Calculus 3 Day 24 Notes

download Calculus 3 Day 24 Notes

of 24

Transcript of Calculus 3 Day 24 Notes

  • 8/13/2019 Calculus 3 Day 24 Notes

    1/24

    Chapter 17

    MATH 2433 - 15535

    Annalisa Quaini

    [email protected]

    Office : PGH 662Lecture : MoWe 5:30PM-7:00PM in SEC 102

    Office hours : Tu 10AM-12PM and by appointment

    FILL IN THE TEACHING EVALUATION ON CASAWEBSITE!!! 5 points will be given to those who fills it inBubble ID and popper number (Popper 19)

    http://www.math.uh.edu/quainiA. Quaini, UH MATH 2433 1 / 24

  • 8/13/2019 Calculus 3 Day 24 Notes

    2/24

    Chapter 17 Sect. 17.4 Sect. 17.5 Sect. 17.6 Sect. 17.7 Sect. 17.8

    Ifh(x, y, z) =h1(x, y, z)i+h2(x, y, z)j+h3(x, y, z)k, the line

    integral C

    h(r) dr

    can be written

    C

    (h1(x, y, z)dx+h2(x, y, z)dy+h3(x, y, z)dz).

    If the curve is parametrized by

    C : r(u) =x(u)i+y(u)j+z(u)k, u [a, b],

    then we have dx=x(u)du, dy=y(u)du, dz=z(u)du.

    A. Quaini, UH MATH 2433 2 / 24

  • 8/13/2019 Calculus 3 Day 24 Notes

    3/24

    Chapter 17 Sect. 17.4 Sect. 17.5 Sect. 17.6 Sect. 17.7 Sect. 17.8

    Definitions

    Closed curve

    A curve C : r=r(u), u [a, b], is said to be closed if it beginsand ends at the same point

    r(a) =r(b).

    Simple curveA curve C : r=r(u), u [a, b], is said to be simple if it does notintersect itself

    a

  • 8/13/2019 Calculus 3 Day 24 Notes

    4/24

    Chapter 17 Sect. 17.4 Sect. 17.5 Sect. 17.6 Sect. 17.7 Sect. 17.8

    Definition

    A Jordan curve is a plane curve that is both closed and simple.

    A closed region , the total boundary of which is a Jordan curveC, is called Jordan region.

    Greens theorem

    Let be a Jordan region with a piecewise-smooth boundary C. IfP and Qare scalar fields such that are continuously differentiableon an open set that contains , then

    Qx

    (x, y) P

    y

    (x, y) dxdy= C

    P(x, y)dx+Q(x, y)dy

    where the integral on the right is the line integral taken over C inthe counterclockwise direction.

    A. Quaini, UH MATH 2433 4 / 24

  • 8/13/2019 Calculus 3 Day 24 Notes

    5/24

    Chapter 17 Sect. 17.4 Sect. 17.5 Sect. 17.6 Sect. 17.7 Sect. 17.8

    Finding the area using Greens theorem

    IfCis a simple closed curve enclosing the region , then

    Area() =

    dxdy=

    C

    ydx=

    C

    xdy=1

    2

    C

    ydx+xdy

    A. Quaini, UH MATH 2433 5 / 24

    Ch 17 S 17 4 S 17 5 S 17 6 S 17 7 S 17 8

  • 8/13/2019 Calculus 3 Day 24 Notes

    6/24

    Chapter 17 Sect. 17.4 Sect. 17.5 Sect. 17.6 Sect. 17.7 Sect. 17.8

    Parametrized Surfaces;Surface Area

    A. Quaini, UH MATH 2433 6 / 24

    Ch t 17 S t 17 4 S t 17 5 S t 17 6 S t 17 7 S t 17 8

  • 8/13/2019 Calculus 3 Day 24 Notes

    7/24

    Chapter 17 Sect. 17.4 Sect. 17.5 Sect. 17.6 Sect. 17.7 Sect. 17.8

    We can parametrized a surface Sin space by a vector function

    r=r(u, v), where (u, v) ranges over some region of theuv-plane.

    A. Quaini, UH MATH 2433 7 / 24

    Chapter 17 Sect 17 4 Sect 17 5 Sect 17 6 Sect 17 7 Sect 17 8

  • 8/13/2019 Calculus 3 Day 24 Notes

    8/24

    Chapter 17 Sect. 17.4 Sect. 17.5 Sect. 17.6 Sect. 17.7 Sect. 17.8

    The fundamental vector product

    Let the surface Sbe parametrized by a differentiable vector

    function

    r=r(u, v) =x(u, v)i+y(u, v)j+z(u, v)k.

    We denote

    ru=x

    ui+

    y

    uj+

    z

    uk, rv =

    x

    vi+

    y

    vj+

    z

    vk.

    Definition

    The cross productN= ru r

    v

    is called the fundamental vector productof the surface.

    A. Quaini, UH MATH 2433 8 / 24

    Chapter 17 Sect 17 4 Sect 17 5 Sect 17 6 Sect 17 7 Sect 17 8

  • 8/13/2019 Calculus 3 Day 24 Notes

    9/24

    Chapter 17 Sect. 17.4 Sect. 17.5 Sect. 17.6 Sect. 17.7 Sect. 17.8

    The fundamental vector product

    The vector N(u, v) =r

    u(u, v) r

    v(u, v) is perpendicular to thesurface Sat the tip ofr(u, v).

    A. Quaini, UH MATH 2433 9 / 24

    Chapter 17 Sect 17 4 Sect 17 5 Sect 17 6 Sect 17 7 Sect 17 8

  • 8/13/2019 Calculus 3 Day 24 Notes

    10/24

    Chapter 17 Sect. 17.4 Sect. 17.5 Sect. 17.6 Sect. 17.7 Sect. 17.8

    Example

    Find the fundamental vector product for

    r(u, v) =ucos(v)i+usin(v)j+vk.

    A. Quaini, UH MATH 2433 10 / 24

    Chapter 17 Sect. 17.4 Sect. 17.5 Sect. 17.6 Sect. 17.7 Sect. 17.8

  • 8/13/2019 Calculus 3 Day 24 Notes

    11/24

    Chapter 17 Sect. 17.4 Sect. 17.5 Sect. 17.6 Sect. 17.7 Sect. 17.8

    How to evaluate the area ofS

    Let Sbe a surface parametrized by a continuously differentiablefunctionr=r(u, v), (u, v) .

    Definition

    If is a basic region in the uv-plane and r is one-to-one on theinterior of , we call S a smooth surface.

    IfN(u, v) is never zero on the interior of , then we have

    area(S) =

    ||N(u, v)|| dudv.

    A. Quaini, UH MATH 2433 11 / 24

    Chapter 17 Sect. 17.4 Sect. 17.5 Sect. 17.6 Sect. 17.7 Sect. 17.8

  • 8/13/2019 Calculus 3 Day 24 Notes

    12/24

    p

    How to evaluate the area ofS(particular case)

    IfSis the graph ofz=f(x, y) for (x, y) , we can parametrizeit like this:

    S : r(x, y) =xi+yj+f(x, y)k, (x, y) .

    Then, we have

    area(S) = [fx(x, y)]

    2 + [fy(x, y)]2 + 1 dxdy.

    A. Quaini, UH MATH 2433 12 / 24

    Chapter 17 Sect. 17.4 Sect. 17.5 Sect. 17.6 Sect. 17.7 Sect. 17.8

  • 8/13/2019 Calculus 3 Day 24 Notes

    13/24

    p

    Example

    Find the area of the surface z=y2, for 0 x y, 0 y 1.

    A. Quaini, UH MATH 2433 13 / 24

    Chapter 17 Sect. 17.4 Sect. 17.5 Sect. 17.6 Sect. 17.7 Sect. 17.8

  • 8/13/2019 Calculus 3 Day 24 Notes

    14/24

    (continue)

    Find the area of the surface z=y2, for 0 x y, 0 y 1.

    A. Quaini, UH MATH 2433 14 / 24

    Chapter 17 Sect. 17.4 Sect. 17.5 Sect. 17.6 Sect. 17.7 Sect. 17.8

  • 8/13/2019 Calculus 3 Day 24 Notes

    15/24

    Surface Integrals

    A. Quaini, UH MATH 2433 15 / 24

    Chapter 17 Sect. 17.4 Sect. 17.5 Sect. 17.6 Sect. 17.7 Sect. 17.8

  • 8/13/2019 Calculus 3 Day 24 Notes

    16/24

    Surface integrals

    Let H=H(x, y, z) be a scalar field continuous over S :r=r(u, v),with (u, v) . The surface integral of H over S is:

    S H(x, y, z)d=

    H(x(u, v), y(u, v), z(u, v))||N(u, v)|| dudv

    Notice that ifH(x, y, z) = 1, we have

    S

    d=

    ||N(u, v)|| dudv= area(S).

    A. Quaini, UH MATH 2433 16 / 24

    Chapter 17 Sect. 17.4 Sect. 17.5 Sect. 17.6 Sect. 17.7 Sect. 17.8

  • 8/13/2019 Calculus 3 Day 24 Notes

    17/24

    Example

    Evaluate

    S

    2y d

    where S is the surface S :z=1

    2y2, 0 x 2, 0 y 1.

    A. Quaini, UH MATH 2433 17 / 24

    Chapter 17 Sect. 17.4 Sect. 17.5 Sect. 17.6 Sect. 17.7 Sect. 17.8

  • 8/13/2019 Calculus 3 Day 24 Notes

    18/24

    (continue)

    Evaluate

    S

    2y d

    where S is the surface S :z=1

    2y2, 0 x 2, 0 y 1.

    A. Quaini, UH MATH 2433 18 / 24

    Chapter 17 Sect. 17.4 Sect. 17.5 Sect. 17.6 Sect. 17.7 Sect. 17.8

  • 8/13/2019 Calculus 3 Day 24 Notes

    19/24

    Example

    Evaluate S

    2xy d

    where S is the surface x+ 2y+ 2z= 4 in the first octant.

    A. Quaini, UH MATH 2433 19 / 24

    Chapter 17 Sect. 17.4 Sect. 17.5 Sect. 17.6 Sect. 17.7 Sect. 17.8

    ( )

  • 8/13/2019 Calculus 3 Day 24 Notes

    20/24

    (continue)

    Evaluate S

    2xy d

    where S is the surface x+ 2y+ 2z= 4 in the first octant.

    A. Quaini, UH MATH 2433 20 / 24

    Chapter 17 Sect. 17.4 Sect. 17.5 Sect. 17.6 Sect. 17.7 Sect. 17.8

  • 8/13/2019 Calculus 3 Day 24 Notes

    21/24

    The Vector Differential

    Operator

    A. Quaini, UH MATH 2433 21 / 24

    Chapter 17 Sect. 17.4 Sect. 17.5 Sect. 17.6 Sect. 17.7 Sect. 17.8

    F l d fi i i

  • 8/13/2019 Calculus 3 Day 24 Notes

    22/24

    Formal definition

    The vector differential operator is formally defined by

    =

    xi+

    yj+

    zk.

    So far, we have seen applied to a differentiable scalarfield, e.g.f, but it can also be applied to vector fields.

    A. Quaini, UH MATH 2433 22 / 24

    Chapter 17 Sect. 17.4 Sect. 17.5 Sect. 17.6 Sect. 17.7 Sect. 17.8

    Di d l

  • 8/13/2019 Calculus 3 Day 24 Notes

    23/24

    Divergence and curl

    Consider vector field v=v1(x, y, z)i+v2(x, y, z)j+v3(x, y, z)k.

    Divergence

    v=v1

    x +

    v2

    y +

    v3

    z .

    Curl

    v=

    i j k

    x

    y

    z

    v1 v2 v3

    A. Quaini, UH MATH 2433 23 / 24

    Chapter 17 Sect. 17.4 Sect. 17.5 Sect. 17.6 Sect. 17.7 Sect. 17.8

  • 8/13/2019 Calculus 3 Day 24 Notes

    24/24

    The curl of a gradient is zero.

    A. Quaini, UH MATH 2433 24 / 24