Chapter 15 Fluids. On Golden Pond a) rises b) drops c) remains the same d) depends on the size of...

66
Chapter 15 Fluids

Transcript of Chapter 15 Fluids. On Golden Pond a) rises b) drops c) remains the same d) depends on the size of...

Page 1: Chapter 15 Fluids. On Golden Pond a) rises b) drops c) remains the same d) depends on the size of the gold A boat carrying a large chunk of gold is floating.

Chapter 15

Fluids

Page 2: Chapter 15 Fluids. On Golden Pond a) rises b) drops c) remains the same d) depends on the size of the gold A boat carrying a large chunk of gold is floating.

On Golden Pond

a) rises

b) drops

c) remains the same

d) depends on the size

of the gold

A boat carrying a large chunk of

gold is floating on a lake. The chunk is then thrown overboard and sinks. What happens to the water level in the lake (with respect to the shore)?

Page 3: Chapter 15 Fluids. On Golden Pond a) rises b) drops c) remains the same d) depends on the size of the gold A boat carrying a large chunk of gold is floating.

a) rises

b) drops

c) remains the same

d) depends on the size

of the gold

Initially the chunk of gold “floats” by sitting in the boat. The buoyant force is equal to the weightweight of the gold, and this will require a lot of require a lot of displaced waterdisplaced water to equal the weight of the gold. When thrown overboard, the gold sinks and only displaces its only displaces its volumevolume in water in water. This is not so much water—certainly less than before—and so the water level in the lake will drop.

On Golden Pond

A boat carrying a large chunk of

gold is floating on a lake. The chunk is then thrown overboard and sinks. What happens to the water level in the lake (with respect to the shore)?

Page 4: Chapter 15 Fluids. On Golden Pond a) rises b) drops c) remains the same d) depends on the size of the gold A boat carrying a large chunk of gold is floating.

Fluid Flow and ContinuityContinuity tells us that whatever the mass of fluid in a pipe passing a particular point per second, the same mass must pass every other point in a second. The fluid is not accumulating or vanishing along the way.

This means that where the pipe is narrower, the fluid is flowing faster

Volume per unit time

Page 5: Chapter 15 Fluids. On Golden Pond a) rises b) drops c) remains the same d) depends on the size of the gold A boat carrying a large chunk of gold is floating.

Continuity and Compressibility

Most gases are easily compressible; most liquids are not. Therefore, the density of a liquid may be treated as constant (not true for a gas).

mass flow is conserved

volume flow is conserved

Page 6: Chapter 15 Fluids. On Golden Pond a) rises b) drops c) remains the same d) depends on the size of the gold A boat carrying a large chunk of gold is floating.

Bernoulli’s EquationWhen a fluid moves from a wider area of a pipe to a narrower one, its speed increases; therefore, work has been done on it.

The kinetic energy of a fluid element is:

Equating the work done to the increase in kinetic energy gives:

Page 7: Chapter 15 Fluids. On Golden Pond a) rises b) drops c) remains the same d) depends on the size of the gold A boat carrying a large chunk of gold is floating.

Bernoulli’s Equation

Where fluid moves faster, pressure is lower

Page 8: Chapter 15 Fluids. On Golden Pond a) rises b) drops c) remains the same d) depends on the size of the gold A boat carrying a large chunk of gold is floating.

Bernoulli’s Equation

If a fluid flows in a pipe of constant diameter, but changes its height, there is also work done on it against the force of gravity.

Equating the work done with the change in potential energy gives:

Page 9: Chapter 15 Fluids. On Golden Pond a) rises b) drops c) remains the same d) depends on the size of the gold A boat carrying a large chunk of gold is floating.

Bernoulli’s Equation

The general case, where both height and speed may change, is described by Bernoulli’s equation:

This equation is essentially a statement of conservation of energy in a fluid.

Page 10: Chapter 15 Fluids. On Golden Pond a) rises b) drops c) remains the same d) depends on the size of the gold A boat carrying a large chunk of gold is floating.

Dynamic lift

v lowP high

v high P low

Aircraft wing

Page 11: Chapter 15 Fluids. On Golden Pond a) rises b) drops c) remains the same d) depends on the size of the gold A boat carrying a large chunk of gold is floating.

Applications of Bernoulli’s Equation

If a hole is punched in the side of an open container, the outside of the hole and the top of the fluid are both at atmospheric pressure.

Since the fluid inside the container at the level of the hole is at higher pressure, the fluid has a horizontal velocity as it exits.

Page 12: Chapter 15 Fluids. On Golden Pond a) rises b) drops c) remains the same d) depends on the size of the gold A boat carrying a large chunk of gold is floating.

Applications of Bernoulli’s Equation

If the fluid is directed upwards instead, it will reach the height of the surface level of the fluid in the container.

P1 = Patm

P2 = Patm

v1 = 0

Page 13: Chapter 15 Fluids. On Golden Pond a) rises b) drops c) remains the same d) depends on the size of the gold A boat carrying a large chunk of gold is floating.

The Falling Bucket

a) diminish

b) stop altogether

c) go out in a straight line

d) curve upward

When a hole is made in the side of

a cola can holding water, water flows out and follows a parabolic trajectory. If the container is dropped in free fall, the water flow will:

Cola

Page 14: Chapter 15 Fluids. On Golden Pond a) rises b) drops c) remains the same d) depends on the size of the gold A boat carrying a large chunk of gold is floating.

The Falling Bucket

Water flows out of the hole because the

water pressure insidewater pressure inside is larger than the

air pressure outsideair pressure outside. The water

pressure is due to the weightweight of the

water. When the can is in free fall, the

water is weightlessweightless, so the water

pressure is zero, and hence no water is

pushed out of the hole!

a) diminish

b) stop altogether

c) go out in a straight line

d) curve upward

When a hole is made in the side of

a cola can holding water, water flows out and follows a parabolic trajectory. If the container is dropped in free fall, the water flow will:

Cola

Page 15: Chapter 15 Fluids. On Golden Pond a) rises b) drops c) remains the same d) depends on the size of the gold A boat carrying a large chunk of gold is floating.

Fluid Flow

a) one-quarter

b) one-half

c) the same

d) double

e) four times

Water flows through a 1-cm diameter pipe

connected to a ½-cm diameter pipe.

Compared to the speed of the water in the

1-cm pipe, the speed in the ½ -cm pipe is:

Page 16: Chapter 15 Fluids. On Golden Pond a) rises b) drops c) remains the same d) depends on the size of the gold A boat carrying a large chunk of gold is floating.

a) one-quarter

b) one-half

c) the same

d) double

e) four times

The area of the small pipe is less, so we know that the water will

flow faster there. Because AA rr22, when the radius is reduced byradius is reduced by

one-halfone-half, the area is reduced by one-quarterarea is reduced by one-quarter, so the speed must speed must

increase by four timesincrease by four times to keep the flow rate ((AA vv)) constant.

Fluid Flow

v1 v2

Water flows through a 1-cm diameter

pipe connected to a ½-cm diameter

pipe. Compared to the speed of the

water in the 1-cm pipe, the speed in

the ½ -cm pipe is:

Page 17: Chapter 15 Fluids. On Golden Pond a) rises b) drops c) remains the same d) depends on the size of the gold A boat carrying a large chunk of gold is floating.

Surface Tension

A molecule in the center of a liquid drop experiences forces in all directions from other molecules. A molecule on the surface, however, experiences a net force toward the drop. This pulls the surface inward so that its area is a minimum.

Since there are forces tending to keep the surface area at a minimum, it tends to act somewhat like a spring – the surface acts as though it were elastic.

Page 18: Chapter 15 Fluids. On Golden Pond a) rises b) drops c) remains the same d) depends on the size of the gold A boat carrying a large chunk of gold is floating.

Surface Tension

This means that small, dense objects such as insects and needles can stay on top of water even though they are too dense to float.

Page 19: Chapter 15 Fluids. On Golden Pond a) rises b) drops c) remains the same d) depends on the size of the gold A boat carrying a large chunk of gold is floating.

Surface Tension and Adhesion

Capillary action is the result of adhesion and surface tension. Adhesion of water to the walls of a vessel will cause an upward force on the liquid at the edges and result in a meniscus which turns upward. The surface tension acts to hold the surface intact, so instead of just the edges moving upward, the whole liquid surface is dragged upward.

Page 20: Chapter 15 Fluids. On Golden Pond a) rises b) drops c) remains the same d) depends on the size of the gold A boat carrying a large chunk of gold is floating.

Temperature and Heat

Page 21: Chapter 15 Fluids. On Golden Pond a) rises b) drops c) remains the same d) depends on the size of the gold A boat carrying a large chunk of gold is floating.

Heat

Definition of heat:

Heat is the energy transferred between objects because of a temperature difference.

Objects are in thermal contact if heat can flow between them.

When the transfer of heat between objects in thermal contact ceases, they are in thermal equilibrium.

Page 22: Chapter 15 Fluids. On Golden Pond a) rises b) drops c) remains the same d) depends on the size of the gold A boat carrying a large chunk of gold is floating.

The Zeroth Law of Thermodynamics

If object A is in thermal equilibrium with object B, and object C is also in thermal equilibrium with object B, then objects A and C will be in thermal equilibrium if brought into thermal contact.

That is, temperature is the only factor that determines whether two objects in thermal contact are in thermal equilibrium or not.

Object B can then be a thermometer, providing a scale to compare objects

Page 23: Chapter 15 Fluids. On Golden Pond a) rises b) drops c) remains the same d) depends on the size of the gold A boat carrying a large chunk of gold is floating.

Length of a metal rodVolume of a gas held at constant pressurePressure of a gas held at constant volumeElectrical resistance of a metal conductorVolume of a liquid

A good thermometric property should to be linear with temperature over a wide range of temperature.

Thermometric properties

Page 24: Chapter 15 Fluids. On Golden Pond a) rises b) drops c) remains the same d) depends on the size of the gold A boat carrying a large chunk of gold is floating.

Common Temperature ScalesThe Celsius scale:Water freezes at 0° Celsius.Water boils at 100° Celsius.

The Fahrenheit scale:Water freezes at 32° Fahrenheit.Water boils at 212° Fahrenheit.

Andreas Celsius: 1701-1744, Swedish astronomer

Daniel Fahrenheit: 1686-1736, German physicist

Page 25: Chapter 15 Fluids. On Golden Pond a) rises b) drops c) remains the same d) depends on the size of the gold A boat carrying a large chunk of gold is floating.

Copyright © 2010 Pearson Education, Inc.

A natural zero point for temperature

The pressure in a gas is proportional to its temperature.

The proportionality constant is different for different gases, but they all reach zero pressure at the same temperature, which we call absolute zero

Absolute Zero = -273.15 oC

Page 26: Chapter 15 Fluids. On Golden Pond a) rises b) drops c) remains the same d) depends on the size of the gold A boat carrying a large chunk of gold is floating.

Copyright © 2010 Pearson Education, Inc.

Temperature Scales

The Kelvin scale is similar to the Celsius scale, except that the Kelvin scale has its zero at absolute zero.

Page 27: Chapter 15 Fluids. On Golden Pond a) rises b) drops c) remains the same d) depends on the size of the gold A boat carrying a large chunk of gold is floating.
Page 28: Chapter 15 Fluids. On Golden Pond a) rises b) drops c) remains the same d) depends on the size of the gold A boat carrying a large chunk of gold is floating.

Thermal Expansion

Most substances expand when heated; the change in length or volume is typically proportional to the change in temperature.

The proportionality constant is called the coefficient of linear expansion.

Page 29: Chapter 15 Fluids. On Golden Pond a) rises b) drops c) remains the same d) depends on the size of the gold A boat carrying a large chunk of gold is floating.

Glasses

a) run hot water over them both

b) put hot water in the inner one

c) run hot water over the outer one

d) run cold water over them both

e) break the glasses

Two drinking glasses

are stuck, one inside

the other. How

would you get them

unstuck?

Page 30: Chapter 15 Fluids. On Golden Pond a) rises b) drops c) remains the same d) depends on the size of the gold A boat carrying a large chunk of gold is floating.

a) run hot water over them both

b) put hot water in the inner one

c) run hot water over the outer one

d) run cold water over them both

e) break the glasses

Running hot water over only the outer glassouter glass will

allow the outer one to expandouter one to expand, while the inner

glass remains relatively unchanged. This should

loosen the outer glass and free it.

Glasses

Two drinking glasses

are stuck, one inside

the other. How would

you get them unstuck?

Page 31: Chapter 15 Fluids. On Golden Pond a) rises b) drops c) remains the same d) depends on the size of the gold A boat carrying a large chunk of gold is floating.

Some typical coefficients of thermal expansion

Invar ~1.0 x 10-6

a nickel steel alloy (65% Fe +35%) Ni noted for its very small expansion.Charles Guillaume received the Nobel Prize in Physics in 1920 for the invention

Page 32: Chapter 15 Fluids. On Golden Pond a) rises b) drops c) remains the same d) depends on the size of the gold A boat carrying a large chunk of gold is floating.

Thermal Expansion of a bi-metallic strip

A bimetallic strip consists of two metals of different coefficients of thermal expansion, A and B in the figure. It will bend when heated or cooled.

Thermostat

Page 33: Chapter 15 Fluids. On Golden Pond a) rises b) drops c) remains the same d) depends on the size of the gold A boat carrying a large chunk of gold is floating.
Page 34: Chapter 15 Fluids. On Golden Pond a) rises b) drops c) remains the same d) depends on the size of the gold A boat carrying a large chunk of gold is floating.
Page 35: Chapter 15 Fluids. On Golden Pond a) rises b) drops c) remains the same d) depends on the size of the gold A boat carrying a large chunk of gold is floating.

In northern Canada, where I grew up, the temperature ranges from around -40o F in the winter to around 100o F in the summer. If a train track rail is 10 m long when it is 68o F, how long is it on a cold winter night? On a hot summer day?

Page 36: Chapter 15 Fluids. On Golden Pond a) rises b) drops c) remains the same d) depends on the size of the gold A boat carrying a large chunk of gold is floating.

In northern Canada, where I grew up, the temperature ranges from around -40o F in the winter to around 100o F in the summer. If a train track rail is 10 m long when it is 68o F, how long is it on a cold winter night? On a hot summer day?

6 6

0

60

60

12 10 / 12 10 /

568 32 20

95

40 32 409

12 10 10 40 20 7.2

5100 32 38

9

12 10 10 38 20 2.2

1

w

w

s

s

tot

K C

T C C

T C C

L L T mm

T C C

L L T mm

L cm

Page 37: Chapter 15 Fluids. On Golden Pond a) rises b) drops c) remains the same d) depends on the size of the gold A boat carrying a large chunk of gold is floating.

Thermal Expansion

The expansion of an area of a flat substance is derived from the linear expansion in both directions

Page 38: Chapter 15 Fluids. On Golden Pond a) rises b) drops c) remains the same d) depends on the size of the gold A boat carrying a large chunk of gold is floating.

a) gets larger

b) gets smaller

c) stays the same

d) vanishes

Metals such as brass expand when

heated. The thin brass plate in the movie has a circular hole in its center. When the plate is heated, what will happen to the hole?

Steel ExpansionSteel Expansion

Page 39: Chapter 15 Fluids. On Golden Pond a) rises b) drops c) remains the same d) depends on the size of the gold A boat carrying a large chunk of gold is floating.

a) gets larger

b) gets smaller

c) stays the same

d) vanishes

Imagine drawing a circle on the plate. This circle will expand This circle will expand outward along with the rest of the outward along with the rest of the plate.plate. Now replace the circle with the hole, and you can see that the hole will expand outward as well. Note that the material Note that the material does does NOTNOT “expand inward” to fill “expand inward” to fill the hole!!the hole!! expansionexpansion

Metals such as brass expand when

heated. The thin brass plate in the movie has a circular hole in its center. When the plate is heated, what will happen to the hole?

Steel ExpansionSteel Expansion

Page 40: Chapter 15 Fluids. On Golden Pond a) rises b) drops c) remains the same d) depends on the size of the gold A boat carrying a large chunk of gold is floating.
Page 41: Chapter 15 Fluids. On Golden Pond a) rises b) drops c) remains the same d) depends on the size of the gold A boat carrying a large chunk of gold is floating.

Thermal Volume Expansion

The change in volume of a solid is also derived from the linear expansion:

For liquids and gases, only the coefficient of volume expansion is defined:

Page 42: Chapter 15 Fluids. On Golden Pond a) rises b) drops c) remains the same d) depends on the size of the gold A boat carrying a large chunk of gold is floating.

Some typical coefficients of volume expansion

Pyrex Glass ~1.0 x 10-5

Page 43: Chapter 15 Fluids. On Golden Pond a) rises b) drops c) remains the same d) depends on the size of the gold A boat carrying a large chunk of gold is floating.

Thermal Expansion of Water

Water also expands when it is heated, except when it is close to freezing; it actually expands (density drops) when cooling from 4° C to 0° C. This is why frozen bottles burst.

Page 44: Chapter 15 Fluids. On Golden Pond a) rises b) drops c) remains the same d) depends on the size of the gold A boat carrying a large chunk of gold is floating.

Steel Ring II

− −−

Coefficient of volume expansion β (1/°C )

Glass HgQuartz Air

AlSteel

a) heat the thing up

b) cool the thing down

c) blow the thing up

You want to take apart a couple

of aluminum parts held together

by steel screws, but the screws

are stuck. What should you do?

Page 45: Chapter 15 Fluids. On Golden Pond a) rises b) drops c) remains the same d) depends on the size of the gold A boat carrying a large chunk of gold is floating.

Because aluminum has a larger aluminum has a larger ββ value value, that means

aluminum expands more than steelaluminum expands more than steel. Thus, by heating the part, the aluminum holes will expand faster than the steel aluminum holes will expand faster than the steel

screwsscrews and the screws will come loose.

Steel Ring II

− −−

Coefficient of volume expansion β (1/°C )

Glass HgQuartz Air

AlSteel

a) heat the thing up

b) cool the thing down

c) blow the thing up

You want to take apart a couple

of aluminum parts held together

by steel screws, but the screws

are stuck. What should you do?

Page 46: Chapter 15 Fluids. On Golden Pond a) rises b) drops c) remains the same d) depends on the size of the gold A boat carrying a large chunk of gold is floating.

An aluminum saucepan with a diameter of 23 cm and a height of 6.0 cm is filled to the brim with water. The initial temperature of the pan and water is 19 oC. The pan is now placed on a stove burner and heated to 88 oC. (a)Will water overflow from the pan, or will the water level in the pan decrease?(b)Calculate the volume of water the overflows , or the drop in water level in the pan, whichever is appropriate.

αAl = 24 x 10-6 / KβWater = 0.21 x 10-3 / K

Page 47: Chapter 15 Fluids. On Golden Pond a) rises b) drops c) remains the same d) depends on the size of the gold A boat carrying a large chunk of gold is floating.

An aluminum saucepan with a diameter of 23 cm and a height of 6.0 cm is filled to the brim with water. The initial temperature of the pan and water is 19 oC. The pan is now placed on a stove burner and heated to 88 oC. (a)Will water overflow from the pan, or will the water level in the pan decrease?(b)Calculate the volume of water the overflows , or the drop in water level in the pan, whichever is appropriate.

The coefficient of volumetric expansion for the Al pan is:

Since the coefficient of volumetric expansion is larger for water than for the pan, the water will overflow as the pan is heated.

αAl = 24 x 10-6 / KβWater = 0.21 x 10-3 / K

(a)

(b)

\ 3

\ 3

Page 48: Chapter 15 Fluids. On Golden Pond a) rises b) drops c) remains the same d) depends on the size of the gold A boat carrying a large chunk of gold is floating.

Heat and Mechanical Work

Heat is another form of energy.

James Joule used a device similar to this one to measure the mechanical equivalent of heat:

One kilocalorie (kcal) is defined as the amount of heat needed to raise the temperature of 1 kg of water from 14.5° C to 15.5° C.

Page 49: Chapter 15 Fluids. On Golden Pond a) rises b) drops c) remains the same d) depends on the size of the gold A boat carrying a large chunk of gold is floating.

Heat Capacity

The heat capacity of an object is the amount of heat added to it divided by its rise in temperature:

Q is positive if ΔT is positive; that is, if heat is added to a system.

Q is negative if ΔT is negative; that is, if heat is removed from a system.

Q = C ΔTHeat capacity tells you how much heat flow for a given ΔT

Page 50: Chapter 15 Fluids. On Golden Pond a) rises b) drops c) remains the same d) depends on the size of the gold A boat carrying a large chunk of gold is floating.

Specific Heat

The heat capacity of an object depends on its mass and on a property of the material itself: the specific heat

“heat capacity per kilogram”

Page 51: Chapter 15 Fluids. On Golden Pond a) rises b) drops c) remains the same d) depends on the size of the gold A boat carrying a large chunk of gold is floating.

Specific heats of various materials

C = mc

Heat capacity is mass x specific heat

Page 52: Chapter 15 Fluids. On Golden Pond a) rises b) drops c) remains the same d) depends on the size of the gold A boat carrying a large chunk of gold is floating.

A ceramic coffee cup, with c=1090 J/(kg K) and m =116 g, is initially at room temperature (24.0 °C). If 225 g of 80.3 °C coffee and 12.2 g of 5.00 °C cream are added to the cup, what is the equilibrium temperature of the system? Assume that no heat is exchanged with the surroundings, and that the specific heat of coffee and cream are the same as the specific heat of water. cwater = 4186 J / (kg K)

Page 53: Chapter 15 Fluids. On Golden Pond a) rises b) drops c) remains the same d) depends on the size of the gold A boat carrying a large chunk of gold is floating.
Page 54: Chapter 15 Fluids. On Golden Pond a) rises b) drops c) remains the same d) depends on the size of the gold A boat carrying a large chunk of gold is floating.

Thermal equilibrium is reached by means of thermal contact, which in turn can occur through three different mechanisms

Heat Transfer Mechanisms

conduction : it occurs when objects at different temperature are in physical contact (e.g. when holding a hot potato). Faster moving molecules in the hotter object transfer some of their energy to the colder one

convection : this occurs mainly in fluids. In a pot of water on a stove, the liquid at the bottom is heated by conduction. The hot water has lower density and rises to the top, cold water from the top falls to the bottom and gets heated, etc.

radiation : any object at non-zero temperature emits radiation (in the form of electromagnetic waves). The effect is more noticeable when standing next to a red-hot coal fire, or in the sun rays

Page 55: Chapter 15 Fluids. On Golden Pond a) rises b) drops c) remains the same d) depends on the size of the gold A boat carrying a large chunk of gold is floating.

ConductionConduction is the flow

of heat directly through a physical material

The amount of heat Q that flows through a rod:• increases proportionally to the cross-sectional area A• increases proportionally to ΔT from one end to the other• increases steadily with time• decreases inversely with the length of the rod

The constant k is called the thermal conductivity of the material

Page 56: Chapter 15 Fluids. On Golden Pond a) rises b) drops c) remains the same d) depends on the size of the gold A boat carrying a large chunk of gold is floating.

Some Typical Thermal Conductivities

Substances with high thermal conductivities are good conductors of heat; those with low thermal conductivities are good insulators.

Page 57: Chapter 15 Fluids. On Golden Pond a) rises b) drops c) remains the same d) depends on the size of the gold A boat carrying a large chunk of gold is floating.

Two metal rods—one lead, the other copper—are connected in series, as shown. Note that each rod is 0.525 m in length and has a square cross section 1.50 cm on a side. The temperature at the lead end of the rods is 2.00°C; the temperature at the copper end is 106°C. (a) The average temperature of the two ends is 54.0°C. Is the temperature in the middle, at the lead-copper interface, greater than, less than, or equal to 54.0°C? Explain. (b) find the temperature at the lead-copper interface.

kPb = 34.3 W / (kg-m)kCu = 395 W / (kg-m)

Page 58: Chapter 15 Fluids. On Golden Pond a) rises b) drops c) remains the same d) depends on the size of the gold A boat carrying a large chunk of gold is floating.

Two metal rods—one lead, the other copper—are connected in series, as shown. Note that each rod is 0.525 m in length and has a square cross section 1.50 cm on a side. The temperature at the lead end of the rods is 2.00°C; the temperature at the copper end is 106°C. (a) The average temperature of the two ends is 54.0°C. Is the temperature in the middle, at the lead-copper interface, greater than, less than, or equal to 54.0°C? Explain. (b) find the temperature at the lead-copper interface.

Assumptions: •The end points are infinite heat reservoirs... so their temperature doesn’t change for this exercise •The temperature is constant in time at every point. This is not true at moment of thermal connection. We are solving the “steady state” condition, when the temperature at each point doesn’t change.

kPb = 34.3 W / (kg-m)kCu = 395 W / (kg-m)

Page 59: Chapter 15 Fluids. On Golden Pond a) rises b) drops c) remains the same d) depends on the size of the gold A boat carrying a large chunk of gold is floating.

Two metal rods—one lead, the other copper—are connected in series, as shown. Note that each rod is 0.525 m in length and has a square cross section 1.50 cm on a side. The temperature at the lead end of the rods is 2.00°C; the temperature at the copper end is 106°C. (a) The average temperature of the two ends is 54.0°C. Is the temperature in the middle, at the lead-copper interface, greater than, less than, or equal to 54.0°C? Explain. (b) find the temperature at the lead-copper interface.

- The heat (per unit time) through the lead must equal that through the copper

- The lead has a smaller thermal conductivity than the copper

The lead requires a larger temperature difference across it than the copper, to get the same heat flow. So TJ > 54o C

kPb = 34.3 W / (kg-m)kCu = 395 W / (kg-m)

(a)

Page 60: Chapter 15 Fluids. On Golden Pond a) rises b) drops c) remains the same d) depends on the size of the gold A boat carrying a large chunk of gold is floating.

Two metal rods—one lead, the other copper—are connected in series, as shown. Note that each rod is 0.525 m in length and has a square cross section 1.50 cm on a side. The temperature at the lead end of the rods is 2.00°C; the temperature at the copper end is 106°C. (a) The average temperature of the two ends is 54.0°C. Is the temperature in the middle, at the lead-copper interface, greater than, less than, or equal to 54.0°C? Explain. (b) find the temperature at the lead-copper interface.

kPb = 34.3 W / (kg-m)kCu = 395 W / (kg-m)

(b)

Page 61: Chapter 15 Fluids. On Golden Pond a) rises b) drops c) remains the same d) depends on the size of the gold A boat carrying a large chunk of gold is floating.

Convection

Convection is the flow of fluid due to a difference in temperatures, such as warm air rising. The fluid “carries” the heat with it as it moves.

Page 62: Chapter 15 Fluids. On Golden Pond a) rises b) drops c) remains the same d) depends on the size of the gold A boat carrying a large chunk of gold is floating.

Objects that are hot enough will glow – first red, then yellow, white, and blue.

RadiationAll objects give off energy in the form of radiation, as electromagnetic waves (light) – infrared, visible light, ultraviolet – which, unlike conduction and convection, can transport heat through a vacuum.

Page 63: Chapter 15 Fluids. On Golden Pond a) rises b) drops c) remains the same d) depends on the size of the gold A boat carrying a large chunk of gold is floating.
Page 64: Chapter 15 Fluids. On Golden Pond a) rises b) drops c) remains the same d) depends on the size of the gold A boat carrying a large chunk of gold is floating.

The surface of the Sun has a temperature of 5500 oC. (a) Treating the Sun as a perfect blackbody, with an emissivity of 1.0, find the power that it radiates into space. The radius of the sun is 7.0x108 m, and the temperature of space can be taken to be 3.0 K (b) the solar constant is the number of watts of sunlight power falling on a square meter of the Earth’s upper atmosphere. Use your result from part (a) to calculate the solar constant, given that the distance from the Sun to the Earth is 1.5x1011 m.

emissivity (a)

(b)

Page 65: Chapter 15 Fluids. On Golden Pond a) rises b) drops c) remains the same d) depends on the size of the gold A boat carrying a large chunk of gold is floating.

Heat Conduction

Given your experience of

what feels colder when you

walk on it, which of the

surfaces would have the

highest thermal

conductivity?

a) a rugb) a steel surfacec) a concrete floord) has nothing to do with

thermal conductivity

Page 66: Chapter 15 Fluids. On Golden Pond a) rises b) drops c) remains the same d) depends on the size of the gold A boat carrying a large chunk of gold is floating.

Heat Conduction

Given your experience of

what feels colder when you

walk on it, which of the

surfaces would have the

highest thermal

conductivity?

a) a rugb) a steel surfacec) a concrete floord) has nothing to do with

thermal conductivity

The heat flow rate is k A (T1 − T2)/l. All things being

equal, bigger k leads to bigger heat loss.From the book: Steel = 40, Concrete = 0.84,Human tissue = 0.2, Wool = 0.04, in units of J/(s.m.C°).