Chapter 1. Ray Optics - webpage.khu.ac.ir

83
Chapter 1. Ray Optics

Transcript of Chapter 1. Ray Optics - webpage.khu.ac.ir

Page 1: Chapter 1. Ray Optics - webpage.khu.ac.ir

Chapter 1. Ray Optics

Page 2: Chapter 1. Ray Optics - webpage.khu.ac.ir

Chapter 1. Ray Optics

2

Page 3: Chapter 1. Ray Optics - webpage.khu.ac.ir

cn

v

Postulates of Ray Optics

A Bds

3

Page 4: Chapter 1. Ray Optics - webpage.khu.ac.ir

4

Page 5: Chapter 1. Ray Optics - webpage.khu.ac.ir

5

Page 6: Chapter 1. Ray Optics - webpage.khu.ac.ir

6

Page 7: Chapter 1. Ray Optics - webpage.khu.ac.ir

Reflection and Refraction

7

Page 8: Chapter 1. Ray Optics - webpage.khu.ac.ir

Fermat’s Principle: Law of Reflection

Fermat’s principle:Light rays will travel from point A to point B in a medium along a path that minimizes the time of propagation.

2 2 2 2

1 2 1 3 3 2

1 1 3 3

2 1 3 2

2 2 2 22

1 2 1 3 3 2

2 1 3 2

2 2 2 2

1 2 1 3 3 2

, , ,

1 12 2 1

2 20

0

0 sin sin

sin sin

AB

AB

i r

i r

OPL n x y y n x y y

Fix x y x y

n y y n y ydOPL

dy x y y x y y

n y y n y y

x y y x y y

n n

x

y

(x1, y1)

(0, y2)

(x3, y3)

r

i

A

B

i r : Law of reflection8

Page 9: Chapter 1. Ray Optics - webpage.khu.ac.ir

Fermat’s Principle: Law of Refraction

2 2 2 2

2 1 1 3 2 3

1 1 3 3

2 1 3 2

2 2 2 22

2 1 1 3 2 3

2 1 3 2

2 2 2 2

2 1 1 3 2 3

, , ,

1 12 2 1

2 20

0

0 sin sin

sin sin

AB i t

i tAB

i t

i i t t

i i t t

OPL n x x y n x x y

Fix x y x y

n x x n x xd OPL

dy x x y x x y

n x x n x x

x x y x x y

n n

n n

Law of refraction:

x

y

(x1, y1)

(x2, 0)

(x3, y3)

t

i

A

ni

nt

i i t tn n : Law of refractionin paraxial approx.9

Page 10: Chapter 1. Ray Optics - webpage.khu.ac.ir

Refraction –Snell’s Law :

???? nn ti 0

ttii nn sinsin

10

Page 11: Chapter 1. Ray Optics - webpage.khu.ac.ir

Reflection in plane mirrors

11

Page 12: Chapter 1. Ray Optics - webpage.khu.ac.ir

Plane surface – Image formation

12

Page 13: Chapter 1. Ray Optics - webpage.khu.ac.ir

Total internal Reflection (TIR)

13

Page 14: Chapter 1. Ray Optics - webpage.khu.ac.ir

Imaging by an Optical System

14

Page 15: Chapter 1. Ray Optics - webpage.khu.ac.ir

A Cartesian surface – those which form perfect

images of a point object

E.g. ellipsoid and hyperboloid

Cartesian Surfaces

O I

15

Page 16: Chapter 1. Ray Optics - webpage.khu.ac.ir

Imaging by Cartesian reflecting surfaces

16

Page 17: Chapter 1. Ray Optics - webpage.khu.ac.ir

Imaging by Cartesian refracting Surfaces

17

Page 18: Chapter 1. Ray Optics - webpage.khu.ac.ir

Approximation by Spherical Surfaces

18

Page 19: Chapter 1. Ray Optics - webpage.khu.ac.ir

Reflection at a Spherical Surface

19

Page 20: Chapter 1. Ray Optics - webpage.khu.ac.ir

Reflection at Spherical Surfaces I

Use paraxial or small-angle approximationfor analysis of optical systems:

3 5

2 4

sin3! 5!

cos 1 12! 4!

L

L

Reflection from a spherical convex surface gives rise to a virtual image. Rays appear to emanate from point I behind the spherical reflector.

20

Page 21: Chapter 1. Ray Optics - webpage.khu.ac.ir

Reflection at Spherical Surfaces II

Considering Triangle OPC and then Triangle OPI we obtain:

2

Combining these relations we obtain:

2

Again using the small angle approximation:

tan tan tanh h h

s s R

21

Page 22: Chapter 1. Ray Optics - webpage.khu.ac.ir

Reflection at Spherical Surfaces III Image distance s' in terms of the object distance s and mirror radius R:

1 1 22

h h h

s s R s s R

At this point the sign convention in the book is changed !

1 1 2

s s R

The following sign convention must be followed in using this equation:

1. Assume that light propagates from left to right.Object distance s is positive when point O is to the left of point V.

2. Image distance s' is positive when I is to the left of V (real image) and negative when to the right of V (virtual image).

3. Mirror radius of curvature R is positive for C to the right of V (convex), negative for C to left of V (concave).

22

Page 23: Chapter 1. Ray Optics - webpage.khu.ac.ir

Reflection at Spherical Surfaces IV

The focal length f of the spherical mirror surface is defined as –R/2, where R is the radius of curvature of the mirror. In accordance with the sign convention of the previous page, f > 0 for a concave mirror and f < 0 for a convex mirror. The imaging equation for the spherical mirror can be rewritten as

1 1 1

s s f

2

s

Rf

R < 0f > 0

R > 0f < 0

23

Page 24: Chapter 1. Ray Optics - webpage.khu.ac.ir

Reflection at Spherical Surfaces VII

1 1 10

0

s fs f s

sm

s

1 1 10

0

s fs f s

sm

s

Real, Inverted Image Virtual Image, Not Inverted

24

Page 25: Chapter 1. Ray Optics - webpage.khu.ac.ir

Refraction

25

Page 26: Chapter 1. Ray Optics - webpage.khu.ac.ir

26

Page 27: Chapter 1. Ray Optics - webpage.khu.ac.ir

Prisms

27

Page 28: Chapter 1. Ray Optics - webpage.khu.ac.ir

Beamsplitters

28

Page 29: Chapter 1. Ray Optics - webpage.khu.ac.ir

Spherical boundaries and lenses

n2 > n1

At point P we apply the law of refraction to obtain

1 1 2 2sin sinn n

Using the small angle approximation we obtain

1 1 2 2n n

Substituting for the angles 1 and 2 we obtain

1 2n n

Neglecting the distance QV and writing tangents for the angles gives

1 2

h h h hn n

s R s R

29

Page 30: Chapter 1. Ray Optics - webpage.khu.ac.ir

Refraction by Spherical Surfaces

n2 > n1

Rearranging the equation we obtain

Using the same sign convention as for mirrors we obtain

1 2 1 2n n n n

s s R

1 2 2 1n n n nP

s s R

P : power of the refracting surface

30

Page 31: Chapter 1. Ray Optics - webpage.khu.ac.ir

Example : Concept of imaging by a lens

31

Page 32: Chapter 1. Ray Optics - webpage.khu.ac.ir

Thin (refractive) lenses

32

Page 33: Chapter 1. Ray Optics - webpage.khu.ac.ir

The Thin Lens Equation I

O

O'

t

C2

C1

n1n1

n2

s1

s'1

1 2 2 1

1 1 1

n n n n

s s R

V1 V2

For surface 1:

33

Page 34: Chapter 1. Ray Optics - webpage.khu.ac.ir

The Thin Lens Equation II

1 2 2 1

1 1 1

n n n n

s s R

For surface 1:

2 1 1 2

2 2 2

n n n n

s s R

For surface 2:

2 1s t s

Object for surface 2 is virtual, with s2 given by:

2 10t s s

For a thin lens:

1 2 2 1 1 1 2 1 1 21 2

1 1 1 2 1 2 1 2

n n n n n n n n n nP P

s s s s s s R R

Substituting this expression we obtain:

34

Page 35: Chapter 1. Ray Optics - webpage.khu.ac.ir

The Thin Lens Equation III

2 1

1 2 1 1 2

1 1 1 1n n

s s n R R

Simplifying this expression we obtain:

2

2

2

1

1

1 1

1 1 1 1s

n n

ss

ss

ns

R R

For the thin lens:

2 1

1 1 2

1 11 1n n

f n R Rs

s

The focal length for the thin lens is found by setting s = ∞:

35

Page 36: Chapter 1. Ray Optics - webpage.khu.ac.ir

The Thin Lens Equation IV

In terms of the focal length f the thin lens equation becomes:

1 1 1

s s f

The focal length of a thin lens is

positive for a convex lens,

negative for a concave lens.

36

Page 37: Chapter 1. Ray Optics - webpage.khu.ac.ir

Image Formation by Thin Lenses

Convex Lens

Concave Lens

sm

s

37

Page 38: Chapter 1. Ray Optics - webpage.khu.ac.ir

Image Formation by Convex Lens

1 1 15 9f cm s cm s

s f s

m s s

Convex Lens, focal length = 5 cm:

F

F

ho

hi

RI

38

Page 39: Chapter 1. Ray Optics - webpage.khu.ac.ir

Image Formation by Concave Lens

Concave Lens, focal length = -5 cm:

1 1 15 9f cm s cm s

s f s

m s s

FF

ho

hi

VI

39

Page 40: Chapter 1. Ray Optics - webpage.khu.ac.ir

Image Formation: Two-Lens System I

1 11 1 1

1 1 1 1 1

2 2 2

2 2 2

1 2

1 1 115 25

1 1 115

s ff cm s cm s

s f s s f

f cm s ss f s

m m m

60 cm

40

Page 41: Chapter 1. Ray Optics - webpage.khu.ac.ir

Image Formation: Two-Lens System II

1 1 1

1 1 1

2 2 2

2 2 2

1 2

1 1 13.5 5.2

1 1 11.8

f cm s cm ss f s

f cm s ss f s

m m m

7 cm

41

Page 42: Chapter 1. Ray Optics - webpage.khu.ac.ir

Image Formation Summary Table

42

Page 43: Chapter 1. Ray Optics - webpage.khu.ac.ir

Image Formation Summary Figure

43

Page 44: Chapter 1. Ray Optics - webpage.khu.ac.ir

Vergence and refractive power : Diopter

1 1 1

s s f

'V V P

reciprocals

Vergence (V) : curvature of wavefront at the lens

Refracting power (P)

Diopter (D) : unit of vergence (reciprocal length in meter)

D > 0

D < 0

1m

0.5m2 diopter

1 diopter

1 m

-1 diopter

44

Page 45: Chapter 1. Ray Optics - webpage.khu.ac.ir

1 2 3P P P P L

Two more useful equations

45

Page 46: Chapter 1. Ray Optics - webpage.khu.ac.ir

2-12. Cylindrical lenses

46

Page 47: Chapter 1. Ray Optics - webpage.khu.ac.ir

Cylindrical lenses

Top view

Side view

47

Page 48: Chapter 1. Ray Optics - webpage.khu.ac.ir

D. Light guides

48

Page 49: Chapter 1. Ray Optics - webpage.khu.ac.ir

49

Page 50: Chapter 1. Ray Optics - webpage.khu.ac.ir

50

Page 51: Chapter 1. Ray Optics - webpage.khu.ac.ir

1-3. Graded-index (GRIN) optics

51

Page 52: Chapter 1. Ray Optics - webpage.khu.ac.ir

Rays in heterogeneous media

The optical path length between two points x 1 and x 2 through which a ray passes is

Written in terms of parameter s ,

Because the optical path length integral is an extremum (Fermat principle),

the integrand L satisfies the Euler equations.

For an arbitrary coordinate system , with coordinates q1 , q2 , q3,

2

1

),,(

t

t

dttqqLAction

0),,(

2

1

t

t

dttqqLAction

0

ii q

L

q

L

dt

d

Lagrange’s equations

52

Page 53: Chapter 1. Ray Optics - webpage.khu.ac.ir

GRIN

In Cartesian Coordinates with Parameter s = s .

In Cartesian coordinates so the x equation is

Similar equations hold for y and z .

: Ray equation

Paraxial Ray Equation ds ~ dz

53

Page 54: Chapter 1. Ray Optics - webpage.khu.ac.ir

GRIN slab : n = n(y)

% Derivation of the Paraxial Ray Equation in a Graded-Index Slab Using Snell’s Law

The two angles are related by Snell’s law,

n=n(y): paraxial ray equation

54

Page 55: Chapter 1. Ray Optics - webpage.khu.ac.ir

Ex. 1.3-1 GRIN slab with

Assuming an initial position y(0) = yo, dy/dz = o at z = 0,

55

Page 56: Chapter 1. Ray Optics - webpage.khu.ac.ir

GRIN fibers

56

Page 57: Chapter 1. Ray Optics - webpage.khu.ac.ir

1.4 Matrix optics : Ray transfer matrix

In the par-axial approximation,

57

Page 58: Chapter 1. Ray Optics - webpage.khu.ac.ir

What is the ray-transfer matrix

58

Page 59: Chapter 1. Ray Optics - webpage.khu.ac.ir

How to use the ray-transfer matrices

59

Page 60: Chapter 1. Ray Optics - webpage.khu.ac.ir

How to use the ray-transfer matrices

60

Page 61: Chapter 1. Ray Optics - webpage.khu.ac.ir

Translation Matrix

1 0 1 0 0 0 0

1 0 0

1 0 0

0 01 1 0

0 01

tan

1

0 1

1 1

0 1 0 1

y y L y L

y y L

y

y yy L x x

( yo, o )

( y1, 1 )

L

Page 62: Chapter 1. Ray Optics - webpage.khu.ac.ir

Refraction Matrix

' :

11

y

R

y

R

y

R

Paraxial Snell s Law n n

y n y n y y n ny

R n R n R R R n n

1 0

1 0: 0

11 : 0

y y

y y Concave surface Rn n

Convex surface RR n n

y=y’

62

Page 63: Chapter 1. Ray Optics - webpage.khu.ac.ir

Reflection Matrix

:

2

1 0

21

1 0

21

y y y

R R R

Law of Reflection

y yy

R R R

y y

yR

y y

R

y=y’

63

Page 64: Chapter 1. Ray Optics - webpage.khu.ac.ir

Thick Lens Matrix I

0 01

1

0 01

1

1 0

:L

L L

y yyRefraction at first surface Mn n n

n R n

2 1 1

2

2 1 1

11 2 :

0 1

y y ytTranslation from st surface to nd surface M

3 2 2

3

3 2 2

2

1 0

:L L

y y yRefraction at second surface Mn n n

n R n

64

Page 65: Chapter 1. Ray Optics - webpage.khu.ac.ir

Thick Lens Matrix II

1

2

1

1

2 1 1 2

:

11 0

1

1 1

L

L L

L L

L

L L

L

L L

LL L L

L L

Assuming n n

t n n t n

n R nM n n n

n n nn R n

n R n

t n n t n

n R n

t n nn n n n n nt

n R n R n R n R

2 1

1 0 1 01

0 1L L L

L L

tM n n n n n n

n R n n R n

3 2 1:Thick lens matrix M M M M

65

Page 66: Chapter 1. Ray Optics - webpage.khu.ac.ir

66

Page 67: Chapter 1. Ray Optics - webpage.khu.ac.ir

Thin Lens Matrix

2 1

1 2

:

1 0

1 11

1 1 1

1 0

11

L

L

Thin lens matrix

M n n

n R R

n nbut

f n R R

M

f

The thin lens matrix is found by setting t = 0:

nL

67

Page 68: Chapter 1. Ray Optics - webpage.khu.ac.ir

Summary of Matrix Methods

68

Page 69: Chapter 1. Ray Optics - webpage.khu.ac.ir

Summary of Matrix Methods

69

Page 70: Chapter 1. Ray Optics - webpage.khu.ac.ir

70

Page 71: Chapter 1. Ray Optics - webpage.khu.ac.ir

71

Page 72: Chapter 1. Ray Optics - webpage.khu.ac.ir

72

Page 73: Chapter 1. Ray Optics - webpage.khu.ac.ir

System Ray-Transfer Matrix

Introduction to Matrix Methods in Optics, A. Gerrard and J. M. Burch

1

1

y

2 2

2 2

n

n

y

73

Page 74: Chapter 1. Ray Optics - webpage.khu.ac.ir

System Ray-Transfer Matrix Any paraxial optical system, no matter how complicated, can be represented by a 2x2 optical matrix. This matrix M is usually denoted

: system matrixA B

MC D

A useful property of this matrix is that

0Detf

nM AD BC

n

where n0 and nf are the refractive indices of the initial and final media of the optical system. Usually, the medium will be air on both sides of the optical system and

0Det 1f

nM AD BC

n

74

Page 75: Chapter 1. Ray Optics - webpage.khu.ac.ir

Significance of system matrix elements

The matrix elements of the system matrix can be analyzed to determine the cardinal points and planes of an optical system.

0

0

f

f

y yA B

C D

Let’s examine the implications when any of the four elements of the system matrix is equal to zero.

0 0

0 0

f

f

y Ay B

Cy D

D=0 : input plane = first focal plane

A=0 : output plane = second focal plane

B=0 : input and output planes correspond to conjugate planes

C=0 : telescopic system75

Page 76: Chapter 1. Ray Optics - webpage.khu.ac.ir

D=0 A=0

B=0 C=0

76

Page 77: Chapter 1. Ray Optics - webpage.khu.ac.ir

System Matrix with D=0

Let’s see what happens when D = 0.

0

0

0 0

0

0

f

f

f

f

y yA B

C

y Ay B

Cy

When D = 0, the input plane for the optical system is the input focal plane.

77

Page 78: Chapter 1. Ray Optics - webpage.khu.ac.ir

Ex) Two-Lens System

f1 = +50 mm f2 = +30 mm

q = 100 mmr s

InputPlane

OutputPlane

F1 F2F1 F2

T1 R1 R2T3T2

0

3 2 2 1 1

0

2 1

1

2 1 1 2

1 0 1 01 1 1

1 11 10 1 0 1 0 1

11 0 1 1 01 1 1

1 1 11 1 10 1 0 1 0 1

f

f

y y s q rM M T R T R T

f f

q q rr qr

f fs q sM r

f f f f

1

1 1

11

r

f f

78

Page 79: Chapter 1. Ray Optics - webpage.khu.ac.ir

1 1

3 2 2 1 1

2 1 1 2 1 1

1 2 1 1 2 2 1 1

2 1 1 2 1 1

11

0 1 1 1 11 1

1 1 1

1 1 11 1

q q rr q

f fsM T R T R T

q q r rr q

f f f f f f

q s s q q r r q q r rr q s

f f f f f f f f

q q r rr q

f f f f f f

2 1 1

2 1 1

1 2

11 0

30 50 100 50175

100 50 30

q r rD r q

f f f

f f q fr

q f f

r mm

ƒ1 ƒ2

d

H H’

F F’

ƒ ƒ’

s’s

h

r

1 2

1 2 1 2 1 2

1 1 1

f fdf

f f f f f f f d

2

2

f

fd

P

Pdh

2 1 2 1

2 1 2

f d f f f dr f h f

f f f d

< check! >

79

Page 80: Chapter 1. Ray Optics - webpage.khu.ac.ir

System Matrix with A=0, C=0

0

0

0

0 0

0f

f

f

f

y yB

C D

y B

Cy D

When A = 0, the output plane for the optical system is the output focal plane.

When C = 0, collimated light at the input plane is collimated light at the exit plane but the angle with the optical axis is different. This is a telescopic arrangement, with a magnification of D = f/0.

0

0

0 0

0

0

f

f

f

f

y yA B

D

y Ay B

D

80

Page 81: Chapter 1. Ray Optics - webpage.khu.ac.ir

0

0

0

0 0

0

0f

f

f

f

f

y yA

C D

y Ay

Cy D

ym A

y

When B = 0, the input and output planes are object and image planes, respectively, and the transverse magnification of the system m = A.

System Matrix with B=0

81

Page 82: Chapter 1. Ray Optics - webpage.khu.ac.ir

82

Page 83: Chapter 1. Ray Optics - webpage.khu.ac.ir

Ex) Two-Lens System with B=0

f1 = +50 mm f2 = +30 mm

q = 100 mmr s

ObjectPlane

ImagePlane

F1 F2F1 F2

T1 R1 R2T3T2

1

1 2 2 1 1

2 2 1 1

1 2 2 1 2 2 1 2

1 1 2 2 1 2 1 1 2

1 2 1

1 0

1

1 1

q rr q

q r r q q r r fB r q s s

r q q r rf f f f f

f f f f

f f r q f qr r f f f q f f q

f r q q r f f f r r f q f f q f f

q s s qm A

f f f

83