Chapter 4 - Systems of Non-Linear Equations.pptx

21
 PREPARED BY: ENGR. ROMANO A. GABRILLO MENG’G -MFG.E Chapter 4 Systems of Non-linear Equations

Transcript of Chapter 4 - Systems of Non-Linear Equations.pptx

Page 1: Chapter 4 - Systems of Non-Linear Equations.pptx

7/27/2019 Chapter 4 - Systems of Non-Linear Equations.pptx

http://slidepdf.com/reader/full/chapter-4-systems-of-non-linear-equationspptx 1/21

 

P R E P A R E D B Y :

E N G R . R O M A N O A . G A B R I L L O

MENG’G - M F G . E

Chapter 4Systems of Non-linear Equations

Page 2: Chapter 4 - Systems of Non-Linear Equations.pptx

7/27/2019 Chapter 4 - Systems of Non-Linear Equations.pptx

http://slidepdf.com/reader/full/chapter-4-systems-of-non-linear-equationspptx 2/21

Introduction

In this chapter, a solution technique for solving asystem of non-linear equations will be discussednamely the Newton-Raphson Method.

In the real world no system behaves in a linearmanner. There is no ideal material, ideal supportcondition and a perfect structure. Due to

imperfections the behavior can always be described by a set of non-linear equations only.

Page 3: Chapter 4 - Systems of Non-Linear Equations.pptx

7/27/2019 Chapter 4 - Systems of Non-Linear Equations.pptx

http://slidepdf.com/reader/full/chapter-4-systems-of-non-linear-equationspptx 3/21

Newton-Raphson Method

Suppose there are n unknowns:

{x}T = x1 x2  … … xn

is a solution for non-linear equationsf 1 (x1, x2, … ... xn)=0

f 2 (x1, x2, … ... xn)=0

…  …  …  … f n (x1, x2, … ... xn)=0

Page 4: Chapter 4 - Systems of Non-Linear Equations.pptx

7/27/2019 Chapter 4 - Systems of Non-Linear Equations.pptx

http://slidepdf.com/reader/full/chapter-4-systems-of-non-linear-equationspptx 4/21

If x approximates x bar, then the increment from x tox bar be denoted by:

 Where ∆x j is the increment from x j to x j for j=1, 2,-n

It is now required to find vector ∆x, and to find thedirection and distance to more from x (in n – space), to get the desired point: x bar = x + ∆x 

nnn x

 x

 x

 x

 x x

 x x

 x x

 x x

 x x x

.........

}{}{ 3

2

1

33

22

11

Page 5: Chapter 4 - Systems of Non-Linear Equations.pptx

7/27/2019 Chapter 4 - Systems of Non-Linear Equations.pptx

http://slidepdf.com/reader/full/chapter-4-systems-of-non-linear-equationspptx 5/21

It is necessary to seek the exact increment ∆x 

that satisfies: 

Expanding this in the Taylor’s series and neglectinghigher order terms, we get:

.........,2,10)( ni  for  x x  f  i

0...)()(

0...)()(

0...)()(

2

2

1

1

2

2

1

1

22

2

2

1

1

11

n

n

nn

n

n

n

n

dx x

  f  dx

 x

  f  dx

 x

  f   x  f   x x  f  

dx x

  f  dx

 x

  f  dx

 x

  f   x  f   x x  f  

dx x  f  dx

 x  f  dx

 x  f   x  f   x x  f  

Page 6: Chapter 4 - Systems of Non-Linear Equations.pptx

7/27/2019 Chapter 4 - Systems of Non-Linear Equations.pptx

http://slidepdf.com/reader/full/chapter-4-systems-of-non-linear-equationspptx 6/21

 Where partial derivatives are evaluated at the current values of x=x bar.This linear system can be expressed in matrix form as:

n

n

k k 

k k 

n

nnn

n

 x x

 x x

 x x

 x

 x f  

 x

 x f  

 x

 x f  

 x

 x f  

 x

 x f  

 x

 x f  

k  x

...

............

...

)(...

)()(........................

)(...

)()(

1

2

1

2

1

1

1

1

21

1

2

1

1

1

k  xn

x f  

 x f  

 x f  

)(

)(

)(

2

1

Page 7: Chapter 4 - Systems of Non-Linear Equations.pptx

7/27/2019 Chapter 4 - Systems of Non-Linear Equations.pptx

http://slidepdf.com/reader/full/chapter-4-systems-of-non-linear-equationspptx 7/21

or

k  x

 xn

n

n x f  

 x f  

 x f  

 x

 x

 x

 x

 x

 x

)(

)(

)(

][ 2

1

1

2

1

1

2

1

k  xn

nnn

n

 x

 f  

 x

 f  

 x

 f  

 x

 f  

 x

 f  

 x

 f  

k where

 

 

 

 

21

1

2

1

1

1

][

Page 8: Chapter 4 - Systems of Non-Linear Equations.pptx

7/27/2019 Chapter 4 - Systems of Non-Linear Equations.pptx

http://slidepdf.com/reader/full/chapter-4-systems-of-non-linear-equationspptx 8/21

This method based on this formula is calledNewton-Raphson Method

 We have seen this method for single degree of freedom system as:

There is a number but a non-linear set of equa- tions. It is a matrix [k]-1 . The above

equation is written for non-linear system of equations as:

)('

)(

1k 

k k   x f  

 x f  

 x x

)('

1

k  x f  

k  x

k k   x x f  k  x xk 

)}({][}{}{ 11

Page 9: Chapter 4 - Systems of Non-Linear Equations.pptx

7/27/2019 Chapter 4 - Systems of Non-Linear Equations.pptx

http://slidepdf.com/reader/full/chapter-4-systems-of-non-linear-equationspptx 9/21

Example No. 1

Consider a non-linear spring problem as shown below. The springs used are non-linear whose forcedeflection characteristics are given by:

Spring 1 F1 = 598x1 + 6060x13

Spring 2 F2 = 657x2 + 919x23

Spring 3 F3

= 69x3

+ 196x3

The loads are P1  = -120, P2 = 398

Page 10: Chapter 4 - Systems of Non-Linear Equations.pptx

7/27/2019 Chapter 4 - Systems of Non-Linear Equations.pptx

http://slidepdf.com/reader/full/chapter-4-systems-of-non-linear-equationspptx 10/21

It is required to find the deflection of the spring

x1 = deflection in spring 1 = U1

x2 = deflection in spring 2 = (U3 – U1) 

x3 = deflection in spring 3 = U3

The equilibrium equations are 

F1 – F2 = P1 

F2 + F3 = P2

F1 = 598 U1 + 6060 U13

F2 = 657 (U3 – U1) + 919 (U3 – U1)3

F3 = 69 U3 + 196 U33 

Page 11: Chapter 4 - Systems of Non-Linear Equations.pptx

7/27/2019 Chapter 4 - Systems of Non-Linear Equations.pptx

http://slidepdf.com/reader/full/chapter-4-systems-of-non-linear-equationspptx 11/21

Substituting:

1255 U1 + 6060 U13 – 657 U3 – 919 (U3 – U1)3 = -120

-657 U1 + 919 (U3 – U1)3 + 726U3 + 196U3

3 = 398

If U1 and U3 are not exact we will get residue as:f 1(x) = r1 = 120 + 1255U1 + 6060U13 - 657U3 - 919(U3 – U1)

3

f 2(x) = r2 = -398 - 657U1 + 919(U3 – U1)3 + 726U3 + 196U3

The matrix [k] = 

  

 

 

 

 

 

 DC 

 B A

 f  

 f  

 f  

 f  

3

2

1

2

3

1

1

1

Page 12: Chapter 4 - Systems of Non-Linear Equations.pptx

7/27/2019 Chapter 4 - Systems of Non-Linear Equations.pptx

http://slidepdf.com/reader/full/chapter-4-systems-of-non-linear-equationspptx 12/21

where A = 1255 + 18180U12 + 2757(U3 – U1)

2 B = -657 – 2757(U3 – U1)

2 = CD = 2757(U3 – U1) + 726 + 588U3

First assume U1 = U3 = 0.3, k=0

k k 

 x f  

 x f  k 

)(

)(][

2

11

3

1

1

3

1

0

1

0

01

3

1

372

463

92.778657

6572.891.2

3.0

3.0

 

  

 

Page 13: Chapter 4 - Systems of Non-Linear Equations.pptx

7/27/2019 Chapter 4 - Systems of Non-Linear Equations.pptx

http://slidepdf.com/reader/full/chapter-4-systems-of-non-linear-equationspptx 13/21

Take the Inverse of matrix [k]

10

01

92.778657

6572.2891

92.778657

6572.891.21

0

 

  

 

10

01

92.778657

6572.28910

2

01

 E 

 E 

10227241189.0

0000345877.0

62.6290

227241283.01

657

2.2891/1

1

0

2

1

2

0

1

1

1

 E  E  E 

 E  E 

Page 14: Chapter 4 - Systems of Non-Linear Equations.pptx

7/27/2019 Chapter 4 - Systems of Non-Linear Equations.pptx

http://slidepdf.com/reader/full/chapter-4-systems-of-non-linear-equationspptx 14/21

 At k=0, and substituting the [k]-1 

001588259.0000360917.0

00036119.0000345877.0

10

01

62.629/

227.01

2

2

2

22

11

21

 E  E 

 E  E  E 

001588259.0000360917.0

00036119.0000345877.0][ 1 k 

0

1

0

01

3

1

372

463

001588259.0000360917.0

00036119.0000345877.0

3.0

3.0

 

  

 

Page 15: Chapter 4 - Systems of Non-Linear Equations.pptx

7/27/2019 Chapter 4 - Systems of Non-Linear Equations.pptx

http://slidepdf.com/reader/full/chapter-4-systems-of-non-linear-equationspptx 15/21

Multiplying, and checking the ∊=0.01 

0

01

3

1

42372.0

0637.0

3.0

3.0

723.0

273.01

3

1

01.0265.0237.0

3.0237.0

01.0585.0

723.0

3.0723.0

Page 16: Chapter 4 - Systems of Non-Linear Equations.pptx

7/27/2019 Chapter 4 - Systems of Non-Linear Equations.pptx

http://slidepdf.com/reader/full/chapter-4-systems-of-non-linear-equationspptx 16/21

Substitute this again to find [k] & we get

)(

)(

2

1

 x f  

 x f  

1

1

1

12

3

1

67.150

46.82

92.163893.1307

92.13072924

723.0

237.0

 

  

 

1

1

10

01

92.163893.1307

92.13072924

][

 

 

 

 

1

0

2

0

1

10

01

92.163893.1307

92.13072924

 

  

 

 E 

 E 

1

1

1

0

2

1

2

0

1

1

1

144730716.0

0000341997.0

82119.10980

447305061.01

92.1307

2924/

 

  

 

 E  E  E 

 E  E 

Page 17: Chapter 4 - Systems of Non-Linear Equations.pptx

7/27/2019 Chapter 4 - Systems of Non-Linear Equations.pptx

http://slidepdf.com/reader/full/chapter-4-systems-of-non-linear-equationspptx 17/21

 At k = 1

1

1

1

0

2

1

2

11

11

21

000910066.0000407079.0

000407077.0000524085.0

10

01

82.1098/

44.0

 

  

 

 E  E  E 

 E  E  E 

1

1

1

12

3

1

67.150

46.82

000910066.0000407079.0

000407077.0000524085.0

723.0

237.0

 

 

 

 

1

12

3

1

103551909.0

018118242.0

723.0

237.0

6196.0

2192.02

3

1

 

0812.02192.0

237.02192.0 

16688.0

6196.0

723.06196.0

Page 18: Chapter 4 - Systems of Non-Linear Equations.pptx

7/27/2019 Chapter 4 - Systems of Non-Linear Equations.pptx

http://slidepdf.com/reader/full/chapter-4-systems-of-non-linear-equationspptx 18/21

 At k = 2

2

1

2

23

3

1

43.13

14.7

74.13931099

109952.2570

6196.0

2192.0

 

  

 

2

1

2

1

10

01

74.13931099

109952.2570

][

 

 

 

 

2

1

2

0

2

0

1

10

01

74.13931099

109952.2570

 

  

 

 E 

 E 

2

1

2

1

1

0

2

1

2

0

1

1

1

1427539574.0

0000389026.0

8735917.9230

427539953.01

1099

52.2570/

 

  

 

 E  E  E 

 E  E 

Page 19: Chapter 4 - Systems of Non-Linear Equations.pptx

7/27/2019 Chapter 4 - Systems of Non-Linear Equations.pptx

http://slidepdf.com/reader/full/chapter-4-systems-of-non-linear-equationspptx 19/21

 At k=3

2

1

2

1

2

2

2

2

2

1

1

2

1

001082399.0000462768.0

000462768.0000586877.0

10

01

87.923/

427.0

 

  

 

 E  E 

 E  E  E 

2

23

3

1

01123455.0

002024672.0

6196.0

2192.0

60857.0

2174.03

3

1

 

008.02174.0

2192.02174.0

Page 20: Chapter 4 - Systems of Non-Linear Equations.pptx

7/27/2019 Chapter 4 - Systems of Non-Linear Equations.pptx

http://slidepdf.com/reader/full/chapter-4-systems-of-non-linear-equationspptx 20/21

Final Answer

Finally we get,

U1 = 0.2174

U3 = 0.6087

U2 = U3 – U1 = 0.6087 – 0.2174=0.3913

Deflection in spring 1 = 0.2174

Deflection in spring 2 = 0.3913 Deflection in spring 3 = 0.6087

Page 21: Chapter 4 - Systems of Non-Linear Equations.pptx

7/27/2019 Chapter 4 - Systems of Non-Linear Equations.pptx

http://slidepdf.com/reader/full/chapter-4-systems-of-non-linear-equationspptx 21/21

 Assignment No. 7

Solve the following equations using the Newton-Raphson Method:

equation 1: x2 + 2y 2 = 22equation 2: 2x2 – xy + 3y = 12