Chapter 5 French

73
Chapter V Coupled Oscillations

Transcript of Chapter 5 French

Page 1: Chapter 5 French

7/30/2019 Chapter 5 French

http://slidepdf.com/reader/full/chapter-5-french 1/73

Chapter V

Coupled Oscillations

Page 2: Chapter 5 French

7/30/2019 Chapter 5 French

http://slidepdf.com/reader/full/chapter-5-french 2/73

Two, or more, oscillators coupled together 

Examples

1. Two pendulums, coupled by a spring

Page 3: Chapter 5 French

7/30/2019 Chapter 5 French

http://slidepdf.com/reader/full/chapter-5-french 3/73

2. A molecule

Molecule2CO

Page 4: Chapter 5 French

7/30/2019 Chapter 5 French

http://slidepdf.com/reader/full/chapter-5-french 4/73

3. A crystalline solid

Page 5: Chapter 5 French

7/30/2019 Chapter 5 French

http://slidepdf.com/reader/full/chapter-5-french 5/73

~

4. Coupled electrical oscillators

Page 6: Chapter 5 French

7/30/2019 Chapter 5 French

http://slidepdf.com/reader/full/chapter-5-french 6/73

5. An elastic medium, like a vibrating string

 A wave in a medium is a continuum of 

coupled oscillators

Page 7: Chapter 5 French

7/30/2019 Chapter 5 French

http://slidepdf.com/reader/full/chapter-5-french 7/73

Two Simple Pendulums Coupled by a Spring

1x 2x

m mk 

Equations of Motion :

)xx(k x

gmdt

xdm 12

1

2

1

2

)xx(k x

gmdt

xdm 12

2

2

2

2

Page 8: Chapter 5 French

7/30/2019 Chapter 5 French

http://slidepdf.com/reader/full/chapter-5-french 8/73

0)xx(

m

k x

g

dt

xd1212

1

2

0)xx(m

k x

g

dt

xd1222

2

2

The above two differential equations are

coupled.

 Adding and subtracting the above equations :Decoupling

0qdt

qd

1

2

02

1

2

0qdt

qd

; 2

2

2

2

2

Page 9: Chapter 5 French

7/30/2019 Chapter 5 French

http://slidepdf.com/reader/full/chapter-5-french 9/73

122211 xxq;xxq

Where,

m

k 2;

g 2

0

22

0

The solutions for are :21 q&q

)t(cosAq 1011

)tcos(Aq 222

Page 10: Chapter 5 French

7/30/2019 Chapter 5 French

http://slidepdf.com/reader/full/chapter-5-french 10/73

21 x&x can then be obtained as :

)qq(2

1x 211 )qq(

2

1x; 212

21 q&q are known as the normal

coordinates and are known as normal

frequencies.

&0

Initial Conditions on are obtained

from those of  21 x&x21 q&q

Page 11: Chapter 5 French

7/30/2019 Chapter 5 French

http://slidepdf.com/reader/full/chapter-5-french 11/73

Normal Coordinates : New coordinates, that

are linear combinations of the original, inwhich the equations of motion are

decoupled. 

Normal Frequencies : Frequencies of 

oscillation of the normal coordinates. 

Page 12: Chapter 5 French

7/30/2019 Chapter 5 French

http://slidepdf.com/reader/full/chapter-5-french 12/73

Let the initial conditions be such that

remains zero forever.2

q

0)0(q)0(q 22

Or, )0(x)0(x;)0(x)0(x 2121

Normal Mode Vibrations

Thus, 0)t(q&)tcos(A)t(q 21011

For this to happen, the initial conditions

must be such that

Page 13: Chapter 5 French

7/30/2019 Chapter 5 French

http://slidepdf.com/reader/full/chapter-5-french 13/73

0)t(q&tcosA)t(q 201

tcos2

A)t(x)t(x 021  And,

Taking :

0)0(x)0(x;2A)0(x)0(x 2121

Page 14: Chapter 5 French

7/30/2019 Chapter 5 French

http://slidepdf.com/reader/full/chapter-5-french 14/73

This mode of vibration is called a Normal

Mode Vibration

Normal Mode Vibration : A mode of vibration inwhich only one normal coordinate is excited,

the other normal coordinates remaining zero. 

First Mode for the Coupled Pendulums

0t 4Tt 0

Page 15: Chapter 5 French

7/30/2019 Chapter 5 French

http://slidepdf.com/reader/full/chapter-5-french 15/73

2Tt 0 4T3t 0

0Tt

Page 16: Chapter 5 French

7/30/2019 Chapter 5 French

http://slidepdf.com/reader/full/chapter-5-french 16/73

Second normal mode vibration :

0)t(q1

)0(x)0(x&)0(x)0(x 2121

Required initial conditions :

0)0(q;0)0(q 11

Or,

Page 17: Chapter 5 French

7/30/2019 Chapter 5 French

http://slidepdf.com/reader/full/chapter-5-french 17/73

Complete solution :

tcosA)t(q2

1)t(x

21

0)0(x)0(x;A)0(x)0(x 2112

0)0(q;A2)0(q 22

tcosA2)t(q2

tcosA)t(q2

1)t(x 22

Page 18: Chapter 5 French

7/30/2019 Chapter 5 French

http://slidepdf.com/reader/full/chapter-5-french 18/73

0t 4Tt

2Tt 4T3t

Page 19: Chapter 5 French

7/30/2019 Chapter 5 French

http://slidepdf.com/reader/full/chapter-5-french 19/73

Tt

Page 20: Chapter 5 French

7/30/2019 Chapter 5 French

http://slidepdf.com/reader/full/chapter-5-french 20/73

General Motion (Both Modes Excited) 

 A

Initial Conditions :

A)0(x;0)0(x 21

0)0(x)0(x 21

A)0(q)0(q 21 0)0(q)0(q 21

Page 21: Chapter 5 French

7/30/2019 Chapter 5 French

http://slidepdf.com/reader/full/chapter-5-french 21/73

tcosA)t(q;tcosA)t(q 201

Solutions for  21 q&q

Solutions for  21 x&x

]tcost[cos2

A)t(x 01

 

 

 

 

 

 

 

 

t2sint2sinA00

 

 

 

 

 

 

 

  t

2

cost

2

cosA)t(x 002

Page 22: Chapter 5 French

7/30/2019 Chapter 5 French

http://slidepdf.com/reader/full/chapter-5-french 22/73

)t(x2

t

)t(x1

t

Page 23: Chapter 5 French

7/30/2019 Chapter 5 French

http://slidepdf.com/reader/full/chapter-5-french 23/73

Summary

1. There exist normal coordinates, which

are such that, the equations of motion in

them, are decoupled

2. Each normal coordinate behaves likea simple harmonic oscillation with its own

frequency, the normal frequency

3. With appropriate initial conditions, onecan excite only one normal coordinate, the

other remaining dormant. Such vibrational

modes are called normal mode vibrations.

Page 24: Chapter 5 French

7/30/2019 Chapter 5 French

http://slidepdf.com/reader/full/chapter-5-french 24/73

4. In a normal mode vibration, each mass in

the coupled system, executes a SHO with

the same frequency, the corresponding

normal frequency. The amplitudes of motion

of the different masses, and their phases

are in general different.

5. In the most general motion, which results

from arbitrary initial conditions, the motion of each mass is rather complicated. There is no

definite frequency of vibration. However, the

motion is a superposition of SHMs

Page 25: Chapter 5 French

7/30/2019 Chapter 5 French

http://slidepdf.com/reader/full/chapter-5-french 25/73

No Class on Saturday

Combined Class for Both Sections

On

Sunday (25/11)

 At

10.00 AM

InRoom No. 5102

Page 26: Chapter 5 French

7/30/2019 Chapter 5 French

http://slidepdf.com/reader/full/chapter-5-french 26/73

General Approach for Finding Normal Modes

Back to Coupled Pendulums :

0)xx(x

dt

xd12

2

s1

2

02

1

2

0)xx(xdt

xd12

2

s2

2

02

2

2

Since in a normal mode vibration, all

masses execute SHM of a common

frequency, put :

mk ;g 2

s20

Page 27: Chapter 5 French

7/30/2019 Chapter 5 French

http://slidepdf.com/reader/full/chapter-5-french 27/73

tcosAx;tcosAx 2211

0AA)( 2

2

s1

22

s

2

0

0A)(A 2

22

s

2

01

2

s

In the matrix form :

0A

A

2

1

22

s

2

0

2

s

2s

22s

20

  

  

  

  

Page 28: Chapter 5 French

7/30/2019 Chapter 5 French

http://slidepdf.com/reader/full/chapter-5-french 28/73

For non-trivial solutions for 

( ), the determinant of 

the matrix must be zero :

21 A&A

zeronotA&ABoth 21

04

s

222

s

2

0

Or,2

s

2

00 2or

First Normal Mode

1A

A

2

101

Page 29: Chapter 5 French

7/30/2019 Chapter 5 French

http://slidepdf.com/reader/full/chapter-5-french 29/73

tcosAx;tcosAx 1211

Second Normal Mode

1A

A2

2

12

s

2

02

tcosAx;tcosAx 2221

Normal Coordinates

0xx 21

First Mode : 0xx 21

Second Mode :

Page 30: Chapter 5 French

7/30/2019 Chapter 5 French

http://slidepdf.com/reader/full/chapter-5-french 30/73

Since, in the second normal mode vibration,

the first normal coordinate is identically zero

211 xxq

Since, in the first normal mode vibration, thesecond normal coordinate is identically zero

122 xxq

Page 31: Chapter 5 French

7/30/2019 Chapter 5 French

http://slidepdf.com/reader/full/chapter-5-french 31/73

Prob. 5.10

m

m

k

k

Consider the vertical motion

of the system.

a) Find the normal modefrequencies and the ratio of the

amplitude of the two masses in

each mode

Page 32: Chapter 5 French

7/30/2019 Chapter 5 French

http://slidepdf.com/reader/full/chapter-5-french 32/73

1x

2x

m

m

Equations of Motion :

)xx(k xk td

xdm 1212

12

)xx(k td

xdm 1222

2

Or,

0)xx2(td

xd21

2

02

1

2

0)xx(td

xd12

2

02

2

2

Page 33: Chapter 5 French

7/30/2019 Chapter 5 French

http://slidepdf.com/reader/full/chapter-5-french 33/73

Substituting : tcosAx;tcosAx 2211

0AA)2( 2

2

01

22

0

0A)(A 2

22

01

2

0

Writing the above as a matrix equation and

setting the determinant to zero, we get :

02

22

0

2

0

2

0

22

0

Page 34: Chapter 5 French

7/30/2019 Chapter 5 French

http://slidepdf.com/reader/full/chapter-5-french 34/73

Or,2

0

2

2

53

We have : 22

0

2

0

2

1

2A

A

First Mode :15

2

A

A

2

1

Second Mode :15

2

A

A

2

1

Page 35: Chapter 5 French

7/30/2019 Chapter 5 French

http://slidepdf.com/reader/full/chapter-5-french 35/73

2 cm

1.23 cm

2 cm

3.23 cm

First Mode

Second Mode

Page 36: Chapter 5 French

7/30/2019 Chapter 5 French

http://slidepdf.com/reader/full/chapter-5-french 36/73

b*) Find the normal coordinates

First Mode : 0x2x15 21

Second Mode :

211 x2x15q

212 x2x15q

0x2x1521

Page 37: Chapter 5 French

7/30/2019 Chapter 5 French

http://slidepdf.com/reader/full/chapter-5-french 37/73

c*) If the lower mass is pulled down a

distance A, while the upper mass is held

fixed, and the system released, describe thesubsequent motion.

0)0(q)0(q;A2)0(q;A2)0(q 2121

)t(cosA)t(q 1111

We have :

)t(cosA)t(q2222

Initial Conditions :

Page 38: Chapter 5 French

7/30/2019 Chapter 5 French

http://slidepdf.com/reader/full/chapter-5-french 38/73

)tcos(B2)tcos(A2)t(x 22111

)tcos(B)15()tcos(A)15()t(x 22111

One can directly write down the complete

solutions for , without requiring to

obtain the normal coordinates .

21 x&x

21 q&q

When B is zero, the system oscillates in

the first mode with the requisite ratio of 

amplitudes, and, so is the other way

around.

Page 39: Chapter 5 French

7/30/2019 Chapter 5 French

http://slidepdf.com/reader/full/chapter-5-french 39/73

tcosA2)t(q 11

tcosA2)t(q 22

Now,

)qq(52

1x 211

212 q)15(q)15(54

1x

Page 40: Chapter 5 French

7/30/2019 Chapter 5 French

http://slidepdf.com/reader/full/chapter-5-french 40/73

Prob. 5.9 The carbon

dioxide molecule can be

likened to a central

mass connected to two

other identical masses,

by identical springs of spring constant k.

a) Set up the equations of motion, find thenormal frequencies and ratios of the

amplitudes in the normal modes

2m

1m1m

Page 41: Chapter 5 French

7/30/2019 Chapter 5 French

http://slidepdf.com/reader/full/chapter-5-french 41/73

Equations of Motion :

)xx(k dt

xdm 122

1

2

1

)xx(k )xx(k dt

xdm 231222

2

2

)xx(k 

dt

xdm 232

3

2

1

1x2x 3x

Page 42: Chapter 5 French

7/30/2019 Chapter 5 French

http://slidepdf.com/reader/full/chapter-5-french 42/73

Or,0)xx(

m

dt

xd21

1

2

1

2

0)xx2x(

m

dt

xd321

2

2

2

2

0)xx(m

dt

xd23

1

2

3

2

Substituting :

tcosAx;tcosAx;tcosAx 332211

Page 43: Chapter 5 French

7/30/2019 Chapter 5 French

http://slidepdf.com/reader/full/chapter-5-french 43/73

0Am

k A

m

k 2

1

1

2

1

 

  

 

0Am

k A

m

k 2A

m

k 3

2

2

2

2

1

2

 

  

 

0Am

k A

m

k 3

2

1

2

1

 

  

 

Setting the determinant of the coefficient

matrix to zero, the normal frequencies are

obtained as :

Page 44: Chapter 5 French

7/30/2019 Chapter 5 French

http://slidepdf.com/reader/full/chapter-5-french 44/73

 

 

 

 

21

3

1

21m

2

m

1k ;

m

k ;0

From the equations for the coefficients :

1

2

11

321m

k :

m

k :

m

k A:A:A

 

  

 

First mode

1:1:1A:A:A 321

No oscillations, rigid shift of the molecule

Page 45: Chapter 5 French

7/30/2019 Chapter 5 French

http://slidepdf.com/reader/full/chapter-5-french 45/73

Second Mode

1:0:1A:A:A 321

AAA

Page 46: Chapter 5 French

7/30/2019 Chapter 5 French

http://slidepdf.com/reader/full/chapter-5-french 46/73

Page 47: Chapter 5 French

7/30/2019 Chapter 5 French

http://slidepdf.com/reader/full/chapter-5-french 47/73

Third Mode

1:m

m2:1A:A:A

2

1321

1:7.2:1

Page 48: Chapter 5 French

7/30/2019 Chapter 5 French

http://slidepdf.com/reader/full/chapter-5-french 48/73

Coupled and Driven Oscillators

tcos

m

F)xx(x

dt

dx

dt

xd 012

2

s2

2

02

2

2

2

0)xx(xdtdx

dtxd 12

2s1

20

121

2

Page 49: Chapter 5 French

7/30/2019 Chapter 5 French

http://slidepdf.com/reader/full/chapter-5-french 49/73

 Adding and subtracting the equations

tcosm

Fq

dt

dq

dt

qd 01

2

01

2

1

2

tcosmFq

dtdq

dtqd 0

222

22

2

Steady-state solutions of the above

equations are :

)t(cos)(A)t(q 111 )t(cos)(A)t(q 222

Page 50: Chapter 5 French

7/30/2019 Chapter 5 French

http://slidepdf.com/reader/full/chapter-5-french 50/73

)t(cos)(A)tcos()(A2

1)t(x 22111

)t(cos)(A)tcos()(A2

1)t(x 22112

)(A1 )(A2

0

Page 51: Chapter 5 French

7/30/2019 Chapter 5 French

http://slidepdf.com/reader/full/chapter-5-french 51/73

When the driving frequency matches one of 

the two frequencies , the

displacements of the two pendulums

become large.

&0

There are, thus, two resonant frequencies,corresponding to the two normal frequencies

at which the system can oscillate

 At the lower resonance frequency, the

two pendulums are in phase. At the

higher one, they are totally out of phase.

Page 52: Chapter 5 French

7/30/2019 Chapter 5 French

http://slidepdf.com/reader/full/chapter-5-french 52/73

Prob. 5.12 Two identical masses are

connected to three identical springs on a

frictionless surface as shown 

The free end is driven with a displacement :

tcosXX 0

Find and draw the graphs of the displacements

of the two masses.

X 1x 2x

mm kkk

Page 53: Chapter 5 French

7/30/2019 Chapter 5 French

http://slidepdf.com/reader/full/chapter-5-french 53/73

X 1x 2x

mm kkk

Equations of Motion :

)xx(k )Xx(k dt

xdm

1212

1

2

2122

2

2

xk )xx(k dt

xdm

Or, tcosXxx2dt

xd0

2

02

2

01

2

02

1

2

0x2xdt

xd

2

2

01

2

02

2

2

Page 54: Chapter 5 French

7/30/2019 Chapter 5 French

http://slidepdf.com/reader/full/chapter-5-french 54/73

 Addition and subtraction of the two equations

gives us :

tcosm

Fq

dt

qd 01

2

02

1

2

tcosm

Fq3

dt

qd 02

2

02

2

2

Where, 00212211 Xk F,xxq,xxq

Page 55: Chapter 5 French

7/30/2019 Chapter 5 French

http://slidepdf.com/reader/full/chapter-5-french 55/73

Steady-state solution :

tcos)](A)(A[2

1)t(x 211

tcos)](A)(A[2

1)t(x 212

where,

22

0

0

2

0222

0

0

2

01

3

X)(A;

X)(A

Page 56: Chapter 5 French

7/30/2019 Chapter 5 French

http://slidepdf.com/reader/full/chapter-5-french 56/73

tcos)3()(

2X)t(x

22

0

22

0

22

00

2

01

tcos

)3()(

1X)t(x

22

0

22

0

0

4

02

 At a driving frequency , the mass

nearer the end being driven, becomesstationary

02

Indefinite Number of Coupled Oscillators

Page 57: Chapter 5 French

7/30/2019 Chapter 5 French

http://slidepdf.com/reader/full/chapter-5-french 57/73

Indefinite Number of Coupled Oscillators

N Light Beads Connected by Massless Rods

Equilibrium

General State of Vibration

m

T

Page 58: Chapter 5 French

7/30/2019 Chapter 5 French

http://slidepdf.com/reader/full/chapter-5-french 58/73

Equations of Motion

p P+1P-1

py1py

1py

1

2

)sinsin(Tdt

ydm 122

p

2

)]yy()yy[(T

1ppp1p

Or,0)yy2y(

dt

yd

1pp1p

2

02

p

2

TT

m

T2

0

Page 59: Chapter 5 French

7/30/2019 Chapter 5 French

http://slidepdf.com/reader/full/chapter-5-french 59/73

0)yy2y(dt

yd1pp1p

2

02

p

2

N.........,,2,1p

It is assumed that there are two mass points,

at and , which are

permanently fixed.

Normal Modes

Substitute : tcosAy pp 0AA)2(A 1p

2

0p

22

01p

2

0

0p 1Np

Boundary Conditions : 0AA 1N0

0)t(y)t(y 1N0

Page 60: Chapter 5 French

7/30/2019 Chapter 5 French

http://slidepdf.com/reader/full/chapter-5-french 60/73

2

0

22

0

p

1p1p 2

A

AA

The amplitudes must depend upon the

discrete index in such a manner that the

ratio on the left above is independent of p

and the boundary condition is satisfied.

pA

p

 A clever guess :

0AA 1N0

)tstancons,&C(psinCAp

cos2A

AA

p

1p1p

Page 61: Chapter 5 French

7/30/2019 Chapter 5 French

http://slidepdf.com/reader/full/chapter-5-french 61/73

For the boundary conditions to be satisfied,

we must have :

0)1N(sin N........,,2,1n)1N(

n

Each of the above possible values for 

leads to a normal mode frequency :

2sin2 0

 

  

 

)1N(2

nsin2 0n N........,,2,1n

Page 62: Chapter 5 French

7/30/2019 Chapter 5 French

http://slidepdf.com/reader/full/chapter-5-french 62/73

The amplitudes of the mass point in

the normal mode is :

 

  

 

1N

npsinCApn

thpthn

N,........,1n;N.......,,1p

px)1N(

xnsinC

 

  

 

pxL

xnsinC

 

  

 

 

  

 L

nxsinC)x(A,where),p(AA nnpn

Page 63: Chapter 5 French

7/30/2019 Chapter 5 French

http://slidepdf.com/reader/full/chapter-5-french 63/73

The First Mode

 

  

 

)1N(2

sin2 01  

  

 L

xsinC)x(A1

Page 64: Chapter 5 French

7/30/2019 Chapter 5 French

http://slidepdf.com/reader/full/chapter-5-french 64/73

Page 65: Chapter 5 French

7/30/2019 Chapter 5 French

http://slidepdf.com/reader/full/chapter-5-french 65/73

The Second Mode

  

  

Lx2sinC)x(A2

  

  

)1N(sin2 02

Page 66: Chapter 5 French

7/30/2019 Chapter 5 French

http://slidepdf.com/reader/full/chapter-5-french 66/73

Three Particles

Page 67: Chapter 5 French

7/30/2019 Chapter 5 French

http://slidepdf.com/reader/full/chapter-5-french 67/73

General Solution

N

1n

nnnp )t(cos1N

npsinC)t(y N.......,,1p

Page 68: Chapter 5 French

7/30/2019 Chapter 5 French

http://slidepdf.com/reader/full/chapter-5-french 68/73

Prob. 5.16 (Resonance in N coupled

Oscillators) 

Consider a system of N coupled oscillators

driven at a frequency . Forcing is done at

the extreme end such that

tcosh)t(y 1N

Find the resulting amplitudes of the particles.

Page 69: Chapter 5 French

7/30/2019 Chapter 5 French

http://slidepdf.com/reader/full/chapter-5-french 69/73

Page 70: Chapter 5 French

7/30/2019 Chapter 5 French

http://slidepdf.com/reader/full/chapter-5-french 70/73

In the steady state, each particle will oscillate

with the driving frequency.

tcos)(Ay pp

Here, is the driving frequency, andhence, given

Substituting the above into the equations of 

motion, we get :

2

0

22

0

p

1p1p 2

A

AA

Boundary Conditions : hA;0A 1N0

Page 71: Chapter 5 French

7/30/2019 Chapter 5 French

http://slidepdf.com/reader/full/chapter-5-french 71/73

Solution : psinCAp

Second boundary condition requires :

h)1N(sinC

)1N(sin

hC

2

0

22

0

p

1p1p 2cos2

A

AA

)1N(sin

)psin(h)(Ap 2

0

22

0

2

2cos

, Where,

Page 72: Chapter 5 French

7/30/2019 Chapter 5 French

http://slidepdf.com/reader/full/chapter-5-french 72/73

The amplitudes blow up whenever 

0)1N(sin

Or,1N

n

This happens when the driving frequency is

such that :

2

0

22

0

2

2

1N

ncos

Or,

 

 

)1N(2

nsin2 0

A li d f ill i b l h

Page 73: Chapter 5 French

7/30/2019 Chapter 5 French

http://slidepdf.com/reader/full/chapter-5-french 73/73

 Amplitudes of oscillations become large when

the driving frequency is one of the normal

mode (natural) frequencies

N

1n

nnnp )t(cos1N

npsinC)t(y

Most general solution of the driven oscillators :

tcos)1N(sin

)psin(h

Transient Steady State