Chapter 4: PROKARYOTIC DIVERSITY · Gram-negative and Phototropic Non-Proteobacteria 2....

30
Chapter 4: PROKARYOTIC DIVERSITY 3. Gram-negative and Phototropic Non-Proteobacteria 2. Proteobacteria 1. Prokaryote Habitats, Relationships & Biomes 4. Gram-Positive Bacteria 5. Deeply Branching Bacteria 6. Archaea

Transcript of Chapter 4: PROKARYOTIC DIVERSITY · Gram-negative and Phototropic Non-Proteobacteria 2....

Page 1: Chapter 4: PROKARYOTIC DIVERSITY · Gram-negative and Phototropic Non-Proteobacteria 2. Proteobacteria 1. Prokaryote Habitats, Relationships & Biomes 4. Gram-Positive Bacteria 5.

Chapter 4:

PROKARYOTIC DIVERSITY

3. Gram-negative and Phototropic Non-Proteobacteria

2. Proteobacteria

1. Prokaryote Habitats, Relationships & Biomes

4. Gram-Positive Bacteria

5. Deeply Branching Bacteria

6. Archaea

Page 2: Chapter 4: PROKARYOTIC DIVERSITY · Gram-negative and Phototropic Non-Proteobacteria 2. Proteobacteria 1. Prokaryote Habitats, Relationships & Biomes 4. Gram-Positive Bacteria 5.

1. Prokaryote Habitats,

Relationships & Biomes

Page 3: Chapter 4: PROKARYOTIC DIVERSITY · Gram-negative and Phototropic Non-Proteobacteria 2. Proteobacteria 1. Prokaryote Habitats, Relationships & Biomes 4. Gram-Positive Bacteria 5.

Important Metabolic Terminology

Oxygen tolerance/usage:

aerobic – requires or can use oxygen (O2)

anaerobic – does not require or cannot tolerate O2

Energy usage:

phototroph – uses light as an energy source

• all photosynthetic organisms

chemotroph – acquires energy from organic or inorganic molecules

• organotrophs – get energy from organic molecules

• lithotrophs – get energy from inorganic molecules

Page 4: Chapter 4: PROKARYOTIC DIVERSITY · Gram-negative and Phototropic Non-Proteobacteria 2. Proteobacteria 1. Prokaryote Habitats, Relationships & Biomes 4. Gram-Positive Bacteria 5.

…more Important Terminology

Facultative vs Obligate (or Strict):

facultative – “able to, but not requiring”

• e.g., facultative anaerobes can survive w/ or w/o O2

obligate – “absolutely requires”

• e.g., obligate anaerobes cannot survive in O2

Carbon Source:

autotroph – uses CO2 as a carbon source

• e.g., photoautotrophs or chemoautotrophs

heterotroph – requires an organic carbon source

• e.g., chemoheterotroph – gets energy & carbon from organic molecules

Oligotrophs require few nutrients, the opposite of eutrophs or copiotrophs

Page 5: Chapter 4: PROKARYOTIC DIVERSITY · Gram-negative and Phototropic Non-Proteobacteria 2. Proteobacteria 1. Prokaryote Habitats, Relationships & Biomes 4. Gram-Positive Bacteria 5.

Symbiotic Relationships

Symbiotic relationships (close, direct interactions) between

different organisms in nature are of several types:

• e.g., humans have beneficial

bacteria in their digestive

tracts that also benefit from

the food we eat (mutualism)

Page 6: Chapter 4: PROKARYOTIC DIVERSITY · Gram-negative and Phototropic Non-Proteobacteria 2. Proteobacteria 1. Prokaryote Habitats, Relationships & Biomes 4. Gram-Positive Bacteria 5.

Microbiomes

All the microorganisms that inhabit a particular organism

or environment (e.g., human or soil microbiome):

Page 7: Chapter 4: PROKARYOTIC DIVERSITY · Gram-negative and Phototropic Non-Proteobacteria 2. Proteobacteria 1. Prokaryote Habitats, Relationships & Biomes 4. Gram-Positive Bacteria 5.

Classification in the Bacterial Domain

We will look at important genera from a variety of bacterial groups

classified largely on staining & rRNA sequences (ribotyping):

Gram-negative Bacteria

• Proteobacteria

• Nonproteobacteria & Phototrophic Bacteria

Gram-positive Bacteria

• High G+C (Actinobacteria)

• Low G+C (Firmicutes)

Deeply Branching Bacteria

Page 8: Chapter 4: PROKARYOTIC DIVERSITY · Gram-negative and Phototropic Non-Proteobacteria 2. Proteobacteria 1. Prokaryote Habitats, Relationships & Biomes 4. Gram-Positive Bacteria 5.

2. Proteobacteria

Alphaproteobacteria

Betaproteobacteria

Gammaproteobacteria

Deltaproteobacteria

Epsilonproteobacteria

Page 9: Chapter 4: PROKARYOTIC DIVERSITY · Gram-negative and Phototropic Non-Proteobacteria 2. Proteobacteria 1. Prokaryote Habitats, Relationships & Biomes 4. Gram-Positive Bacteria 5.

Alphaproteobacteria

Pathogenic genera:

Rickettsia

Chlamydia

Rhizobium

• intracellular pathogens

• typhus, Rocky Mountain spotted fever

• C. trachomatis – most common STD

Most are oligotrophs:

• nitrogen fixation in soil

R. rickettsii

Rhizobium

Page 10: Chapter 4: PROKARYOTIC DIVERSITY · Gram-negative and Phototropic Non-Proteobacteria 2. Proteobacteria 1. Prokaryote Habitats, Relationships & Biomes 4. Gram-Positive Bacteria 5.

Betaproteobacteria

Pathogenic genera:

Neisseria

Thiobacillus

Bordetella

• oxidize H2S to sulfate is soil

• important in sulfur cycle

• gonorrhea (N. gonorrheae)

• whooping cough (B. pertussis)

• meningococcal meningitis

(N. meningitidis)

N. meningitidis

Most are eutrophs:

Page 11: Chapter 4: PROKARYOTIC DIVERSITY · Gram-negative and Phototropic Non-Proteobacteria 2. Proteobacteria 1. Prokaryote Habitats, Relationships & Biomes 4. Gram-Positive Bacteria 5.

Gammaproteobacteria

Escherichia

Pseudomonas

Salmonella

Largest & most diverse class of Proteobacteria, including many

enteric bacteria and human pathogens:

• E. coli

• opportunistic pathogens

• typhoid fever, foodborne

salmonellosisL. pneumophila

Vibrio

• cholera (V. cholerae)

Legionella

• legionnaires disease (L. pneumophila)

Page 12: Chapter 4: PROKARYOTIC DIVERSITY · Gram-negative and Phototropic Non-Proteobacteria 2. Proteobacteria 1. Prokaryote Habitats, Relationships & Biomes 4. Gram-Positive Bacteria 5.

Deltaproteobacteria

Small class of Proteobacteria containing soil bacteria that

reduce sulfate (Desulfovibrio) and the Myxobacteria that form

unusual “fruiting bodies”:

Myxobacteria

Page 13: Chapter 4: PROKARYOTIC DIVERSITY · Gram-negative and Phototropic Non-Proteobacteria 2. Proteobacteria 1. Prokaryote Habitats, Relationships & Biomes 4. Gram-Positive Bacteria 5.

Epsilonproteobacteria

Pathogenic genera:

Helicobacter

Campylobacter

• H. pylori – peptic ulcers

• various species cause

blood poisoning, intestinal

illness (e.g., C. jejuni)H. pylori

Smallest class of Proteobacteria containing microaerophilic

species that are typical helical or vibrioid in shape :

Page 14: Chapter 4: PROKARYOTIC DIVERSITY · Gram-negative and Phototropic Non-Proteobacteria 2. Proteobacteria 1. Prokaryote Habitats, Relationships & Biomes 4. Gram-Positive Bacteria 5.

3. Gram-Negative & Phototropic

Non-Proteobacteria

Page 15: Chapter 4: PROKARYOTIC DIVERSITY · Gram-negative and Phototropic Non-Proteobacteria 2. Proteobacteria 1. Prokaryote Habitats, Relationships & Biomes 4. Gram-Positive Bacteria 5.

Spirochetes

Treponema

Borrelia

• T. pallidum – syphilis

• B. burgdorferi – Lyme disease

Very thin, highly coiled bacteria

that are hard to see under the

microscope and harder to

culture:

Page 16: Chapter 4: PROKARYOTIC DIVERSITY · Gram-negative and Phototropic Non-Proteobacteria 2. Proteobacteria 1. Prokaryote Habitats, Relationships & Biomes 4. Gram-Positive Bacteria 5.

The CFB Group

Grouped based on DNA similarity and includes the following

genera:

Cytophaga Fusobacterium Bacteroides

Bacteroides

• Some are potentially

pathogenic (Cytophaga,

Fusobacterium), others are

beneficial (Bacteroides)

• most are anaerobic rods

Page 17: Chapter 4: PROKARYOTIC DIVERSITY · Gram-negative and Phototropic Non-Proteobacteria 2. Proteobacteria 1. Prokaryote Habitats, Relationships & Biomes 4. Gram-Positive Bacteria 5.

Sheath

Vegetativecell

Heterocyst

Akinete

Anabaena Oscillatora

Cyanobacteria

Gram-negative, oxygenic photoautotrophs

Anabaena

• carry out nitrogen fixation in non-photosynthetic heterocysts

• produce vast amounts of oxygen gas via photosynthesis, fix nitrogen (N2 NH4+)

Page 18: Chapter 4: PROKARYOTIC DIVERSITY · Gram-negative and Phototropic Non-Proteobacteria 2. Proteobacteria 1. Prokaryote Habitats, Relationships & Biomes 4. Gram-Positive Bacteria 5.

Purple & Green Bacteria

Obligately anaerobic, anoxygenic photoautotrophs

• use organic molecules as a source of electrons (not H2O)

Green and Purple non-sulfur bacteria

Green and Purple sulfur bacteria

• use H2S as a source of electrons

• elemental sulfur is then released

(green sulfur bacteria) or forms

inclusions (purple sulfur bacteria)

Page 19: Chapter 4: PROKARYOTIC DIVERSITY · Gram-negative and Phototropic Non-Proteobacteria 2. Proteobacteria 1. Prokaryote Habitats, Relationships & Biomes 4. Gram-Positive Bacteria 5.

4. Gram-Positive Bacteria

Page 20: Chapter 4: PROKARYOTIC DIVERSITY · Gram-negative and Phototropic Non-Proteobacteria 2. Proteobacteria 1. Prokaryote Habitats, Relationships & Biomes 4. Gram-Positive Bacteria 5.

Classification of Gram-Positive Bacteria

Gram-positive bacteria are grouped based on DNA similarity:

Low G+C Gram-positive bacteria (Firmicutes)

• contains many serious pathogens

• characterized by branching filaments

High G+C Gram-positive bacteria (Actinomycetes)

• includes some pathogens

Page 21: Chapter 4: PROKARYOTIC DIVERSITY · Gram-negative and Phototropic Non-Proteobacteria 2. Proteobacteria 1. Prokaryote Habitats, Relationships & Biomes 4. Gram-Positive Bacteria 5.

Actinobacteria (High G+C)

Streptomyces

Corynebacterium

Mycobacterium

• important soil bacteria, recycle nutrients

• many produce antibiotics (erythromycin, tetracycline)

• diphtheria (C. diphtheria)

• tuberculosis (M. tuberculosis), leprosy (M. leprae)

• contain mycolic acids in cell wall (stain acid-fast)

Bifidobacterium

• significant member of beneficial gut microbiota

C. diphtheria

Streptomyces

Page 22: Chapter 4: PROKARYOTIC DIVERSITY · Gram-negative and Phototropic Non-Proteobacteria 2. Proteobacteria 1. Prokaryote Habitats, Relationships & Biomes 4. Gram-Positive Bacteria 5.

Firmicutes (Low G+C)…

Streptococcus

Staphylococcus

*Bacillus

*Clostridium *produce

endospores

• strep throat (S. pyogenes)

• MRSA (S. aureus)

• anthrax (B. anthracis)

• tetanus (C. tetani)

• botulism (C. botulinum)

C. difficile

S. pyogenes

S. aureus

• colitis (C. difficile)

Page 23: Chapter 4: PROKARYOTIC DIVERSITY · Gram-negative and Phototropic Non-Proteobacteria 2. Proteobacteria 1. Prokaryote Habitats, Relationships & Biomes 4. Gram-Positive Bacteria 5.

Mycoplasma

• very small (less than 1 mm)

Lactobacillus

…more Firmicutes

• species used in fermented food products (e.g., yogurt, buttermilk, pickles)

• part of normal, healthy microbiota in human mouth, digestive tract, vagina

• no cell wall (stain Gram-negative)

• obligate intracellular pathogens

Mycoplasma

colonies

Page 24: Chapter 4: PROKARYOTIC DIVERSITY · Gram-negative and Phototropic Non-Proteobacteria 2. Proteobacteria 1. Prokaryote Habitats, Relationships & Biomes 4. Gram-Positive Bacteria 5.

5. Deeply Branching Bacteria

Page 25: Chapter 4: PROKARYOTIC DIVERSITY · Gram-negative and Phototropic Non-Proteobacteria 2. Proteobacteria 1. Prokaryote Habitats, Relationships & Biomes 4. Gram-Positive Bacteria 5.

Last Common Universal Ancestor

What Are “Deeply Branching Bacteria”?

Bacteria very close

to the base of the

phylogenetic tree:

• members of the

domain Bacteria

that diverged

very early, ~3.5

billion years ago

Page 26: Chapter 4: PROKARYOTIC DIVERSITY · Gram-negative and Phototropic Non-Proteobacteria 2. Proteobacteria 1. Prokaryote Habitats, Relationships & Biomes 4. Gram-Positive Bacteria 5.

Genera of “Deeply Branching Bacteria”

Acetothermus

• deepest branching bacteria known to date

• thermophiles and hyperthermophiles

Aquifex

• adapted to harshest conditions on planet

(e.g., thermal oceanic vents that reach 138oC!)

Deinococcus

• D. radiodurans known as “Conan the

Bacterium” for the extremes of heat, UV,

radioactivity, etc, it can survive

D. radiodurans

Page 27: Chapter 4: PROKARYOTIC DIVERSITY · Gram-negative and Phototropic Non-Proteobacteria 2. Proteobacteria 1. Prokaryote Habitats, Relationships & Biomes 4. Gram-Positive Bacteria 5.

6. Archaea

Page 28: Chapter 4: PROKARYOTIC DIVERSITY · Gram-negative and Phototropic Non-Proteobacteria 2. Proteobacteria 1. Prokaryote Habitats, Relationships & Biomes 4. Gram-Positive Bacteria 5.

The Domain Archaea

Highly diverse group of prokaryotes first classified in 1977 by

Carl Woese and George Fox:

• cell walls made of material other than peptidoglycan

• have unusual membrane lipids

• much larger genomes that bacteria

• have metabolic processes, rRNA sequences and other features

more closely resembling eukaryotes

• e.g., initiate translation with methionine (as do eukaryotes) rather

than N-formyl methionine as do the Bacteria

Page 29: Chapter 4: PROKARYOTIC DIVERSITY · Gram-negative and Phototropic Non-Proteobacteria 2. Proteobacteria 1. Prokaryote Habitats, Relationships & Biomes 4. Gram-Positive Bacteria 5.

Two Main Phyla

Crenarchaeota

• most are hyperthermophiles, some

acidophiles

Euryarchaeota

• includes the methanogens, halophiles, a few

thermophiles

**NO known archaeon causes disease in humans or animals!**

Other Phyla

• Korarchaeota, Nanoarchaeota, Thaumarchaeota

• based on environmental RNA

Sulfolobus

Page 30: Chapter 4: PROKARYOTIC DIVERSITY · Gram-negative and Phototropic Non-Proteobacteria 2. Proteobacteria 1. Prokaryote Habitats, Relationships & Biomes 4. Gram-Positive Bacteria 5.

Key Terms for Chapter 4

• autotroph, heterotroph, oligotroph, eutroph

• facultative vs obligate

• aerobic vs anaerobic

• thermophile, halophile

• phototroph, chemotroph, organotroph, lithotroph

• symbiosis: mutualism, amensalism, commensalism,

neutralism, parasitism