Ray Optics & EM Wave Optics

download Ray Optics & EM Wave Optics

of 27

Transcript of Ray Optics & EM Wave Optics

  • 8/7/2019 Ray Optics & EM Wave Optics

    1/27

    Ray Optics &

    EM Wave Optics

    3.46 Fall 2008Photonic Materials & Devices

    How can we make an object invisible?

  • 8/7/2019 Ray Optics & EM Wave Optics

    2/27

    Resources

    Fundamentals of Photonics E. A. Saleh and M. C. Teich

    Ch. 1, 2, and 5: ray optics and EM wave optics

    Appendix B: linear systems and K-K relation Waves and Fields in Optoelectronics

    H. A. Haus

    Ch. 1 and 2

    Transfer matrix calculation code http://scripts.mit.edu/~sunxc/work/sim/rtfit.html

  • 8/7/2019 Ray Optics & EM Wave Optics

    3/27

    Models of light

    Propagation models

    Free space optics

    Ray optics:

  • 8/7/2019 Ray Optics & EM Wave Optics

    4/27

    Ray optics: a visual tool (

  • 8/7/2019 Ray Optics & EM Wave Optics

    5/27

    Reflection & refraction on curved surfaces

    Incident and reflection/refraction angles are taken with

    respect to the surface normal

  • 8/7/2019 Ray Optics & EM Wave Optics

    6/27

    Optical force: radiation pressure

    Wave-particle duality of light

    Photons have momentum: p = h /

    Force needs to be applied to change the propagation

    direction of a photon: p = -Ft

    Incident ray Reflected ray

    Incident ray

    Reflected ray

    p

    F: radiation pressure

  • 8/7/2019 Ray Optics & EM Wave Optics

    7/27

    Radiation pressure in science fictions: solar sail

    Count Dookus solar sailer:

    Star Wars Episode II: Attack

    of the Clones

  • 8/7/2019 Ray Optics & EM Wave Optics

    8/27

    Particle movement along waveguide

    light

    S. Gaugiran et al., "Optical manipulation of microparticles and cells on silicon

    nitride waveguides," Opt. Express 13, 6956-6963 (2005)

    http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-18-6956

  • 8/7/2019 Ray Optics & EM Wave Optics

    9/27

  • 8/7/2019 Ray Optics & EM Wave Optics

    10/27

    Optical tweezers & MOEMS

    Move particles, live cells, microspheres

    More aboutMOEMS (Micro-Opto-Electro-MechanicalSystems):

    A. Ashkin et al., Opt. Lett. 11, 288 (1986). M. Eichenfield et al., Nat. Photonics 1, 416 (2007).

    M. MacDonald et al., Nature 426, 421 (2003). M. Notomi et al., PRL 97, 023903 (2006).

    D. McGloin, Phil. Trans. R. Soc. A 364, 3521 (2006).

  • 8/7/2019 Ray Optics & EM Wave Optics

    11/27

    EM wave optics

    Maxwell equations

    Constitutive relations (linear media)

    Wave equations

    Boundary conditions

    m/s

    EED r 0III !! HHB r 0QQQ !! r

    c

    cn I~0!

  • 8/7/2019 Ray Optics & EM Wave Optics

    12/27

    Plane wave solution

    Monochromatic plane wave solution

    Wave vectork

    A measure of spatial periodicity

    where

    Poynting vector

    rn I~)exp()( tirEE [!

    )exp( tirkiAE [!

    )exp()exp( zikyikxiktiEzyx !

    nc

    knk !!T2

    0

    2222

    0

    22 ||||zyx kkkknk !!

    E

    B

  • 8/7/2019 Ray Optics & EM Wave Optics

    13/27

  • 8/7/2019 Ray Optics & EM Wave Optics

    14/27

    Kramers-Kronig (K-K) relation

    nr(refractive index) and K (absorption) are

    interdepedent !

    g

    !0

    '

    '

    )'(21)(

    T

    dK

    CPV

    c

    nr CPV: Cauchy principle value

    Absorption peak Variation of refractive index

  • 8/7/2019 Ray Optics & EM Wave Optics

    15/27

  • 8/7/2019 Ray Optics & EM Wave Optics

    16/27

    Refractive index (real part) enhancement

    via quantum coherence High refractive index material is attractive for a number

    of applications, e.g. high NA immersion photolithography

    Is refractive index enhancement always accompanied by

    absorption increase?

    Theoretical proposal: M. Scully, Enhancement of index of refraction via quantum

    coherence, Phys. Rev Lett. 67, 1855 (1991).

    Experimental realization: N. Proite et al., Refractive Index Enhancement with Vanishing

    Absorption in an Atomic Vapor (2008). http://arxiv.org/abs/0807.2584v1

    (K) (n)

  • 8/7/2019 Ray Optics & EM Wave Optics

    17/27

    Transmission through dielectric interfaces

    Boundary conditions of fields The conditions have to be satisfied everywhere and at all

    times on the boundary

    Derivation of Snells law

    Phase matching: continuity of

    E-field across the boundaries)exp()exp( zikxiktiAE

    zx !

    )exp()exp()exp( ,22,33,11 xikExikExikE xxx !

    |||||| 22

    131

    kn

    nkk !! Usin|| ! kkx

    1

    2

    2

    1

    sin

    sin

    n

    n!

    U

    USnells law

  • 8/7/2019 Ray Optics & EM Wave Optics

    18/27

  • 8/7/2019 Ray Optics & EM Wave Optics

    19/27

    TE/TM wave optical reflection

    TE (transverse electric) polarization

    Electric field parallel to substrate surface

    TM (transverse magnetic) polarization

    Magnetic field parallel to substrate surface

    low index high index high index low index

    TETM

    TETM

  • 8/7/2019 Ray Optics & EM Wave Optics

    20/27

    Refractive index of gold

    n ~ 0.37 @ 1 eV

    Experimentalvalue: R > 90%

    %21|37.01

    37.01| 2 !

    !R

    Why isthat ???Imaginary part of index n (extinction

    coefficient) contributes to reflection

    as well!

  • 8/7/2019 Ray Optics & EM Wave Optics

    21/27

    Transfer matrix method

    n1 n2

    d1 d2

    n3

    d3

    ni-1

    di-1

    ni

    diIncident light

    Reflected light Refracted light? ?

    Interface

    E1

    E2

    E4

    E3)()(

    4

    3

    12

    2

    1

    E

    ED

    E

    E!

    Transmission matrices

    Boundary

    conditions

  • 8/7/2019 Ray Optics & EM Wave Optics

    22/27

  • 8/7/2019 Ray Optics & EM Wave Optics

    23/27

    Transfer matrix method

    n1 n2

    d1 d2

    n3

    d3

    ni-1

    di-1

    ni

    diIncident light

    Reflected light Refracted light? ?

    Transfer matrix

    )0

    ()(t

    r

    iE

    ME

    E!

    Ei is known

    Erand Et can be calculated !

  • 8/7/2019 Ray Optics & EM Wave Optics

    24/27

    Anti-reflection (AR) coatings

    Quarter wave film

    Elimination of reflection on surfaces:

    Solar cells

    Photodetectors

    Photolithography

    More general treatment:

    Hauss Book, Chapter 1

  • 8/7/2019 Ray Optics & EM Wave Optics

    25/27

    Optical cloaking for invisibility:

    Plasmonics and metamaterials

    W. Cai et al., Optical cloaking with meta-

    material, Nat. Photonics 1, 224 (2007).

    G. Abajo et al., Tunneling mechanism of

    light transmission through metallic films,

    Phys. Rev. Lett. 95, 067403 (2005).

    T. Ebbesen et al., Nature 391, 667 (1998).

    G. Gay et al., Phys. Rev. Lett. 96,

    213901 (2006).

    W. Barnes et al., Phys. Rev. Lett. 92,

    107401 (2004).A. Alu & N. Engheta, Phys. Rev. E 72,

    016623 (2005).

  • 8/7/2019 Ray Optics & EM Wave Optics

    26/27

    Phase vs. group velocity

    Carrier: rapidly varying terms

    Propagates at vp Envelope: slowly varying envelope -- information

    Propagates at vg

    Carries information (digital or analog)

    Dispersion: distorts the envelope

    http://en.wikipedia.org/wiki/Phase_velocity

    http://en.wikipedia.org/wiki/Group_velocity

  • 8/7/2019 Ray Optics & EM Wave Optics

    27/27