides - junior seminar... · David Robertson (Syddansk Universitet) Classi cation Master Class

Overview

C ∗-algebras associated to C ∗-correspondences and applications tononcommutative geometry.

Overview of the presentation

C ∗-algebras associated to C ∗-correspondences

Restricted direct sum C ∗correspondences and pullbacks

Even dimensional mirror quantum spheres

Labelled graph algebras

David Robertson (Syddansk Universitet) Classification Master Class November 18, 2009 2 / 25

Page 3: Classification Master Class - web.math.ku.dkweb.math.ku.dk/~rordam/Masterclass/slides/Slides - junior seminar... · David Robertson (Syddansk Universitet) Classi cation Master Class

C ∗-correspondences

C ∗-correspondences generalise the theory of Hilbert spaces by replacingthe field of scalars C with an arbitrary C ∗-algebra A.

We begin with the definition of a right Hilbert-module.

Definition

Let X be a Banach space and A be a C ∗-algebra. Suppose we have a rightaction X × A→ X of A on X and an A valued inner-product〈·, ·〉 : X × X → A that satisfies

〈ξ, η · a〉 = 〈ξ, η〉 · a〈η, ξ〉 = 〈ξ, η〉∗

〈ξ, ξ〉 ≥ 0 and ‖ξ‖X =√‖〈ξ, ξ〉‖A.

for all ξ, η ∈ X , a ∈ A.

Then we say X is a right Hilbert A-module

.

David Robertson (Syddansk Universitet) Classification Master Class November 18, 2009 3 / 25

Page 4: Classification Master Class - web.math.ku.dkweb.math.ku.dk/~rordam/Masterclass/slides/Slides - junior seminar... · David Robertson (Syddansk Universitet) Classi cation Master Class

C ∗-correspondences

C ∗-correspondences generalise the theory of Hilbert spaces by replacingthe field of scalars C with an arbitrary C ∗-algebra A.

We begin with the definition of a right Hilbert-module.

Definition

Let X be a Banach space and A be a C ∗-algebra. Suppose we have a rightaction X × A→ X of A on X and an A valued inner-product〈·, ·〉 : X × X → A that satisfies

〈ξ, η · a〉 = 〈ξ, η〉 · a〈η, ξ〉 = 〈ξ, η〉∗

〈ξ, ξ〉 ≥ 0 and ‖ξ‖X =√‖〈ξ, ξ〉‖A.

for all ξ, η ∈ X , a ∈ A.

Then we say X is a right Hilbert A-module

.

David Robertson (Syddansk Universitet) Classification Master Class November 18, 2009 3 / 25

Page 5: Classification Master Class - web.math.ku.dkweb.math.ku.dk/~rordam/Masterclass/slides/Slides - junior seminar... · David Robertson (Syddansk Universitet) Classi cation Master Class

C ∗-correspondences

C ∗-correspondences generalise the theory of Hilbert spaces by replacingthe field of scalars C with an arbitrary C ∗-algebra A.

We begin with the definition of a right Hilbert-module.

Definition

Let X be a Banach space and A be a C ∗-algebra. Suppose we have a rightaction X × A→ X of A on X and an A valued inner-product〈·, ·〉 : X × X → A that satisfies

〈ξ, η · a〉 = 〈ξ, η〉 · a〈η, ξ〉 = 〈ξ, η〉∗

〈ξ, ξ〉 ≥ 0 and ‖ξ‖X =√‖〈ξ, ξ〉‖A.

for all ξ, η ∈ X , a ∈ A.

Then we say X is a right Hilbert A-module

.

David Robertson (Syddansk Universitet) Classification Master Class November 18, 2009 3 / 25

Page 6: Classification Master Class - web.math.ku.dkweb.math.ku.dk/~rordam/Masterclass/slides/Slides - junior seminar... · David Robertson (Syddansk Universitet) Classi cation Master Class

C ∗-correspondences

C ∗-correspondences generalise the theory of Hilbert spaces by replacingthe field of scalars C with an arbitrary C ∗-algebra A.

We begin with the definition of a right Hilbert-module.

Definition

Let X be a Banach space and A be a C ∗-algebra. Suppose we have a rightaction X × A→ X of A on X and an A valued inner-product〈·, ·〉 : X × X → A that satisfies

〈ξ, η · a〉 = 〈ξ, η〉 · a〈η, ξ〉 = 〈ξ, η〉∗

〈ξ, ξ〉 ≥ 0 and ‖ξ‖X =√‖〈ξ, ξ〉‖A.

for all ξ, η ∈ X , a ∈ A.

Then we say X is a right Hilbert A-module

.

David Robertson (Syddansk Universitet) Classification Master Class November 18, 2009 3 / 25

Page 7: Classification Master Class - web.math.ku.dkweb.math.ku.dk/~rordam/Masterclass/slides/Slides - junior seminar... · David Robertson (Syddansk Universitet) Classi cation Master Class

C ∗-correspondences

C ∗-correspondences generalise the theory of Hilbert spaces by replacingthe field of scalars C with an arbitrary C ∗-algebra A.

We begin with the definition of a right Hilbert-module.

Definition

Let X be a Banach space and A be a C ∗-algebra. Suppose we have a rightaction X × A→ X of A on X and an A valued inner-product〈·, ·〉 : X × X → A that satisfies

〈ξ, η · a〉 = 〈ξ, η〉 · a

〈η, ξ〉 = 〈ξ, η〉∗

〈ξ, ξ〉 ≥ 0 and ‖ξ‖X =√‖〈ξ, ξ〉‖A.

for all ξ, η ∈ X , a ∈ A.

Then we say X is a right Hilbert A-module

.

David Robertson (Syddansk Universitet) Classification Master Class November 18, 2009 3 / 25

Page 8: Classification Master Class - web.math.ku.dkweb.math.ku.dk/~rordam/Masterclass/slides/Slides - junior seminar... · David Robertson (Syddansk Universitet) Classi cation Master Class

C ∗-correspondences

C ∗-correspondences generalise the theory of Hilbert spaces by replacingthe field of scalars C with an arbitrary C ∗-algebra A.

We begin with the definition of a right Hilbert-module.

Definition

Let X be a Banach space and A be a C ∗-algebra. Suppose we have a rightaction X × A→ X of A on X and an A valued inner-product〈·, ·〉 : X × X → A that satisfies

〈ξ, η · a〉 = 〈ξ, η〉 · a〈η, ξ〉 = 〈ξ, η〉∗

〈ξ, ξ〉 ≥ 0 and ‖ξ‖X =√‖〈ξ, ξ〉‖A.

for all ξ, η ∈ X , a ∈ A.

Then we say X is a right Hilbert A-module

.

David Robertson (Syddansk Universitet) Classification Master Class November 18, 2009 3 / 25

Page 9: Classification Master Class - web.math.ku.dkweb.math.ku.dk/~rordam/Masterclass/slides/Slides - junior seminar... · David Robertson (Syddansk Universitet) Classi cation Master Class

C ∗-correspondences

C ∗-correspondences generalise the theory of Hilbert spaces by replacingthe field of scalars C with an arbitrary C ∗-algebra A.

We begin with the definition of a right Hilbert-module.

Definition

Let X be a Banach space and A be a C ∗-algebra. Suppose we have a rightaction X × A→ X of A on X and an A valued inner-product〈·, ·〉 : X × X → A that satisfies

〈ξ, η · a〉 = 〈ξ, η〉 · a〈η, ξ〉 = 〈ξ, η〉∗

〈ξ, ξ〉 ≥ 0 and ‖ξ‖X =√‖〈ξ, ξ〉‖A.

for all ξ, η ∈ X , a ∈ A.

Then we say X is a right Hilbert A-module

.

David Robertson (Syddansk Universitet) Classification Master Class November 18, 2009 3 / 25

Page 10: Classification Master Class - web.math.ku.dkweb.math.ku.dk/~rordam/Masterclass/slides/Slides - junior seminar... · David Robertson (Syddansk Universitet) Classi cation Master Class

C ∗-correspondences

C ∗-correspondences generalise the theory of Hilbert spaces by replacingthe field of scalars C with an arbitrary C ∗-algebra A.

We begin with the definition of a right Hilbert-module.

Definition

Let X be a Banach space and A be a C ∗-algebra. Suppose we have a rightaction X × A→ X of A on X and an A valued inner-product〈·, ·〉 : X × X → A that satisfies

〈ξ, η · a〉 = 〈ξ, η〉 · a〈η, ξ〉 = 〈ξ, η〉∗

〈ξ, ξ〉 ≥ 0 and ‖ξ‖X =√‖〈ξ, ξ〉‖A.

for all ξ, η ∈ X , a ∈ A.Then we say X is a right Hilbert A-module.

David Robertson (Syddansk Universitet) Classification Master Class November 18, 2009 3 / 25

Page 11: Classification Master Class - web.math.ku.dkweb.math.ku.dk/~rordam/Masterclass/slides/Slides - junior seminar... · David Robertson (Syddansk Universitet) Classi cation Master Class

Adjointable and compact operators

We say a linear operator T : X → X is adjointable if there exists anoperator T ∗ : X → X such that

〈T (ξ), η〉 = 〈ξT ∗(η)〉

for all ξ, η ∈ X .

We write L(X ) for the collection of all adjointable operators T : X → X .

Then L(X ) is a C ∗-algebra.

David Robertson (Syddansk Universitet) Classification Master Class November 18, 2009 4 / 25

Page 12: Classification Master Class - web.math.ku.dkweb.math.ku.dk/~rordam/Masterclass/slides/Slides - junior seminar... · David Robertson (Syddansk Universitet) Classi cation Master Class

Adjointable and compact operators

We say a linear operator T : X → X is adjointable if there exists anoperator T ∗ : X → X such that

〈T (ξ), η〉 = 〈ξT ∗(η)〉

for all ξ, η ∈ X .

We write L(X ) for the collection of all adjointable operators T : X → X .

Then L(X ) is a C ∗-algebra.

David Robertson (Syddansk Universitet) Classification Master Class November 18, 2009 4 / 25

Page 13: Classification Master Class - web.math.ku.dkweb.math.ku.dk/~rordam/Masterclass/slides/Slides - junior seminar... · David Robertson (Syddansk Universitet) Classi cation Master Class

Adjointable and compact operators

We say a linear operator T : X → X is adjointable if there exists anoperator T ∗ : X → X such that

〈T (ξ), η〉 = 〈ξT ∗(η)〉

for all ξ, η ∈ X .

We write L(X ) for the collection of all adjointable operators T : X → X .

Then L(X ) is a C ∗-algebra.

David Robertson (Syddansk Universitet) Classification Master Class November 18, 2009 4 / 25

Page 14: Classification Master Class - web.math.ku.dkweb.math.ku.dk/~rordam/Masterclass/slides/Slides - junior seminar... · David Robertson (Syddansk Universitet) Classi cation Master Class

Adjointable and compact operators

We say a linear operator T : X → X is adjointable if there exists anoperator T ∗ : X → X such that

〈T (ξ), η〉 = 〈ξT ∗(η)〉

for all ξ, η ∈ X .

We write L(X ) for the collection of all adjointable operators T : X → X .

Then L(X ) is a C ∗-algebra.

David Robertson (Syddansk Universitet) Classification Master Class November 18, 2009 4 / 25

Page 15: Classification Master Class - web.math.ku.dkweb.math.ku.dk/~rordam/Masterclass/slides/Slides - junior seminar... · David Robertson (Syddansk Universitet) Classi cation Master Class

Adjointable and compact operators

For ξ, η ∈ X , define θξ,η to be the operator satisfying

θξ,η(ζ) = ξ〈η, ζ〉.

for all ζ ∈ X .

This is an adjointable operator with (θξ,η)∗ = θη,ξ. We call

K(X ) = spanθξ,η : ξ, η ∈ X

the compact operators.

Then K(X ) is a closed two-sided ideal in L(X ).

David Robertson (Syddansk Universitet) Classification Master Class November 18, 2009 5 / 25

Page 16: Classification Master Class - web.math.ku.dkweb.math.ku.dk/~rordam/Masterclass/slides/Slides - junior seminar... · David Robertson (Syddansk Universitet) Classi cation Master Class

Adjointable and compact operators

For ξ, η ∈ X , define θξ,η to be the operator satisfying

θξ,η(ζ) = ξ〈η, ζ〉.

for all ζ ∈ X .

This is an adjointable operator with (θξ,η)∗ = θη,ξ. We call

K(X ) = spanθξ,η : ξ, η ∈ X

the compact operators.

Then K(X ) is a closed two-sided ideal in L(X ).

David Robertson (Syddansk Universitet) Classification Master Class November 18, 2009 5 / 25

Page 17: Classification Master Class - web.math.ku.dkweb.math.ku.dk/~rordam/Masterclass/slides/Slides - junior seminar... · David Robertson (Syddansk Universitet) Classi cation Master Class

Adjointable and compact operators

For ξ, η ∈ X , define θξ,η to be the operator satisfying

θξ,η(ζ) = ξ〈η, ζ〉.

for all ζ ∈ X .

This is an adjointable operator with (θξ,η)∗ = θη,ξ. We call

K(X ) = spanθξ,η : ξ, η ∈ X

the compact operators.

Then K(X ) is a closed two-sided ideal in L(X ).

David Robertson (Syddansk Universitet) Classification Master Class November 18, 2009 5 / 25

Page 18: Classification Master Class - web.math.ku.dkweb.math.ku.dk/~rordam/Masterclass/slides/Slides - junior seminar... · David Robertson (Syddansk Universitet) Classi cation Master Class

Adjointable and compact operators

For ξ, η ∈ X , define θξ,η to be the operator satisfying

θξ,η(ζ) = ξ〈η, ζ〉.

for all ζ ∈ X .

This is an adjointable operator with (θξ,η)∗ = θη,ξ. We call

K(X ) = spanθξ,η : ξ, η ∈ X

the compact operators.

Then K(X ) is a closed two-sided ideal in L(X ).

David Robertson (Syddansk Universitet) Classification Master Class November 18, 2009 5 / 25

Page 19: Classification Master Class - web.math.ku.dkweb.math.ku.dk/~rordam/Masterclass/slides/Slides - junior seminar... · David Robertson (Syddansk Universitet) Classi cation Master Class

C ∗-correspondences

Definition

A C ∗-correspondence is a pair (X ,A) where X is a Hilbert A-module,equipped with a ∗-homomorphism

φX : A→ L(X ).

We call φX the left action of A on X .

David Robertson (Syddansk Universitet) Classification Master Class November 18, 2009 6 / 25

Page 20: Classification Master Class - web.math.ku.dkweb.math.ku.dk/~rordam/Masterclass/slides/Slides - junior seminar... · David Robertson (Syddansk Universitet) Classi cation Master Class

C ∗-correspondences

Definition

A C ∗-correspondence is a pair (X ,A) where X is a Hilbert A-module,equipped with a ∗-homomorphism

φX : A→ L(X ).

We call φX the left action of A on X .

David Robertson (Syddansk Universitet) Classification Master Class November 18, 2009 6 / 25

Page 21: Classification Master Class - web.math.ku.dkweb.math.ku.dk/~rordam/Masterclass/slides/Slides - junior seminar... · David Robertson (Syddansk Universitet) Classi cation Master Class

C ∗-correspondences

Definition

A C ∗-correspondence is a pair (X ,A) where X is a Hilbert A-module,equipped with a ∗-homomorphism

φX : A→ L(X ).

We call φX the left action of A on X .

David Robertson (Syddansk Universitet) Classification Master Class November 18, 2009 6 / 25

Page 22: Classification Master Class - web.math.ku.dkweb.math.ku.dk/~rordam/Masterclass/slides/Slides - junior seminar... · David Robertson (Syddansk Universitet) Classi cation Master Class

Representations

We define the C ∗-algebra associated to a C ∗-correspondence (X ,A) as auniversal object associated to representations of (X ,A).

Definition

Let (X ,A) be a C ∗-correspondence and let B be a C ∗-algebra. We say apair (π, t) is a representation of (X ,A) on B if π : A→ B is a∗-homomorphism and t : X → B is a linear map satisfying

t(φX (a)ξ) = π(a)t(ξ) for all a ∈ A, ξ ∈ X

π(〈ξ, η〉) = t(ξ)∗t(η) for all ξ, η ∈ X .

David Robertson (Syddansk Universitet) Classification Master Class November 18, 2009 7 / 25

Page 23: Classification Master Class - web.math.ku.dkweb.math.ku.dk/~rordam/Masterclass/slides/Slides - junior seminar... · David Robertson (Syddansk Universitet) Classi cation Master Class

Representations

We define the C ∗-algebra associated to a C ∗-correspondence (X ,A) as auniversal object associated to representations of (X ,A).

Definition

Let (X ,A) be a C ∗-correspondence and let B be a C ∗-algebra. We say apair (π, t) is a representation of (X ,A) on B if π : A→ B is a∗-homomorphism and t : X → B is a linear map satisfying

t(φX (a)ξ) = π(a)t(ξ) for all a ∈ A, ξ ∈ X

π(〈ξ, η〉) = t(ξ)∗t(η) for all ξ, η ∈ X .

David Robertson (Syddansk Universitet) Classification Master Class November 18, 2009 7 / 25

Page 24: Classification Master Class - web.math.ku.dkweb.math.ku.dk/~rordam/Masterclass/slides/Slides - junior seminar... · David Robertson (Syddansk Universitet) Classi cation Master Class

Representations

We define the C ∗-algebra associated to a C ∗-correspondence (X ,A) as auniversal object associated to representations of (X ,A).

Definition

Let (X ,A) be a C ∗-correspondence and let B be a C ∗-algebra. We say apair (π, t) is a representation of (X ,A) on B if π : A→ B is a∗-homomorphism and t : X → B is a linear map satisfying

t(φX (a)ξ) = π(a)t(ξ) for all a ∈ A, ξ ∈ X

π(〈ξ, η〉) = t(ξ)∗t(η) for all ξ, η ∈ X .

David Robertson (Syddansk Universitet) Classification Master Class November 18, 2009 7 / 25

Page 25: Classification Master Class - web.math.ku.dkweb.math.ku.dk/~rordam/Masterclass/slides/Slides - junior seminar... · David Robertson (Syddansk Universitet) Classi cation Master Class

Representations

We define the C ∗-algebra associated to a C ∗-correspondence (X ,A) as auniversal object associated to representations of (X ,A).

Definition

Let (X ,A) be a C ∗-correspondence and let B be a C ∗-algebra. We say apair (π, t) is a representation of (X ,A) on B if π : A→ B is a∗-homomorphism and t : X → B is a linear map satisfying

t(φX (a)ξ) = π(a)t(ξ) for all a ∈ A, ξ ∈ X

π(〈ξ, η〉) = t(ξ)∗t(η) for all ξ, η ∈ X .

David Robertson (Syddansk Universitet) Classification Master Class November 18, 2009 7 / 25

Page 26: Classification Master Class - web.math.ku.dkweb.math.ku.dk/~rordam/Masterclass/slides/Slides - junior seminar... · David Robertson (Syddansk Universitet) Classi cation Master Class

Covariance

Definition (Katsura 2003)

Define an ideal JX of A by

JX := a ∈ A : φX (a) ∈ K(X ) and a · b = 0 for all b ∈ ker φX

Definition (Katsura 2003)

We say a representation (π, t) of (X ,A) on B is covariant if for all a ∈ JX

we haveπ(a) = ψt(φX (a))

where ψt : K(X )→ B satisfies ψt(θξ,η) = t(ξ)t(η)∗.

David Robertson (Syddansk Universitet) Classification Master Class November 18, 2009 8 / 25

Page 27: Classification Master Class - web.math.ku.dkweb.math.ku.dk/~rordam/Masterclass/slides/Slides - junior seminar... · David Robertson (Syddansk Universitet) Classi cation Master Class

Covariance

Definition (Katsura 2003)

Define an ideal JX of A by

JX := a ∈ A : φX (a) ∈ K(X ) and a · b = 0 for all b ∈ ker φX

Definition (Katsura 2003)

We say a representation (π, t) of (X ,A) on B is covariant if for all a ∈ JX

we haveπ(a) = ψt(φX (a))

where ψt : K(X )→ B satisfies ψt(θξ,η) = t(ξ)t(η)∗.

David Robertson (Syddansk Universitet) Classification Master Class November 18, 2009 8 / 25

Page 28: Classification Master Class - web.math.ku.dkweb.math.ku.dk/~rordam/Masterclass/slides/Slides - junior seminar... · David Robertson (Syddansk Universitet) Classi cation Master Class

Covariance

Definition (Katsura 2003)

Define an ideal JX of A by

JX := a ∈ A : φX (a) ∈ K(X ) and a · b = 0 for all b ∈ ker φX

Definition (Katsura 2003)

We say a representation (π, t) of (X ,A) on B is covariant if for all a ∈ JX

we haveπ(a) = ψt(φX (a))

where ψt : K(X )→ B satisfies ψt(θξ,η) = t(ξ)t(η)∗.

David Robertson (Syddansk Universitet) Classification Master Class November 18, 2009 8 / 25

Page 29: Classification Master Class - web.math.ku.dkweb.math.ku.dk/~rordam/Masterclass/slides/Slides - junior seminar... · David Robertson (Syddansk Universitet) Classi cation Master Class

The algebra

So we are ready to define the C ∗-algebra associated to aC ∗-correspondence (X ,A).

Definition (Katsura, 2003)

For a C ∗-correspondence (X ,A) define OX to be the C ∗-algebra generatedby the images of X and A under the universal covariant representation(πX , tX ).

David Robertson (Syddansk Universitet) Classification Master Class November 18, 2009 9 / 25

Page 30: Classification Master Class - web.math.ku.dkweb.math.ku.dk/~rordam/Masterclass/slides/Slides - junior seminar... · David Robertson (Syddansk Universitet) Classi cation Master Class

The algebra

So we are ready to define the C ∗-algebra associated to aC ∗-correspondence (X ,A).

Definition (Katsura, 2003)

For a C ∗-correspondence (X ,A) define OX to be the C ∗-algebra generatedby the images of X and A under the universal covariant representation(πX , tX ).

David Robertson (Syddansk Universitet) Classification Master Class November 18, 2009 9 / 25

Page 31: Classification Master Class - web.math.ku.dkweb.math.ku.dk/~rordam/Masterclass/slides/Slides - junior seminar... · David Robertson (Syddansk Universitet) Classi cation Master Class

Categorical viewpoint

By defining appropriate morphisms between C ∗-correspondences, they fitnicely into the language of categories.

Definition

Given two C ∗-correspondences (X ,A) and (Y ,B), a pair (ψX , ψA) whereψX : X → Y is a linear map and ψA : A→ B is a C ∗-homomorphism, iscalled a morphism of C ∗-correspondences if it satisfies

〈ψX (ξ), ψX (η)〉 = ψA(〈ξ, η〉) for all ξ, η ∈ X ,

ψX (φX (a)ξ) = φY (ψA(a))ψX (ξ) for all ξ ∈ X and a ∈ A, and

ψA(JX ) ⊂ JY and

for all a ∈ JX we have φY (ψA(a)) = ψ+X (φX (a)) where

ψ+X : K(X )→ K(Y ) satisfies ψ+

X (θξ,η) = θψX (ξ),ψX (η).

David Robertson (Syddansk Universitet) Classification Master Class November 18, 2009 10 / 25

Page 32: Classification Master Class - web.math.ku.dkweb.math.ku.dk/~rordam/Masterclass/slides/Slides - junior seminar... · David Robertson (Syddansk Universitet) Classi cation Master Class

Categorical viewpoint

By defining appropriate morphisms between C ∗-correspondences, they fitnicely into the language of categories.

Definition

Given two C ∗-correspondences (X ,A) and (Y ,B), a pair (ψX , ψA) whereψX : X → Y is a linear map and ψA : A→ B is a C ∗-homomorphism, iscalled a morphism of C ∗-correspondences if it satisfies

〈ψX (ξ), ψX (η)〉 = ψA(〈ξ, η〉) for all ξ, η ∈ X ,

ψX (φX (a)ξ) = φY (ψA(a))ψX (ξ) for all ξ ∈ X and a ∈ A, and

ψA(JX ) ⊂ JY and

for all a ∈ JX we have φY (ψA(a)) = ψ+X (φX (a)) where

ψ+X : K(X )→ K(Y ) satisfies ψ+

X (θξ,η) = θψX (ξ),ψX (η).

David Robertson (Syddansk Universitet) Classification Master Class November 18, 2009 10 / 25

Page 33: Classification Master Class - web.math.ku.dkweb.math.ku.dk/~rordam/Masterclass/slides/Slides - junior seminar... · David Robertson (Syddansk Universitet) Classi cation Master Class

Categorical viewpoint

By defining appropriate morphisms between C ∗-correspondences, they fitnicely into the language of categories.

Definition

Given two C ∗-correspondences (X ,A) and (Y ,B), a pair (ψX , ψA) whereψX : X → Y is a linear map and ψA : A→ B is a C ∗-homomorphism, iscalled a morphism of C ∗-correspondences if it satisfies

〈ψX (ξ), ψX (η)〉 = ψA(〈ξ, η〉) for all ξ, η ∈ X ,

ψX (φX (a)ξ) = φY (ψA(a))ψX (ξ) for all ξ ∈ X and a ∈ A, and

ψA(JX ) ⊂ JY and

for all a ∈ JX we have φY (ψA(a)) = ψ+X (φX (a)) where

ψ+X : K(X )→ K(Y ) satisfies ψ+

X (θξ,η) = θψX (ξ),ψX (η).

David Robertson (Syddansk Universitet) Classification Master Class November 18, 2009 10 / 25

Page 34: Classification Master Class - web.math.ku.dkweb.math.ku.dk/~rordam/Masterclass/slides/Slides - junior seminar... · David Robertson (Syddansk Universitet) Classi cation Master Class

Categorical viewpoint

By defining appropriate morphisms between C ∗-correspondences, they fitnicely into the language of categories.

Definition

Given two C ∗-correspondences (X ,A) and (Y ,B), a pair (ψX , ψA) whereψX : X → Y is a linear map and ψA : A→ B is a C ∗-homomorphism, iscalled a morphism of C ∗-correspondences if it satisfies

〈ψX (ξ), ψX (η)〉 = ψA(〈ξ, η〉) for all ξ, η ∈ X ,

ψX (φX (a)ξ) = φY (ψA(a))ψX (ξ) for all ξ ∈ X and a ∈ A, and

ψA(JX ) ⊂ JY and

for all a ∈ JX we have φY (ψA(a)) = ψ+X (φX (a)) where

ψ+X : K(X )→ K(Y ) satisfies ψ+

X (θξ,η) = θψX (ξ),ψX (η).

David Robertson (Syddansk Universitet) Classification Master Class November 18, 2009 10 / 25

Page 35: Classification Master Class - web.math.ku.dkweb.math.ku.dk/~rordam/Masterclass/slides/Slides - junior seminar... · David Robertson (Syddansk Universitet) Classi cation Master Class

Categorical viewpoint

By defining appropriate morphisms between C ∗-correspondences, they fitnicely into the language of categories.

Definition

Given two C ∗-correspondences (X ,A) and (Y ,B), a pair (ψX , ψA) whereψX : X → Y is a linear map and ψA : A→ B is a C ∗-homomorphism, iscalled a morphism of C ∗-correspondences if it satisfies

〈ψX (ξ), ψX (η)〉 = ψA(〈ξ, η〉) for all ξ, η ∈ X ,

ψX (φX (a)ξ) = φY (ψA(a))ψX (ξ) for all ξ ∈ X and a ∈ A, and

ψA(JX ) ⊂ JY and

for all a ∈ JX we have φY (ψA(a)) = ψ+X (φX (a)) where

ψ+X : K(X )→ K(Y ) satisfies ψ+

X (θξ,η) = θψX (ξ),ψX (η).

David Robertson (Syddansk Universitet) Classification Master Class November 18, 2009 10 / 25

Page 36: Classification Master Class - web.math.ku.dkweb.math.ku.dk/~rordam/Masterclass/slides/Slides - junior seminar... · David Robertson (Syddansk Universitet) Classi cation Master Class

Categorical viewpoint

By defining appropriate morphisms between C ∗-correspondences, they fitnicely into the language of categories.

Definition

Given two C ∗-correspondences (X ,A) and (Y ,B), a pair (ψX , ψA) whereψX : X → Y is a linear map and ψA : A→ B is a C ∗-homomorphism, iscalled a morphism of C ∗-correspondences if it satisfies

〈ψX (ξ), ψX (η)〉 = ψA(〈ξ, η〉) for all ξ, η ∈ X ,

ψX (φX (a)ξ) = φY (ψA(a))ψX (ξ) for all ξ ∈ X and a ∈ A, and

ψA(JX ) ⊂ JY and

for all a ∈ JX we have φY (ψA(a)) = ψ+X (φX (a)) where

ψ+X : K(X )→ K(Y ) satisfies ψ+

X (θξ,η) = θψX (ξ),ψX (η).

David Robertson (Syddansk Universitet) Classification Master Class November 18, 2009 10 / 25

Page 37: Classification Master Class - web.math.ku.dkweb.math.ku.dk/~rordam/Masterclass/slides/Slides - junior seminar... · David Robertson (Syddansk Universitet) Classi cation Master Class

Functors

There is a functor F from the category of C ∗-correspondences to thecategory of C ∗-algebras such that

F (X ,A) = OX

Ψ = F (ψX , ψA) : OX → OY is a C ∗-homomorphism satisfying

Ψ(πX (a)) = πY (ψA(a)) and Ψ(tX (ξ)) = tY (ψX (ξ))

for all a ∈ A and ξ ∈ X .

Not all homomorphisms ϕ : OX → OY arise this way.

David Robertson (Syddansk Universitet) Classification Master Class November 18, 2009 11 / 25

Page 38: Classification Master Class - web.math.ku.dkweb.math.ku.dk/~rordam/Masterclass/slides/Slides - junior seminar... · David Robertson (Syddansk Universitet) Classi cation Master Class

Functors

There is a functor F from the category of C ∗-correspondences to thecategory of C ∗-algebras such that

F (X ,A) = OX

Ψ = F (ψX , ψA) : OX → OY is a C ∗-homomorphism satisfying

Ψ(πX (a)) = πY (ψA(a)) and Ψ(tX (ξ)) = tY (ψX (ξ))

for all a ∈ A and ξ ∈ X .

Not all homomorphisms ϕ : OX → OY arise this way.

David Robertson (Syddansk Universitet) Classification Master Class November 18, 2009 11 / 25

Page 39: Classification Master Class - web.math.ku.dkweb.math.ku.dk/~rordam/Masterclass/slides/Slides - junior seminar... · David Robertson (Syddansk Universitet) Classi cation Master Class

Functors

There is a functor F from the category of C ∗-correspondences to thecategory of C ∗-algebras such that

F (X ,A) = OX

Ψ = F (ψX , ψA) : OX → OY is a C ∗-homomorphism satisfying

Ψ(πX (a)) = πY (ψA(a)) and Ψ(tX (ξ)) = tY (ψX (ξ))

for all a ∈ A and ξ ∈ X .

Not all homomorphisms ϕ : OX → OY arise this way.

David Robertson (Syddansk Universitet) Classification Master Class November 18, 2009 11 / 25

Page 40: Classification Master Class - web.math.ku.dkweb.math.ku.dk/~rordam/Masterclass/slides/Slides - junior seminar... · David Robertson (Syddansk Universitet) Classi cation Master Class

Functors

There is a functor F from the category of C ∗-correspondences to thecategory of C ∗-algebras such that

F (X ,A) = OX

Ψ = F (ψX , ψA) : OX → OY is a C ∗-homomorphism satisfying

Ψ(πX (a)) = πY (ψA(a)) and Ψ(tX (ξ)) = tY (ψX (ξ))

for all a ∈ A and ξ ∈ X .

Not all homomorphisms ϕ : OX → OY arise this way.

David Robertson (Syddansk Universitet) Classification Master Class November 18, 2009 11 / 25

Page 41: Classification Master Class - web.math.ku.dkweb.math.ku.dk/~rordam/Masterclass/slides/Slides - junior seminar... · David Robertson (Syddansk Universitet) Classi cation Master Class

Overview

C ∗-algebras associated to C ∗-correspondences and applications tononcommutative geometry.

Overview of the presentation

C ∗-algebras associated to C ∗-correspondences

Restricted direct sum C ∗correspondences and pullbacks: Our maintheorem

Even dimensional mirror quantum spheres

Labelled graph algebras

David Robertson (Syddansk Universitet) Classification Master Class November 18, 2009 12 / 25

Page 42: Classification Master Class - web.math.ku.dkweb.math.ku.dk/~rordam/Masterclass/slides/Slides - junior seminar... · David Robertson (Syddansk Universitet) Classi cation Master Class

Restricted direct sums

Restricted direct sums of C ∗-correspondences are a generalisation ofpullbacks of C ∗-algebras.

Definition (Bakic, Guljas (2003))

Given C ∗-correspondences (X ,A), (Y ,B) and (Z ,C ), and morphisms ofC ∗-correspondences (ψX , ψA) : (X ,A)→ (Z ,C ),(ωY , ωB) : (Y ,B)→ (Z ,C ), define the restricted direct sum

X ⊕Z Y := (ξ, η) ∈ X ⊕ Y : ψX (ξ) = ωY (η).

Proposition

The restricted direct sum X ⊕Z Y is a C ∗-correspondence over theC ∗-algebra A⊕C B defined to be the pullback C ∗-algebra of A and Balong ψA and ωB .

David Robertson (Syddansk Universitet) Classification Master Class November 18, 2009 13 / 25

Page 43: Classification Master Class - web.math.ku.dkweb.math.ku.dk/~rordam/Masterclass/slides/Slides - junior seminar... · David Robertson (Syddansk Universitet) Classi cation Master Class

Restricted direct sums

Restricted direct sums of C ∗-correspondences are a generalisation ofpullbacks of C ∗-algebras.

Definition (Bakic, Guljas (2003))

Given C ∗-correspondences (X ,A), (Y ,B) and (Z ,C ), and morphisms ofC ∗-correspondences (ψX , ψA) : (X ,A)→ (Z ,C ),(ωY , ωB) : (Y ,B)→ (Z ,C ), define the restricted direct sum

X ⊕Z Y := (ξ, η) ∈ X ⊕ Y : ψX (ξ) = ωY (η).

Proposition

The restricted direct sum X ⊕Z Y is a C ∗-correspondence over theC ∗-algebra A⊕C B defined to be the pullback C ∗-algebra of A and Balong ψA and ωB .

David Robertson (Syddansk Universitet) Classification Master Class November 18, 2009 13 / 25

Page 44: Classification Master Class - web.math.ku.dkweb.math.ku.dk/~rordam/Masterclass/slides/Slides - junior seminar... · David Robertson (Syddansk Universitet) Classi cation Master Class

Restricted direct sums

Restricted direct sums of C ∗-correspondences are a generalisation ofpullbacks of C ∗-algebras.

Definition (Bakic, Guljas (2003))

Given C ∗-correspondences (X ,A), (Y ,B) and (Z ,C ), and morphisms ofC ∗-correspondences (ψX , ψA) : (X ,A)→ (Z ,C ),(ωY , ωB) : (Y ,B)→ (Z ,C ), define the restricted direct sum

X ⊕Z Y := (ξ, η) ∈ X ⊕ Y : ψX (ξ) = ωY (η).

Proposition

The restricted direct sum X ⊕Z Y is a C ∗-correspondence over theC ∗-algebra A⊕C B defined to be the pullback C ∗-algebra of A and Balong ψA and ωB .

David Robertson (Syddansk Universitet) Classification Master Class November 18, 2009 13 / 25

Page 45: Classification Master Class - web.math.ku.dkweb.math.ku.dk/~rordam/Masterclass/slides/Slides - junior seminar... · David Robertson (Syddansk Universitet) Classi cation Master Class

Restricted direct sums

Restricted direct sums of C ∗-correspondences are a generalisation ofpullbacks of C ∗-algebras.

Definition (Bakic, Guljas (2003))

Given C ∗-correspondences (X ,A), (Y ,B) and (Z ,C ), and morphisms ofC ∗-correspondences (ψX , ψA) : (X ,A)→ (Z ,C ),(ωY , ωB) : (Y ,B)→ (Z ,C ), define the restricted direct sum

X ⊕Z Y := (ξ, η) ∈ X ⊕ Y : ψX (ξ) = ωY (η).

Proposition

The restricted direct sum X ⊕Z Y is a C ∗-correspondence over theC ∗-algebra A⊕C B defined to be the pullback C ∗-algebra of A and Balong ψA and ωB .

David Robertson (Syddansk Universitet) Classification Master Class November 18, 2009 13 / 25

Page 46: Classification Master Class - web.math.ku.dkweb.math.ku.dk/~rordam/Masterclass/slides/Slides - junior seminar... · David Robertson (Syddansk Universitet) Classi cation Master Class

Gluing C ∗-correspondences

Our main result says that the process of taking restricted direct sums onthe level of C ∗-correspondences lifts to the process of taking pull-backs onthe level of induced C ∗-algebras via the functor F .

Theorem

Let (X ,A), (Y ,B) and (Z ,C ) be C ∗-correspondences fix morphisms ofC ∗-correspondences (ψX , ψA) : (X ,A)→ (Z ,C ),(ωY , ωB) : (Y ,B)→ (Z ,C ) satisfying

ψX (X ) = ωY (Y )

ψA(A) = ωB(B), and

ψA(ker(φX )) = ωB(ker(φY )).

ThenOX⊕ZY

∼= OX ⊕OZOY

where OX ⊕OZOY is the pullback C ∗-algebra of OX and OY along

Ψ = F (ψX , ψA) and Ω = F (ωY , ωB).

David Robertson (Syddansk Universitet) Classification Master Class November 18, 2009 14 / 25

Page 47: Classification Master Class - web.math.ku.dkweb.math.ku.dk/~rordam/Masterclass/slides/Slides - junior seminar... · David Robertson (Syddansk Universitet) Classi cation Master Class

Gluing C ∗-correspondences

Our main result says that the process of taking restricted direct sums onthe level of C ∗-correspondences lifts to the process of taking pull-backs onthe level of induced C ∗-algebras via the functor F .

Theorem

Let (X ,A), (Y ,B) and (Z ,C ) be C ∗-correspondences fix morphisms ofC ∗-correspondences (ψX , ψA) : (X ,A)→ (Z ,C ),(ωY , ωB) : (Y ,B)→ (Z ,C ) satisfying

ψX (X ) = ωY (Y )

ψA(A) = ωB(B), and

ψA(ker(φX )) = ωB(ker(φY )).

ThenOX⊕ZY

∼= OX ⊕OZOY

where OX ⊕OZOY is the pullback C ∗-algebra of OX and OY along

Ψ = F (ψX , ψA) and Ω = F (ωY , ωB).

David Robertson (Syddansk Universitet) Classification Master Class November 18, 2009 14 / 25

Page 48: Classification Master Class - web.math.ku.dkweb.math.ku.dk/~rordam/Masterclass/slides/Slides - junior seminar... · David Robertson (Syddansk Universitet) Classi cation Master Class

Gluing C ∗-correspondences

Our main result says that the process of taking restricted direct sums onthe level of C ∗-correspondences lifts to the process of taking pull-backs onthe level of induced C ∗-algebras via the functor F .

Theorem

Let (X ,A), (Y ,B) and (Z ,C ) be C ∗-correspondences fix morphisms ofC ∗-correspondences (ψX , ψA) : (X ,A)→ (Z ,C ),(ωY , ωB) : (Y ,B)→ (Z ,C ) satisfying

ψX (X ) = ωY (Y )

ψA(A) = ωB(B), and

ψA(ker(φX )) = ωB(ker(φY )).

ThenOX⊕ZY

∼= OX ⊕OZOY

where OX ⊕OZOY is the pullback C ∗-algebra of OX and OY along

Ψ = F (ψX , ψA) and Ω = F (ωY , ωB).

David Robertson (Syddansk Universitet) Classification Master Class November 18, 2009 14 / 25

Page 49: Classification Master Class - web.math.ku.dkweb.math.ku.dk/~rordam/Masterclass/slides/Slides - junior seminar... · David Robertson (Syddansk Universitet) Classi cation Master Class

Gluing C ∗-correspondences

Our main result says that the process of taking restricted direct sums onthe level of C ∗-correspondences lifts to the process of taking pull-backs onthe level of induced C ∗-algebras via the functor F .

Theorem

Let (X ,A), (Y ,B) and (Z ,C ) be C ∗-correspondences fix morphisms ofC ∗-correspondences (ψX , ψA) : (X ,A)→ (Z ,C ),(ωY , ωB) : (Y ,B)→ (Z ,C ) satisfying

ψX (X ) = ωY (Y )

ψA(A) = ωB(B), and

ψA(ker(φX )) = ωB(ker(φY )).

ThenOX⊕ZY

∼= OX ⊕OZOY

where OX ⊕OZOY is the pullback C ∗-algebra of OX and OY along

Ψ = F (ψX , ψA) and Ω = F (ωY , ωB).

David Robertson (Syddansk Universitet) Classification Master Class November 18, 2009 14 / 25

Page 50: Classification Master Class - web.math.ku.dkweb.math.ku.dk/~rordam/Masterclass/slides/Slides - junior seminar... · David Robertson (Syddansk Universitet) Classi cation Master Class

Gluing C ∗-correspondences

Our main result says that the process of taking restricted direct sums onthe level of C ∗-correspondences lifts to the process of taking pull-backs onthe level of induced C ∗-algebras via the functor F .

Theorem

Let (X ,A), (Y ,B) and (Z ,C ) be C ∗-correspondences fix morphisms ofC ∗-correspondences (ψX , ψA) : (X ,A)→ (Z ,C ),(ωY , ωB) : (Y ,B)→ (Z ,C ) satisfying

ψX (X ) = ωY (Y )

ψA(A) = ωB(B), and

ψA(ker(φX )) = ωB(ker(φY )).

ThenOX⊕ZY

∼= OX ⊕OZOY

where OX ⊕OZOY is the pullback C ∗-algebra of OX and OY along

Ψ = F (ψX , ψA) and Ω = F (ωY , ωB).

David Robertson (Syddansk Universitet) Classification Master Class November 18, 2009 14 / 25

Page 51: Classification Master Class - web.math.ku.dkweb.math.ku.dk/~rordam/Masterclass/slides/Slides - junior seminar... · David Robertson (Syddansk Universitet) Classi cation Master Class

Gluing C ∗-correspondences

Our main result says that the process of taking restricted direct sums onthe level of C ∗-correspondences lifts to the process of taking pull-backs onthe level of induced C ∗-algebras via the functor F .

Theorem

Let (X ,A), (Y ,B) and (Z ,C ) be C ∗-correspondences fix morphisms ofC ∗-correspondences (ψX , ψA) : (X ,A)→ (Z ,C ),(ωY , ωB) : (Y ,B)→ (Z ,C ) satisfying

ψX (X ) = ωY (Y )

ψA(A) = ωB(B), and

ψA(ker(φX )) = ωB(ker(φY )).

ThenOX⊕ZY

∼= OX ⊕OZOY

where OX ⊕OZOY is the pullback C ∗-algebra of OX and OY along

Ψ = F (ψX , ψA) and Ω = F (ωY , ωB).

David Robertson (Syddansk Universitet) Classification Master Class November 18, 2009 14 / 25

Page 52: Classification Master Class - web.math.ku.dkweb.math.ku.dk/~rordam/Masterclass/slides/Slides - junior seminar... · David Robertson (Syddansk Universitet) Classi cation Master Class

Noncommutative spaces

We can use this to construct new examples of noncommutative spaces.

David Robertson (Syddansk Universitet) Classification Master Class November 18, 2009 15 / 25

Page 53: Classification Master Class - web.math.ku.dkweb.math.ku.dk/~rordam/Masterclass/slides/Slides - junior seminar... · David Robertson (Syddansk Universitet) Classi cation Master Class

Overview

C ∗-algebras associated to C ∗-correspondences and applications tononcommutative geometry.

Overview of the presentation

C ∗-algebras associated to C ∗-correspondences

Restricted direct sum C ∗correspondences and pullbacks

Even dimensional mirror quantum spheres

Labelled graph algebras

David Robertson (Syddansk Universitet) Classification Master Class November 18, 2009 16 / 25

Page 54: Classification Master Class - web.math.ku.dkweb.math.ku.dk/~rordam/Masterclass/slides/Slides - junior seminar... · David Robertson (Syddansk Universitet) Classi cation Master Class

Even dimensional mirror quantum spheres

The motivating examples for this research are the even-dimensional mirrorquantum spheres, first defined for dimension 2 by Hajac, Matthes andSzymanski in 2006, and generalised to higher dimension by Hong andSzymanski in 2008.

For n ∈ N, the 2n-dimensional mirror quantum sphere is defined as thepullback of the following diagram

where π : C (D2nq )→ C (S2n−1

q ) is the natural surjection andβ ∈ Aut(C (S2n−1

q )).

David Robertson (Syddansk Universitet) Classification Master Class November 18, 2009 17 / 25

Page 55: Classification Master Class - web.math.ku.dkweb.math.ku.dk/~rordam/Masterclass/slides/Slides - junior seminar... · David Robertson (Syddansk Universitet) Classi cation Master Class

Even dimensional mirror quantum spheres

The motivating examples for this research are the even-dimensional mirrorquantum spheres, first defined for dimension 2 by Hajac, Matthes andSzymanski in 2006, and generalised to higher dimension by Hong andSzymanski in 2008.

For n ∈ N, the 2n-dimensional mirror quantum sphere is defined as thepullback of the following diagram

where π : C (D2nq )→ C (S2n−1

q ) is the natural surjection andβ ∈ Aut(C (S2n−1

q )).

David Robertson (Syddansk Universitet) Classification Master Class November 18, 2009 17 / 25

Page 56: Classification Master Class - web.math.ku.dkweb.math.ku.dk/~rordam/Masterclass/slides/Slides - junior seminar... · David Robertson (Syddansk Universitet) Classi cation Master Class

Mirror quantum spheres as C ∗-correspondences

Hong and Szymanski showed that the algebras C (D2nq ) and C (S2n−1

q ) aregraph algebras, so we can easily find C ∗-correspondences for thesealgebras

(X ,A) such that OX∼= C (D2n

q )

(Z ,C ) such that OZ∼= C (S2n−1

q )

There is a morphism of C ∗-correspondences (σX , σA) : (X ,A)→ (Z ,C )such that Σ = F (σX , σA) : OX → OZ and π : C (D2n

q )→ C (S2n−1q ) are the

same map.

David Robertson (Syddansk Universitet) Classification Master Class November 18, 2009 18 / 25

Page 57: Classification Master Class - web.math.ku.dkweb.math.ku.dk/~rordam/Masterclass/slides/Slides - junior seminar... · David Robertson (Syddansk Universitet) Classi cation Master Class

Mirror quantum spheres as C ∗-correspondences

Hong and Szymanski showed that the algebras C (D2nq ) and C (S2n−1

q ) aregraph algebras, so we can easily find C ∗-correspondences for thesealgebras

(X ,A) such that OX∼= C (D2n

q )

(Z ,C ) such that OZ∼= C (S2n−1

q )

There is a morphism of C ∗-correspondences (σX , σA) : (X ,A)→ (Z ,C )such that Σ = F (σX , σA) : OX → OZ and π : C (D2n

q )→ C (S2n−1q ) are the

same map.

David Robertson (Syddansk Universitet) Classification Master Class November 18, 2009 18 / 25

Page 58: Classification Master Class - web.math.ku.dkweb.math.ku.dk/~rordam/Masterclass/slides/Slides - junior seminar... · David Robertson (Syddansk Universitet) Classi cation Master Class

Mirror quantum spheres as C ∗-correspondences

Hong and Szymanski showed that the algebras C (D2nq ) and C (S2n−1

q ) aregraph algebras, so we can easily find C ∗-correspondences for thesealgebras

(X ,A) such that OX∼= C (D2n

q )

(Z ,C ) such that OZ∼= C (S2n−1

q )

There is a morphism of C ∗-correspondences (σX , σA) : (X ,A)→ (Z ,C )such that Σ = F (σX , σA) : OX → OZ and π : C (D2n

q )→ C (S2n−1q ) are the

same map.

David Robertson (Syddansk Universitet) Classification Master Class November 18, 2009 18 / 25

Page 59: Classification Master Class - web.math.ku.dkweb.math.ku.dk/~rordam/Masterclass/slides/Slides - junior seminar... · David Robertson (Syddansk Universitet) Classi cation Master Class

Mirror quantum spheres as C ∗-correspondences

However, there is no morphism of C ∗-correspondences(ρX , ρA) : (X ,A)→ (Z ,C ) such that F (ρX , ρA) = π β.

There is another C ∗-correspondence (Y ,B) and morphism(ρY , ρB) : (Y ,B)→ (Z ,C ) such that

OY∼= C (D2n

q )

F (ρY , ρB) = π β

But the C ∗-correspondence (Y ,B) no longer comes from a directed graph.

David Robertson (Syddansk Universitet) Classification Master Class November 18, 2009 19 / 25

Page 60: Classification Master Class - web.math.ku.dkweb.math.ku.dk/~rordam/Masterclass/slides/Slides - junior seminar... · David Robertson (Syddansk Universitet) Classi cation Master Class

Mirror quantum spheres as C ∗-correspondences

However, there is no morphism of C ∗-correspondences(ρX , ρA) : (X ,A)→ (Z ,C ) such that F (ρX , ρA) = π β.

There is another C ∗-correspondence (Y ,B) and morphism(ρY , ρB) : (Y ,B)→ (Z ,C ) such that

OY∼= C (D2n

q )

F (ρY , ρB) = π β

But the C ∗-correspondence (Y ,B) no longer comes from a directed graph.

David Robertson (Syddansk Universitet) Classification Master Class November 18, 2009 19 / 25

Page 61: Classification Master Class - web.math.ku.dkweb.math.ku.dk/~rordam/Masterclass/slides/Slides - junior seminar... · David Robertson (Syddansk Universitet) Classi cation Master Class

Mirror quantum spheres as C ∗-correspondences

However, there is no morphism of C ∗-correspondences(ρX , ρA) : (X ,A)→ (Z ,C ) such that F (ρX , ρA) = π β.

There is another C ∗-correspondence (Y ,B) and morphism(ρY , ρB) : (Y ,B)→ (Z ,C ) such that

OY∼= C (D2n

q )

F (ρY , ρB) = π β

But the C ∗-correspondence (Y ,B) no longer comes from a directed graph.

David Robertson (Syddansk Universitet) Classification Master Class November 18, 2009 19 / 25

Page 62: Classification Master Class - web.math.ku.dkweb.math.ku.dk/~rordam/Masterclass/slides/Slides - junior seminar... · David Robertson (Syddansk Universitet) Classi cation Master Class

Mirror quantum spheres as C ∗-correspondences

However, there is no morphism of C ∗-correspondences(ρX , ρA) : (X ,A)→ (Z ,C ) such that F (ρX , ρA) = π β.

There is another C ∗-correspondence (Y ,B) and morphism(ρY , ρB) : (Y ,B)→ (Z ,C ) such that

OY∼= C (D2n

q )

F (ρY , ρB) = π β

But the C ∗-correspondence (Y ,B) no longer comes from a directed graph.

David Robertson (Syddansk Universitet) Classification Master Class November 18, 2009 19 / 25

Page 63: Classification Master Class - web.math.ku.dkweb.math.ku.dk/~rordam/Masterclass/slides/Slides - junior seminar... · David Robertson (Syddansk Universitet) Classi cation Master Class

Mirror quantum spheres as C ∗-correspondences

However, there is no morphism of C ∗-correspondences(ρX , ρA) : (X ,A)→ (Z ,C ) such that F (ρX , ρA) = π β.

There is another C ∗-correspondence (Y ,B) and morphism(ρY , ρB) : (Y ,B)→ (Z ,C ) such that

OY∼= C (D2n

q )

F (ρY , ρB) = π β

But the C ∗-correspondence (Y ,B) no longer comes from a directed graph.

David Robertson (Syddansk Universitet) Classification Master Class November 18, 2009 19 / 25

Page 64: Classification Master Class - web.math.ku.dkweb.math.ku.dk/~rordam/Masterclass/slides/Slides - junior seminar... · David Robertson (Syddansk Universitet) Classi cation Master Class

Overview

C ∗-algebras associated to C ∗-correspondences and applications tononcommutative geometry.

Overview of the presentation

C ∗-algebras associated to C ∗-correspondences

Restricted direct sum C ∗correspondences and pullbacks

Graph algebras

Even dimensional mirror quantum spheres

Labelled graph algebras

David Robertson (Syddansk Universitet) Classification Master Class November 18, 2009 20 / 25

Page 65: Classification Master Class - web.math.ku.dkweb.math.ku.dk/~rordam/Masterclass/slides/Slides - junior seminar... · David Robertson (Syddansk Universitet) Classi cation Master Class

Labelled graphs

Labelled graphs are a generalisation of directed graphs, where two or moreedges may carry the same label, and the range and sources of edgesbecome sets of vertices.

Definition (Bates, Pask (2007))

A labelled graph (E ,L) over an alphabet A is a directed graph E togetherwith a surjective labelling map L : E 1 → A which assigns to each edgee ∈ E 1 a label a ∈ A.

The range and source maps then become r , s : A → P(E 0) satisfying

s(a) = s(e) : L(e) = a and r(a) = r(e) : L(e) = a

David Robertson (Syddansk Universitet) Classification Master Class November 18, 2009 21 / 25

Page 66: Classification Master Class - web.math.ku.dkweb.math.ku.dk/~rordam/Masterclass/slides/Slides - junior seminar... · David Robertson (Syddansk Universitet) Classi cation Master Class

Labelled graphs

Labelled graphs are a generalisation of directed graphs, where two or moreedges may carry the same label, and the range and sources of edgesbecome sets of vertices.

Definition (Bates, Pask (2007))

A labelled graph (E ,L) over an alphabet A is a directed graph E togetherwith a surjective labelling map L : E 1 → A which assigns to each edgee ∈ E 1 a label a ∈ A.

The range and source maps then become r , s : A → P(E 0) satisfying

s(a) = s(e) : L(e) = a and r(a) = r(e) : L(e) = a

David Robertson (Syddansk Universitet) Classification Master Class November 18, 2009 21 / 25

Page 67: Classification Master Class - web.math.ku.dkweb.math.ku.dk/~rordam/Masterclass/slides/Slides - junior seminar... · David Robertson (Syddansk Universitet) Classi cation Master Class

Labelled graphs

Labelled graphs are a generalisation of directed graphs, where two or moreedges may carry the same label, and the range and sources of edgesbecome sets of vertices.

Definition (Bates, Pask (2007))

A labelled graph (E ,L) over an alphabet A is a directed graph E togetherwith a surjective labelling map L : E 1 → A which assigns to each edgee ∈ E 1 a label a ∈ A.

The range and source maps then become r , s : A → P(E 0) satisfying

s(a) = s(e) : L(e) = a and r(a) = r(e) : L(e) = a

David Robertson (Syddansk Universitet) Classification Master Class November 18, 2009 21 / 25

Page 68: Classification Master Class - web.math.ku.dkweb.math.ku.dk/~rordam/Masterclass/slides/Slides - junior seminar... · David Robertson (Syddansk Universitet) Classi cation Master Class

Example

Example of a labelled graph (E ,L).

Then we haves(a) = u r(a) = v

s(b) = u, v = r(b)

David Robertson (Syddansk Universitet) Classification Master Class November 18, 2009 22 / 25

Page 69: Classification Master Class - web.math.ku.dkweb.math.ku.dk/~rordam/Masterclass/slides/Slides - junior seminar... · David Robertson (Syddansk Universitet) Classi cation Master Class

Example

Example of a labelled graph (E ,L).

Then we haves(a) = u r(a) = v

s(b) = u, v = r(b)

David Robertson (Syddansk Universitet) Classification Master Class November 18, 2009 22 / 25

Page 70: Classification Master Class - web.math.ku.dkweb.math.ku.dk/~rordam/Masterclass/slides/Slides - junior seminar... · David Robertson (Syddansk Universitet) Classi cation Master Class

Example

Example of a labelled graph (E ,L).

Then we haves(a) = u r(a) = v

s(b) = u, v = r(b)

David Robertson (Syddansk Universitet) Classification Master Class November 18, 2009 22 / 25

Page 71: Classification Master Class - web.math.ku.dkweb.math.ku.dk/~rordam/Masterclass/slides/Slides - junior seminar... · David Robertson (Syddansk Universitet) Classi cation Master Class

C ∗-algebra

We associate C ∗-algebras to labelled spaces (E ,L,B) where (E ,L) is alabelled graph and B ⊂ 2E0

.

The C ∗-algebra is generated by a collection of partial isometries associatedto the labels on E 1, and projections associated to the sets of verticesA ∈ B.

Not all labelled graphs admit a suitable set B in order to associate aC ∗-algebra. When B exists we say B is accommodating for (E ,L).

David Robertson (Syddansk Universitet) Classification Master Class November 18, 2009 23 / 25

Page 72: Classification Master Class - web.math.ku.dkweb.math.ku.dk/~rordam/Masterclass/slides/Slides - junior seminar... · David Robertson (Syddansk Universitet) Classi cation Master Class

C ∗-algebra

We associate C ∗-algebras to labelled spaces (E ,L,B) where (E ,L) is alabelled graph and B ⊂ 2E0

.

The C ∗-algebra is generated by a collection of partial isometries associatedto the labels on E 1, and projections associated to the sets of verticesA ∈ B.

Not all labelled graphs admit a suitable set B in order to associate aC ∗-algebra. When B exists we say B is accommodating for (E ,L).

David Robertson (Syddansk Universitet) Classification Master Class November 18, 2009 23 / 25

Page 73: Classification Master Class - web.math.ku.dkweb.math.ku.dk/~rordam/Masterclass/slides/Slides - junior seminar... · David Robertson (Syddansk Universitet) Classi cation Master Class

C ∗-algebra

We associate C ∗-algebras to labelled spaces (E ,L,B) where (E ,L) is alabelled graph and B ⊂ 2E0

.

The C ∗-algebra is generated by a collection of partial isometries associatedto the labels on E 1, and projections associated to the sets of verticesA ∈ B.

Not all labelled graphs admit a suitable set B in order to associate aC ∗-algebra. When B exists we say B is accommodating for (E ,L).

David Robertson (Syddansk Universitet) Classification Master Class November 18, 2009 23 / 25

Page 74: Classification Master Class - web.math.ku.dkweb.math.ku.dk/~rordam/Masterclass/slides/Slides - junior seminar... · David Robertson (Syddansk Universitet) Classi cation Master Class

C ∗-algebra

Definition (Bates, Pask (2003))

Let (E ,L) be a labelled graph, B an accommodating set for (E ,L). Arepresentation of (E ,L) is a collection pA : A ∈ B of projections and acollection sa : a ∈ L(E 1) of partial isometries such that:

For A,B ∈ B, we have pApB = pA∩B and pA∪B = pA + pB − pA∩B

where p∅ = 0

For a ∈ L(E 1) and A ∈ B, we have pAsa = sapr(A,a) wherer(A, a) = r(e) : s(e) ∈ A,L(e)) = aFor a, b ∈ L(E 1), we have s∗a sa = pr(a) and s∗a sb = 0 unless a = b

For A ∈ B define L1(A) := a ∈ L(E 1) : s(a)∩A 6= ∅. Then if L1(A)is finite and non-empty, we have

pA =∑

a∈L1(A)

sapr(A,a)s∗a +∑

v∈A:v is a sink

pv.

David Robertson (Syddansk Universitet) Classification Master Class November 18, 2009 24 / 25

Page 75: Classification Master Class - web.math.ku.dkweb.math.ku.dk/~rordam/Masterclass/slides/Slides - junior seminar... · David Robertson (Syddansk Universitet) Classi cation Master Class

C ∗-algebra

Definition (Bates, Pask (2003))

Let (E ,L) be a labelled graph, B an accommodating set for (E ,L). Arepresentation of (E ,L) is a collection pA : A ∈ B of projections and acollection sa : a ∈ L(E 1) of partial isometries such that:

For A,B ∈ B, we have pApB = pA∩B and pA∪B = pA + pB − pA∩B

where p∅ = 0

For a ∈ L(E 1) and A ∈ B, we have pAsa = sapr(A,a) wherer(A, a) = r(e) : s(e) ∈ A,L(e)) = aFor a, b ∈ L(E 1), we have s∗a sa = pr(a) and s∗a sb = 0 unless a = b

For A ∈ B define L1(A) := a ∈ L(E 1) : s(a)∩A 6= ∅. Then if L1(A)is finite and non-empty, we have

pA =∑

a∈L1(A)

sapr(A,a)s∗a +∑

v∈A:v is a sink

pv.

David Robertson (Syddansk Universitet) Classification Master Class November 18, 2009 24 / 25

Page 76: Classification Master Class - web.math.ku.dkweb.math.ku.dk/~rordam/Masterclass/slides/Slides - junior seminar... · David Robertson (Syddansk Universitet) Classi cation Master Class

C ∗-algebra

Definition (Bates, Pask (2003))

Let (E ,L) be a labelled graph, B an accommodating set for (E ,L). Arepresentation of (E ,L) is a collection pA : A ∈ B of projections and acollection sa : a ∈ L(E 1) of partial isometries such that:

For A,B ∈ B, we have pApB = pA∩B and pA∪B = pA + pB − pA∩B

where p∅ = 0

For a ∈ L(E 1) and A ∈ B, we have pAsa = sapr(A,a) wherer(A, a) = r(e) : s(e) ∈ A,L(e)) = a

For a, b ∈ L(E 1), we have s∗a sa = pr(a) and s∗a sb = 0 unless a = b

For A ∈ B define L1(A) := a ∈ L(E 1) : s(a)∩A 6= ∅. Then if L1(A)is finite and non-empty, we have

pA =∑

a∈L1(A)

sapr(A,a)s∗a +∑

v∈A:v is a sink

pv.

David Robertson (Syddansk Universitet) Classification Master Class November 18, 2009 24 / 25

Page 77: Classification Master Class - web.math.ku.dkweb.math.ku.dk/~rordam/Masterclass/slides/Slides - junior seminar... · David Robertson (Syddansk Universitet) Classi cation Master Class

C ∗-algebra

Definition (Bates, Pask (2003))

Let (E ,L) be a labelled graph, B an accommodating set for (E ,L). Arepresentation of (E ,L) is a collection pA : A ∈ B of projections and acollection sa : a ∈ L(E 1) of partial isometries such that:

For A,B ∈ B, we have pApB = pA∩B and pA∪B = pA + pB − pA∩B

where p∅ = 0

For a ∈ L(E 1) and A ∈ B, we have pAsa = sapr(A,a) wherer(A, a) = r(e) : s(e) ∈ A,L(e)) = aFor a, b ∈ L(E 1), we have s∗a sa = pr(a) and s∗a sb = 0 unless a = b

For A ∈ B define L1(A) := a ∈ L(E 1) : s(a)∩A 6= ∅. Then if L1(A)is finite and non-empty, we have

pA =∑

a∈L1(A)

sapr(A,a)s∗a +∑

v∈A:v is a sink

pv.

David Robertson (Syddansk Universitet) Classification Master Class November 18, 2009 24 / 25

Page 78: Classification Master Class - web.math.ku.dkweb.math.ku.dk/~rordam/Masterclass/slides/Slides - junior seminar... · David Robertson (Syddansk Universitet) Classi cation Master Class

C ∗-algebra

Definition (Bates, Pask (2003))

Let (E ,L) be a labelled graph, B an accommodating set for (E ,L). Arepresentation of (E ,L) is a collection pA : A ∈ B of projections and acollection sa : a ∈ L(E 1) of partial isometries such that:

For A,B ∈ B, we have pApB = pA∩B and pA∪B = pA + pB − pA∩B

where p∅ = 0

For a ∈ L(E 1) and A ∈ B, we have pAsa = sapr(A,a) wherer(A, a) = r(e) : s(e) ∈ A,L(e)) = aFor a, b ∈ L(E 1), we have s∗a sa = pr(a) and s∗a sb = 0 unless a = b

For A ∈ B define L1(A) := a ∈ L(E 1) : s(a)∩A 6= ∅. Then if L1(A)is finite and non-empty, we have

pA =∑

a∈L1(A)

sapr(A,a)s∗a +∑

v∈A:v is a sink

pv.

David Robertson (Syddansk Universitet) Classification Master Class November 18, 2009 24 / 25

Page 79: Classification Master Class - web.math.ku.dkweb.math.ku.dk/~rordam/Masterclass/slides/Slides - junior seminar... · David Robertson (Syddansk Universitet) Classi cation Master Class

Even dimensional mirror quantum sphere

Using therepresentation of theeven dimensionalmirror quantumsphere as a C ∗

algebra associated toa C ∗-correspondence,we can prove that itis in fact a labelledgraph algebra.

Figure: Labelled graph forC (S10

q,β).

David Robertson (Syddansk Universitet) Classification Master Class November 18, 2009 25 / 25

Page 80: Classification Master Class - web.math.ku.dkweb.math.ku.dk/~rordam/Masterclass/slides/Slides - junior seminar... · David Robertson (Syddansk Universitet) Classi cation Master Class

Even dimensional mirror quantum sphere

Using therepresentation of theeven dimensionalmirror quantumsphere as a C ∗

algebra associated toa C ∗-correspondence,we can prove that itis in fact a labelledgraph algebra.

Figure: Labelled graph forC (S10

q,β).

David Robertson (Syddansk Universitet) Classification Master Class November 18, 2009 25 / 25

Page 81: Classification Master Class - web.math.ku.dkweb.math.ku.dk/~rordam/Masterclass/slides/Slides - junior seminar... · David Robertson (Syddansk Universitet) Classi cation Master Class

Even dimensional mirror quantum sphere

Using therepresentation of theeven dimensionalmirror quantumsphere as a C ∗

algebra associated toa C ∗-correspondence,we can prove that itis in fact a labelledgraph algebra.

Figure: Labelled graph forC (S10

q,β).

David Robertson (Syddansk Universitet) Classification Master Class November 18, 2009 25 / 25