MATH1151 Calculus Notes

87
7/25/2019 MATH1151 Calculus Notes http://slidepdf.com/reader/full/math1151-calculus-notes 1/87 MATH1151 – Maths for Actuarial Studies & Finance Calculus Lecture 01 Real Numbers and Least Upper Bounds Dr Jonathan Kress Slides by A/Prof Thanh Tran School of Mathematics and Statistics University of New South Wales Dr Jonathan Kress (UNSW Maths & Stats)  MATH1151  1 / 20

Transcript of MATH1151 Calculus Notes

Page 1: MATH1151 Calculus Notes

7/25/2019 MATH1151 Calculus Notes

http://slidepdf.com/reader/full/math1151-calculus-notes 1/87

MATH1151 – Maths for Actuarial Studies & Finance

Calculus Lecture 01

Real Numbers and Least Upper Bounds

Dr Jonathan Kress

Slides by A/Prof Thanh Tran

School of Mathematics and StatisticsUniversity of New South Wales

Dr Jonathan Kress (UNSW Maths & Stats)   MATH1151   1 / 20

Page 2: MATH1151 Calculus Notes

7/25/2019 MATH1151 Calculus Notes

http://slidepdf.com/reader/full/math1151-calculus-notes 2/87

1   Sets of numbers

2   An historical problem

3   The least upper bound axiom

4   Bernouilli’s question – Revisited

Dr Jonathan Kress (UNSW Maths & Stats)   MATH1151   2 / 20

Page 3: MATH1151 Calculus Notes

7/25/2019 MATH1151 Calculus Notes

http://slidepdf.com/reader/full/math1151-calculus-notes 3/87

Sets and elements

Dr Jonathan Kress (UNSW Maths & Stats)   MATH1151   3 / 20

Page 4: MATH1151 Calculus Notes

7/25/2019 MATH1151 Calculus Notes

http://slidepdf.com/reader/full/math1151-calculus-notes 4/87

Sets and elements

A set is a collection of distinct objects.

Dr Jonathan Kress (UNSW Maths & Stats)   MATH1151   3 / 20

Page 5: MATH1151 Calculus Notes

7/25/2019 MATH1151 Calculus Notes

http://slidepdf.com/reader/full/math1151-calculus-notes 5/87

Sets and elements

A set is a collection of distinct objects.

The objects in a set are called the elements or members of the

set.

Dr Jonathan Kress (UNSW Maths & Stats)   MATH1151   3 / 20

Page 6: MATH1151 Calculus Notes

7/25/2019 MATH1151 Calculus Notes

http://slidepdf.com/reader/full/math1151-calculus-notes 6/87

Sets and elements

A set is a collection of distinct objects.

The objects in a set are called the elements or members of the

set.

Example 1

Dr Jonathan Kress (UNSW Maths & Stats)   MATH1151   3 / 20

Page 7: MATH1151 Calculus Notes

7/25/2019 MATH1151 Calculus Notes

http://slidepdf.com/reader/full/math1151-calculus-notes 7/87

Sets and elements

A set is a collection of distinct objects.

The objects in a set are called the elements or members of the

set.

Example 1

MATH1151 is an element of the set of all mathematical courses

offered at UNSW.

Dr Jonathan Kress (UNSW Maths & Stats)   MATH1151   3 / 20

Page 8: MATH1151 Calculus Notes

7/25/2019 MATH1151 Calculus Notes

http://slidepdf.com/reader/full/math1151-calculus-notes 8/87

Sets and elements

A set is a collection of distinct objects.

The objects in a set are called the elements or members of the

set.

Example 1

MATH1151 is an element of the set of all mathematical courses

offered at UNSW.

UCLA is not a member of the Australian universities.

Dr Jonathan Kress (UNSW Maths & Stats)   MATH1151   3 / 20

Page 9: MATH1151 Calculus Notes

7/25/2019 MATH1151 Calculus Notes

http://slidepdf.com/reader/full/math1151-calculus-notes 9/87

Some notation

N = {0, 1, 2, 3, . . .} (set of all natural numbers)

Dr Jonathan Kress (UNSW Maths & Stats)   MATH1151   4 / 20

Page 10: MATH1151 Calculus Notes

7/25/2019 MATH1151 Calculus Notes

http://slidepdf.com/reader/full/math1151-calculus-notes 10/87

Some notation

N = {0, 1, 2, 3, . . .} (set of all natural numbers)

Z = {. . . , −3, −2, −1, 0, 1, 2, 3, . . .} (set of all integers)

Dr Jonathan Kress (UNSW Maths & Stats)   MATH1151   4 / 20

Page 11: MATH1151 Calculus Notes

7/25/2019 MATH1151 Calculus Notes

http://slidepdf.com/reader/full/math1151-calculus-notes 11/87

Some notation

N = {0, 1, 2, 3, . . .} (set of all natural numbers)

Z = {. . . , −3, −2, −1, 0, 1, 2, 3, . . .} (set of all integers)

Z+ =

 {1, 2, 3, . . .

} (set of all positive integers)

Dr Jonathan Kress (UNSW Maths & Stats)   MATH1151   4 / 20

Page 12: MATH1151 Calculus Notes

7/25/2019 MATH1151 Calculus Notes

http://slidepdf.com/reader/full/math1151-calculus-notes 12/87

Some notation

N = {0, 1, 2, 3, . . .} (set of all natural numbers)

Z = {. . . , −3, −2, −1, 0, 1, 2, 3, . . .} (set of all integers)

Z+ = {1, 2, 3, . . .} (set of all positive integers)

Z− = {. . . , −3, −2, −1} (set of all negative integers)

Dr Jonathan Kress (UNSW Maths & Stats)   MATH1151   4 / 20

Page 13: MATH1151 Calculus Notes

7/25/2019 MATH1151 Calculus Notes

http://slidepdf.com/reader/full/math1151-calculus-notes 13/87

Some notation

N = {0, 1, 2, 3, . . .} (set of all natural numbers)

Z = {. . . , −3, −2, −1, 0, 1, 2, 3, . . .} (set of all integers)

Z+ = {1, 2, 3, . . .} (set of all positive integers)

Z− = {. . . , −3, −2, −1} (set of all negative integers)

Q = {p q   : p ,q  ∈ Z,q  = 0} (set of all rational numbers)

Dr Jonathan Kress (UNSW Maths & Stats)   MATH1151   4 / 20

Page 14: MATH1151 Calculus Notes

7/25/2019 MATH1151 Calculus Notes

http://slidepdf.com/reader/full/math1151-calculus-notes 14/87

Some notation

N = {0, 1, 2, 3, . . .} (set of all natural numbers)

Z = {. . . , −3, −2, −1, 0, 1, 2, 3, . . .} (set of all integers)

Z+ = {1, 2, 3, . . .} (set of all positive integers)

Z− = {. . . , −3, −2, −1} (set of all negative integers)

Q = {p q   : p ,q  ∈ Z,q  = 0} (set of all rational numbers)

R (set of all real numbers).

Dr Jonathan Kress (UNSW Maths & Stats)   MATH1151   4 / 20

S i

Page 15: MATH1151 Calculus Notes

7/25/2019 MATH1151 Calculus Notes

http://slidepdf.com/reader/full/math1151-calculus-notes 15/87

Some notation

N = {0, 1, 2, 3, . . .} (set of all natural numbers)

Z = {. . . , −3, −2, −1, 0, 1, 2, 3, . . .} (set of all integers)

Z+ = {1, 2, 3, . . .} (set of all positive integers)

Z− = {. . . , −3, −2, −1} (set of all negative integers)

Q = {p q   : p ,q  ∈ Z,q  = 0} (set of all rational numbers)

R (set of all real numbers).

C (set of all complex numbers)

Dr Jonathan Kress (UNSW Maths & Stats)   MATH1151   4 / 20

Page 16: MATH1151 Calculus Notes

7/25/2019 MATH1151 Calculus Notes

http://slidepdf.com/reader/full/math1151-calculus-notes 16/87

Example 2

We write2 ∈ N   and read 2 is an element of N

and

−4

3  /∈ Z   and read −4/3 is not an element of Z

Dr Jonathan Kress (UNSW Maths & Stats)   MATH1151   5 / 20

Page 17: MATH1151 Calculus Notes

7/25/2019 MATH1151 Calculus Notes

http://slidepdf.com/reader/full/math1151-calculus-notes 17/87

Example 2

We write2 ∈ N   and read 2 is an element of N

and

−4

3  /∈ Z   and read −4/3 is not an element of Z

A remark

Dr Jonathan Kress (UNSW Maths & Stats)   MATH1151   5 / 20

Page 18: MATH1151 Calculus Notes

7/25/2019 MATH1151 Calculus Notes

http://slidepdf.com/reader/full/math1151-calculus-notes 18/87

Example 2

We write2 ∈ N   and read 2 is an element of N

and

−4

3  /∈ Z   and read −4/3 is not an element of Z

A remark

The equation x 2 = 2 does not have a solution in Q.

Dr Jonathan Kress (UNSW Maths & Stats)   MATH1151   5 / 20

Page 19: MATH1151 Calculus Notes

7/25/2019 MATH1151 Calculus Notes

http://slidepdf.com/reader/full/math1151-calculus-notes 19/87

Example 2

We write2 ∈ N   and read 2 is an element of N

and

−4

3  /∈ Z   and read −4/3 is not an element of Z

A remark

The equation x 2 = 2 does not have a solution in Q.

Intuitively, R is the number line or decimal expansions.

Dr Jonathan Kress (UNSW Maths & Stats)   MATH1151   5 / 20

Page 20: MATH1151 Calculus Notes

7/25/2019 MATH1151 Calculus Notes

http://slidepdf.com/reader/full/math1151-calculus-notes 20/87

Example 2

We write2 ∈ N   and read 2 is an element of N

and

−4

3  /∈ Z   and read −4/3 is not an element of Z

A remark

The equation x 2 = 2 does not have a solution in Q.

Intuitively, R is the number line or decimal expansions.

A real number which is not a rational is called an irrationalnumber. E.g.,

√ 2, π, e .

Dr Jonathan Kress (UNSW Maths & Stats)   MATH1151   5 / 20

The empty set ∅

Page 21: MATH1151 Calculus Notes

7/25/2019 MATH1151 Calculus Notes

http://slidepdf.com/reader/full/math1151-calculus-notes 21/87

The empty set ∅

The empty set or null set, denoted by ∅, is a set which has no

members at all.

Dr Jonathan Kress (UNSW Maths & Stats)   MATH1151   6 / 20

The empty set ∅

Page 22: MATH1151 Calculus Notes

7/25/2019 MATH1151 Calculus Notes

http://slidepdf.com/reader/full/math1151-calculus-notes 22/87

The empty set ∅

The empty set or null set, denoted by ∅, is a set which has no

members at all.

Example 3

Dr Jonathan Kress (UNSW Maths & Stats)   MATH1151   6 / 20

The empty set ∅

Page 23: MATH1151 Calculus Notes

7/25/2019 MATH1151 Calculus Notes

http://slidepdf.com/reader/full/math1151-calculus-notes 23/87

The empty set ∅

The empty set or null set, denoted by ∅, is a set which has no

members at all.

Example 3The set of all students doing MATH1151 in 2012 whose ages arebelow 10 is an empty set.

Dr Jonathan Kress (UNSW Maths & Stats)   MATH1151   6 / 20

The empty set ∅

Page 24: MATH1151 Calculus Notes

7/25/2019 MATH1151 Calculus Notes

http://slidepdf.com/reader/full/math1151-calculus-notes 24/87

The empty set ∅

The empty set or null set, denoted by ∅, is a set which has no

members at all.

Example 3The set of all students doing MATH1151 in 2012 whose ages arebelow 10 is an empty set.

The set of all real numbers  x  satisfying x 2 + 1 = 0 is an empty set.

Dr Jonathan Kress (UNSW Maths & Stats)   MATH1151   6 / 20

Two ways to define a set

Page 25: MATH1151 Calculus Notes

7/25/2019 MATH1151 Calculus Notes

http://slidepdf.com/reader/full/math1151-calculus-notes 25/87

Two ways to define a set

Dr Jonathan Kress (UNSW Maths & Stats)   MATH1151   7 / 20

Two ways to define a set

Page 26: MATH1151 Calculus Notes

7/25/2019 MATH1151 Calculus Notes

http://slidepdf.com/reader/full/math1151-calculus-notes 26/87

Two ways to define a set

List all members inside a pair of curly brackets (or braces).

Dr Jonathan Kress (UNSW Maths & Stats)   MATH1151   7 / 20

Two ways to define a set

Page 27: MATH1151 Calculus Notes

7/25/2019 MATH1151 Calculus Notes

http://slidepdf.com/reader/full/math1151-calculus-notes 27/87

Two ways to define a set

List all members inside a pair of curly brackets (or braces).

Give a rule to determine which members of some previouslydefined set are to be members of the set being defined.

Dr Jonathan Kress (UNSW Maths & Stats)   MATH1151   7 / 20

Two ways to define a set

Page 28: MATH1151 Calculus Notes

7/25/2019 MATH1151 Calculus Notes

http://slidepdf.com/reader/full/math1151-calculus-notes 28/87

Two ways to define a set

List all members inside a pair of curly brackets (or braces).

Give a rule to determine which members of some previouslydefined set are to be members of the set being defined.

Example 4

Dr Jonathan Kress (UNSW Maths & Stats)   MATH1151   7 / 20

Two ways to define a set

Page 29: MATH1151 Calculus Notes

7/25/2019 MATH1151 Calculus Notes

http://slidepdf.com/reader/full/math1151-calculus-notes 29/87

Two ways to define a set

List all members inside a pair of curly brackets (or braces).

Give a rule to determine which members of some previouslydefined set are to be members of the set being defined.

Example 4

The set of all natural numbers less than 3 can be represented byone of the following ways

Dr Jonathan Kress (UNSW Maths & Stats)   MATH1151   7 / 20

Two ways to define a set

Page 30: MATH1151 Calculus Notes

7/25/2019 MATH1151 Calculus Notes

http://slidepdf.com/reader/full/math1151-calculus-notes 30/87

o ays to de e a set

List all members inside a pair of curly brackets (or braces).Give a rule to determine which members of some previouslydefined set are to be members of the set being defined.

Example 4

The set of all natural numbers less than 3 can be represented byone of the following ways

{0, 1, 2}   or   {2, 1, 0}   or   {n  ∈ N : n  < 3}.

Dr Jonathan Kress (UNSW Maths & Stats)   MATH1151   7 / 20

Two ways to define a set

Page 31: MATH1151 Calculus Notes

7/25/2019 MATH1151 Calculus Notes

http://slidepdf.com/reader/full/math1151-calculus-notes 31/87

y

List all members inside a pair of curly brackets (or braces).Give a rule to determine which members of some previouslydefined set are to be members of the set being defined.

Example 4

The set of all natural numbers less than 3 can be represented byone of the following ways

{0, 1, 2}   or   {2, 1, 0}   or   {n  ∈ N : n  < 3}.

The equation x 2 = 1 has two real solutions 1 and −1. The set ofall solutions of this equation can be written as

Dr Jonathan Kress (UNSW Maths & Stats)   MATH1151   7 / 20

Two ways to define a set

Page 32: MATH1151 Calculus Notes

7/25/2019 MATH1151 Calculus Notes

http://slidepdf.com/reader/full/math1151-calculus-notes 32/87

y

List all members inside a pair of curly brackets (or braces).

Give a rule to determine which members of some previouslydefined set are to be members of the set being defined.

Example 4

The set of all natural numbers less than 3 can be represented by

one of the following ways

{0, 1, 2}   or   {2, 1, 0}   or   {n  ∈ N : n  < 3}.

The equation x 2 = 1 has two real solutions 1 and

 −1. The set of

all solutions of this equation can be written as

{−1, 1}   or   {x  ∈ R : x 2 = 1}.

Dr Jonathan Kress (UNSW Maths & Stats)   MATH1151   7 / 20

Some useful jargon

Page 33: MATH1151 Calculus Notes

7/25/2019 MATH1151 Calculus Notes

http://slidepdf.com/reader/full/math1151-calculus-notes 33/87

j g

Definition 5 (Subset)

Dr Jonathan Kress (UNSW Maths & Stats)   MATH1151   8 / 20

Some useful jargon

Page 34: MATH1151 Calculus Notes

7/25/2019 MATH1151 Calculus Notes

http://slidepdf.com/reader/full/math1151-calculus-notes 34/87

j g

Definition 5 (Subset)Suppose that A and  B  are two sets. If  x  ∈  A implies that x  ∈  B ,then A is called a subset of B . We write A ⊂ B .

Dr Jonathan Kress (UNSW Maths & Stats)   MATH1151   8 / 20

Some useful jargon

Page 35: MATH1151 Calculus Notes

7/25/2019 MATH1151 Calculus Notes

http://slidepdf.com/reader/full/math1151-calculus-notes 35/87

Definition 5 (Subset)Suppose that A and  B  are two sets. If  x  ∈  A implies that x  ∈  B ,then A is called a subset of B . We write A ⊂ B .

If A  is a subset of B  we can also say that B  contains A, and write

B  ⊃ A.

Dr Jonathan Kress (UNSW Maths & Stats)   MATH1151   8 / 20

Some useful jargon

Page 36: MATH1151 Calculus Notes

7/25/2019 MATH1151 Calculus Notes

http://slidepdf.com/reader/full/math1151-calculus-notes 36/87

Definition 5 (Subset)Suppose that A and  B  are two sets. If  x  ∈  A implies that x  ∈  B ,then A is called a subset of B . We write A ⊂ B .

If A  is a subset of B  we can also say that B  contains A, and write

B  ⊃ A.

Example 6

N⊂Z   (N   is a subset of   Z)

R ⊃ Q   (R   contains   Q).

Dr Jonathan Kress (UNSW Maths & Stats)   MATH1151   8 / 20

Intervals (open and closed)

Page 37: MATH1151 Calculus Notes

7/25/2019 MATH1151 Calculus Notes

http://slidepdf.com/reader/full/math1151-calculus-notes 37/87

Suppose that a  and  b  are two real numbers satisfying  a  < b . Then

Dr Jonathan Kress (UNSW Maths & Stats)   MATH1151   9 / 20

Intervals (open and closed)

Page 38: MATH1151 Calculus Notes

7/25/2019 MATH1151 Calculus Notes

http://slidepdf.com/reader/full/math1151-calculus-notes 38/87

Suppose that a  and  b  are two real numbers satisfying  a  < b . Then

Dr Jonathan Kress (UNSW Maths & Stats)   MATH1151   9 / 20

Intervals (open and closed)

Page 39: MATH1151 Calculus Notes

7/25/2019 MATH1151 Calculus Notes

http://slidepdf.com/reader/full/math1151-calculus-notes 39/87

Suppose that a  and  b  are two real numbers satisfying  a  < b . Then

(a ,b ) = {x  ∈ R : a  <  x  < b }

Dr Jonathan Kress (UNSW Maths & Stats)   MATH1151   9 / 20

Intervals (open and closed)

Page 40: MATH1151 Calculus Notes

7/25/2019 MATH1151 Calculus Notes

http://slidepdf.com/reader/full/math1151-calculus-notes 40/87

Suppose that a  and  b  are two real numbers satisfying  a  < b . Then

(a ,b ) = {x  ∈ R : a  <  x  < b }

[a ,b ] = {x  ∈ R : a  ≤ x  ≤ b }

Dr Jonathan Kress (UNSW Maths & Stats)   MATH1151   9 / 20

Intervals (open and closed)

Page 41: MATH1151 Calculus Notes

7/25/2019 MATH1151 Calculus Notes

http://slidepdf.com/reader/full/math1151-calculus-notes 41/87

Suppose that a  and  b  are two real numbers satisfying  a  < b . Then

(a ,b ) = {x  ∈ R : a  <  x  < b }

[a ,b ] = {x  ∈ R : a  ≤ x  ≤ b }

[a ,b ) = {x  ∈ R : a  ≤ x  < b }

Dr Jonathan Kress (UNSW Maths & Stats)   MATH1151   9 / 20

Intervals (open and closed)

Page 42: MATH1151 Calculus Notes

7/25/2019 MATH1151 Calculus Notes

http://slidepdf.com/reader/full/math1151-calculus-notes 42/87

Suppose that a  and  b  are two real numbers satisfying  a  < b . Then

(a ,b ) = {x  ∈ R : a  <  x  < b }

[a ,b ] = {x  ∈ R : a  ≤ x  ≤ b }

[a ,b ) = {x  ∈ R : a  ≤ x  < b }

(a ,b ] = {x  ∈ R : a  < x  ≤ b }

Dr Jonathan Kress (UNSW Maths & Stats)   MATH1151   9 / 20

Intervals (open and closed)

Page 43: MATH1151 Calculus Notes

7/25/2019 MATH1151 Calculus Notes

http://slidepdf.com/reader/full/math1151-calculus-notes 43/87

Suppose that a  and  b  are two real numbers satisfying  a  < b . Then

(a ,b ) = {x  ∈ R : a  <  x  < b }

[a ,b ] = {x  ∈ R : a  ≤ x  ≤ b }

[a ,b ) = {x  ∈ R : a  ≤ x  < b }

(a ,b ] = {x  ∈ R : a  < x  ≤ b }

(a ,∞

) = {x  ∈

R : a  < x }

Dr Jonathan Kress (UNSW Maths & Stats)   MATH1151   9 / 20

Intervals (open and closed)

Page 44: MATH1151 Calculus Notes

7/25/2019 MATH1151 Calculus Notes

http://slidepdf.com/reader/full/math1151-calculus-notes 44/87

Suppose that a  and  b  are two real numbers satisfying  a  < b . Then

(a ,b ) = {x  ∈ R : a  <  x  < b }

[a ,b ] = {x  ∈ R : a  ≤ x  ≤ b }

[a ,b ) = {x  ∈ R : a  ≤ x  < b }

(a ,b ] = {x  ∈ R : a  < x  ≤ b }

(a ,∞

) = {x  ∈

R : a  < x }

(−∞,b ] = {x  ∈ R : x  ≤ b }

Dr Jonathan Kress (UNSW Maths & Stats)   MATH1151   9 / 20

Intervals (open and closed)

Page 45: MATH1151 Calculus Notes

7/25/2019 MATH1151 Calculus Notes

http://slidepdf.com/reader/full/math1151-calculus-notes 45/87

Suppose that a  and  b  are two real numbers satisfying  a  < b . Then

(a ,b ) = {x  ∈ R : a  <  x  < b }

[a ,b ] = {x  ∈ R : a  ≤ x  ≤ b }

[a ,b ) = {x  ∈ R : a  ≤ x  < b }

(a ,b ] = {x  ∈ R : a  < x  ≤ b }

(a ,∞

) = {x  ∈

R : a  < x }

(−∞,b ] = {x  ∈ R : x  ≤ b }

      

   

   

       

      

      

   

a    b 

a    b 

a    b 

a    b 

Dr Jonathan Kress (UNSW Maths & Stats)   MATH1151   9 / 20

An historical problem

Page 46: MATH1151 Calculus Notes

7/25/2019 MATH1151 Calculus Notes

http://slidepdf.com/reader/full/math1151-calculus-notes 46/87

Assume that $A is invested at an interest rate of 100r % per annum.

If we compound annually then after 1 year the total amount is

Dr Jonathan Kress (UNSW Maths & Stats)   MATH1151   10 / 20

An historical problem

Page 47: MATH1151 Calculus Notes

7/25/2019 MATH1151 Calculus Notes

http://slidepdf.com/reader/full/math1151-calculus-notes 47/87

Assume that $A is invested at an interest rate of 100r % per annum.

If we compound annually then after 1 year the total amount isIf we compound every 6 months then

Dr Jonathan Kress (UNSW Maths & Stats)   MATH1151   10 / 20

An historical problem

Page 48: MATH1151 Calculus Notes

7/25/2019 MATH1151 Calculus Notes

http://slidepdf.com/reader/full/math1151-calculus-notes 48/87

Assume that $A is invested at an interest rate of 100r % per annum.

If we compound annually then after 1 year the total amount isIf we compound every 6 months then

◮ after 6 months the total amount is

Dr Jonathan Kress (UNSW Maths & Stats)   MATH1151   10 / 20

An historical problem

Page 49: MATH1151 Calculus Notes

7/25/2019 MATH1151 Calculus Notes

http://slidepdf.com/reader/full/math1151-calculus-notes 49/87

Assume that $A is invested at an interest rate of 100r % per annum.

If we compound annually then after 1 year the total amount is

If we compound every 6 months then◮ after 6 months the total amount is

◮ after 1 year the total amount is

Dr Jonathan Kress (UNSW Maths & Stats)   MATH1151   10 / 20

An historical problem

Page 50: MATH1151 Calculus Notes

7/25/2019 MATH1151 Calculus Notes

http://slidepdf.com/reader/full/math1151-calculus-notes 50/87

Assume that $A is invested at an interest rate of 100r % per annum.

If we compound annually then after 1 year the total amount is

If we compound every 6 months then◮ after 6 months the total amount is

◮ after 1 year the total amount is

If we compound every 4 months then

Dr Jonathan Kress (UNSW Maths & Stats)   MATH1151   10 / 20

An historical problem

Page 51: MATH1151 Calculus Notes

7/25/2019 MATH1151 Calculus Notes

http://slidepdf.com/reader/full/math1151-calculus-notes 51/87

Assume that $A is invested at an interest rate of 100r % per annum.

If we compound annually then after 1 year the total amount is

If we compound every 6 months then◮ after 6 months the total amount is

◮ after 1 year the total amount is

If we compound every 4 months then◮ after 4 months the total amount is

Dr Jonathan Kress (UNSW Maths & Stats)   MATH1151   10 / 20

An historical problem

Page 52: MATH1151 Calculus Notes

7/25/2019 MATH1151 Calculus Notes

http://slidepdf.com/reader/full/math1151-calculus-notes 52/87

Assume that $A is invested at an interest rate of 100r % per annum.

If we compound annually then after 1 year the total amount is

If we compound every 6 months then◮ after 6 months the total amount is

◮ after 1 year the total amount is

If we compound every 4 months then◮ after 4 months the total amount is

◮ after 8 months the total amount is

Dr Jonathan Kress (UNSW Maths & Stats)   MATH1151   10 / 20

An historical problem

Page 53: MATH1151 Calculus Notes

7/25/2019 MATH1151 Calculus Notes

http://slidepdf.com/reader/full/math1151-calculus-notes 53/87

Assume that $A is invested at an interest rate of 100r % per annum.

If we compound annually then after 1 year the total amount is

If we compound every 6 months then◮ after 6 months the total amount is

◮ after 1 year the total amount is

If we compound every 4 months then◮ after 4 months the total amount is

◮ after 8 months the total amount is

after 1 year the total amount is

Dr Jonathan Kress (UNSW Maths & Stats)   MATH1151   10 / 20

An historical problem

Page 54: MATH1151 Calculus Notes

7/25/2019 MATH1151 Calculus Notes

http://slidepdf.com/reader/full/math1151-calculus-notes 54/87

Assume that $A is invested at an interest rate of 100r % per annum.

If we compound annually then after 1 year the total amount is

If we compound every 6 months then◮ after 6 months the total amount is

◮ after 1 year the total amount is

If we compound every 4 months then◮ after 4 months the total amount is

◮ after 8 months the total amount is

after 1 year the total amount is

If we compound every   1n 

th year (i.e., n  times per year) then at the

end of the year we have

Dr Jonathan Kress (UNSW Maths & Stats)   MATH1151   10 / 20

Question (Bernouilli, circa 1680)

Does $A(1 +   r n)n  grows without bound as n  becomes arbitrarily large?

Page 55: MATH1151 Calculus Notes

7/25/2019 MATH1151 Calculus Notes

http://slidepdf.com/reader/full/math1151-calculus-notes 55/87

$ ( + n ) g y g

[In other words, does our investment grow without bound if wecompound the interest over arbitrarily short time period?]

Let’s look at the case when  r  = 1 and let  x n  =

1 +   1n 

n . Then using

the binomial theorem

x n =n 

k =0

k  1

n k   = 1 +

k =1

n (n − 1)(n − 2) · · · (n − k  + 1)

k !   ×

  1

n k 

= 1 +n 

k =1

1

1 −   1n 

1 −   2

· · · 1 −   k −1n 

k !

< 1 +

n k =1

1

k !  < 1 +

n k =1

1

2k −1   (since 2k −1

< k !   for   k  ≥ 3)

= 1 + 1 −

12

n 1 −   1

2

< 1 +  1

1 −   12

= 3.   Hence A

1 +

 1

< 3A.

Dr Jonathan Kress (UNSW Maths & Stats)   MATH1151   11 / 20

So effectively we have answered Bernoulli’s question: we can’t getinfinitely rich via continuous compounding of interest. However, more

can be said as every investor knows

Page 56: MATH1151 Calculus Notes

7/25/2019 MATH1151 Calculus Notes

http://slidepdf.com/reader/full/math1151-calculus-notes 56/87

can be said, as every investor knows

1 +

 1

n n 

<

1 +

  1

n  + 1n +1

Proof: Invoke the binomial theorem again. For  k  = 1, . . . , n − 1, the(k  + 1)st term in the expansion of

1 +   1

n is

n k 

×   1n k 

  =  1

1 −  1n 

1 −  2n  · · · 1 −

  k −2n 

1 −  k −1n 

k !

whilst the corresponding term in the expansion of

1 +   1n +1

n +1is

n  + 1

×   1

(n  + 1)k   =

1

1 −   1n +1

1 −   2n +1 · · ·1 −   k −1n +1

k !

Therefore the first expansion is smaller and the result follows because

the extra term in the second expansion is positive.Dr Jonathan Kress (UNSW Maths & Stats)   MATH1151   12 / 20

Page 57: MATH1151 Calculus Notes

7/25/2019 MATH1151 Calculus Notes

http://slidepdf.com/reader/full/math1151-calculus-notes 57/87

We have proved

x 1 < x 2 < x 3 < · · · < x n  < x n +1 < · · · < 3.

In other words,

The sequence {x n }∞n =1  is increasing;

Dr Jonathan Kress (UNSW Maths & Stats)   MATH1151   13 / 20

Page 58: MATH1151 Calculus Notes

7/25/2019 MATH1151 Calculus Notes

http://slidepdf.com/reader/full/math1151-calculus-notes 58/87

We have proved

x 1 < x 2 < x 3 < · · · < x n  < x n +1 < · · · < 3.

In other words,

The sequence {x n }∞n =1  is increasing;

The sequence is bounded above (by, say, 3).

Dr Jonathan Kress (UNSW Maths & Stats)   MATH1151   13 / 20

Page 59: MATH1151 Calculus Notes

7/25/2019 MATH1151 Calculus Notes

http://slidepdf.com/reader/full/math1151-calculus-notes 59/87

We have proved

x 1 < x 2 < x 3 < · · · < x n  < x n +1 < · · · < 3.

In other words,

The sequence {x n }∞n =1  is increasing;

The sequence is bounded above (by, say, 3).

Question:

Does it get arbitrarily close to a real number?

Dr Jonathan Kress (UNSW Maths & Stats)   MATH1151   13 / 20

An axiom (SH10 – Section 11.1)

Page 60: MATH1151 Calculus Notes

7/25/2019 MATH1151 Calculus Notes

http://slidepdf.com/reader/full/math1151-calculus-notes 60/87

Definition 7A set S  of real numbers is said to be bounded above if there existsM  ∈ R (M  may not be in S ) such that

 ≤ M    for all x 

 ∈ S .

M  is called an upper bound of  S .

Dr Jonathan Kress (UNSW Maths & Stats)   MATH1151   14 / 20

An axiom (SH10 – Section 11.1)

Page 61: MATH1151 Calculus Notes

7/25/2019 MATH1151 Calculus Notes

http://slidepdf.com/reader/full/math1151-calculus-notes 61/87

Definition 7A set S  of real numbers is said to be bounded above if there existsM  ∈ R (M  may not be in S ) such that

 ≤ M    for all x 

 ∈ S .

M  is called an upper bound of  S .

The least upper bound axiom

Every non-empty set of real numbers that has an upper bound has aleast upper bound.

Dr Jonathan Kress (UNSW Maths & Stats)   MATH1151   14 / 20

An axiom (SH10 – Section 11.1)

Page 62: MATH1151 Calculus Notes

7/25/2019 MATH1151 Calculus Notes

http://slidepdf.com/reader/full/math1151-calculus-notes 62/87

Definition 7

A set S  of real numbers is said to be bounded above if there existsM  ∈ R (M  may not be in S ) such that

x  ≤ M    for all x  ∈  S .

M  is called an upper bound of  S .

The least upper bound axiom

Every non-empty set of real numbers that has an upper bound has a

least upper bound.The least upper bound of a set S , if it exists, is denoted by lub S  orsupS   (supremum).

Dr Jonathan Kress (UNSW Maths & Stats)   MATH1151   14 / 20

Page 63: MATH1151 Calculus Notes

7/25/2019 MATH1151 Calculus Notes

http://slidepdf.com/reader/full/math1151-calculus-notes 63/87

Example 8

Let S  = [0, 1] = {x  ∈ R : 0 ≤ x  ≤ 1}. Find supS .

Dr Jonathan Kress (UNSW Maths & Stats)   MATH1151   15 / 20

Page 64: MATH1151 Calculus Notes

7/25/2019 MATH1151 Calculus Notes

http://slidepdf.com/reader/full/math1151-calculus-notes 64/87

Example 8

Let S  = [0, 1] = {x  ∈ R : 0 ≤ x  ≤ 1}. Find supS .

Example 9

Let S  = [0, 1) = {x  ∈ R : 0 ≤ x  < 1}. Find supS .

Dr Jonathan Kress (UNSW Maths & Stats)   MATH1151   15 / 20

Characterizing the least upper bound

Page 65: MATH1151 Calculus Notes

7/25/2019 MATH1151 Calculus Notes

http://slidepdf.com/reader/full/math1151-calculus-notes 65/87

Dr Jonathan Kress (UNSW Maths & Stats)   MATH1151   16 / 20

Characterizing the least upper bound

If M = sup S then any number less than M is not an upper bound

Page 66: MATH1151 Calculus Notes

7/25/2019 MATH1151 Calculus Notes

http://slidepdf.com/reader/full/math1151-calculus-notes 66/87

If M  = sup S  then any number less than M   is not an upper bound

of S .

Dr Jonathan Kress (UNSW Maths & Stats)   MATH1151   16 / 20

Characterizing the least upper bound

If M = sup S then any number less than M is not an upper bound

Page 67: MATH1151 Calculus Notes

7/25/2019 MATH1151 Calculus Notes

http://slidepdf.com/reader/full/math1151-calculus-notes 67/87

If M  = sup S  then any number less than M   is not an upper bound

of S .

In other words, given any ǫ > 0, there exists x  ∈  S  such thatM  − ǫ < x .

Dr Jonathan Kress (UNSW Maths & Stats)   MATH1151   16 / 20

Characterizing the least upper bound

If M = sup S then any number less than M is not an upper bound

Page 68: MATH1151 Calculus Notes

7/25/2019 MATH1151 Calculus Notes

http://slidepdf.com/reader/full/math1151-calculus-notes 68/87

If M  = sup S  then any number less than M   is not an upper bound

of S .

In other words, given any ǫ > 0, there exists x  ∈  S  such thatM  − ǫ < x .

In notation:   ∀ǫ > 0, ∃x  ∈  S  such that M  − ǫ < x .

Dr Jonathan Kress (UNSW Maths & Stats)   MATH1151   16 / 20

Characterizing the least upper bound

If M = sup S then any number less than M is not an upper bound

Page 69: MATH1151 Calculus Notes

7/25/2019 MATH1151 Calculus Notes

http://slidepdf.com/reader/full/math1151-calculus-notes 69/87

If M  = sup S  then any number less than M   is not an upper bound

of S .

In other words, given any ǫ > 0, there exists x  ∈  S  such thatM  − ǫ < x .

In notation:   ∀ǫ > 0, ∃x  ∈  S  such that M  − ǫ < x .

∀ reads “for all” or “for any” and ∃ reads “there exists”.

Dr Jonathan Kress (UNSW Maths & Stats)   MATH1151   16 / 20

Characterizing the least upper bound

If M = sup S then any number less than M is not an upper bound

Page 70: MATH1151 Calculus Notes

7/25/2019 MATH1151 Calculus Notes

http://slidepdf.com/reader/full/math1151-calculus-notes 70/87

If M    sup S  then any number less than M   is not an upper bound

of S .

In other words, given any ǫ > 0, there exists x  ∈  S  such thatM  − ǫ < x .

In notation:   ∀ǫ > 0, ∃x  ∈  S  such that M  − ǫ < x .

∀ reads “for all” or “for any” and ∃ reads “there exists”.

To show that L = supS 

Dr Jonathan Kress (UNSW Maths & Stats)   MATH1151   16 / 20

Characterizing the least upper bound

If M = sup S then any number less than M is not an upper bound

Page 71: MATH1151 Calculus Notes

7/25/2019 MATH1151 Calculus Notes

http://slidepdf.com/reader/full/math1151-calculus-notes 71/87

If M    sup S  then any number less than M   is not an upper bound

of S .

In other words, given any ǫ > 0, there exists x  ∈  S  such thatM  − ǫ < x .

In notation:   ∀ǫ > 0, ∃x  ∈  S  such that M  − ǫ < x .

∀ reads “for all” or “for any” and ∃ reads “there exists”.

To show that L = supS 

Show that L is an upper bound of S , i.e., show that

 ≤ L   for all x 

 ∈ S ,

Dr Jonathan Kress (UNSW Maths & Stats)   MATH1151   16 / 20

Characterizing the least upper bound

If M  = sup S  then any number less than M   is not an upper bound

Page 72: MATH1151 Calculus Notes

7/25/2019 MATH1151 Calculus Notes

http://slidepdf.com/reader/full/math1151-calculus-notes 72/87

p y pp

of S .

In other words, given any ǫ > 0, there exists x  ∈  S  such thatM  − ǫ < x .

In notation:   ∀ǫ > 0, ∃x  ∈  S  such that M  − ǫ < x .

∀ reads “for all” or “for any” and ∃ reads “there exists”.

To show that L = supS 

Show that L is an upper bound of S , i.e., show that

 ≤ L   for all x 

 ∈ S ,

Show that for any ǫ > 0 there exists x 0 ∈ S  such that

L − ǫ < x 0.

Dr Jonathan Kress (UNSW Maths & Stats)   MATH1151   16 / 20

Page 73: MATH1151 Calculus Notes

7/25/2019 MATH1151 Calculus Notes

http://slidepdf.com/reader/full/math1151-calculus-notes 73/87

Example 10

Use the method shown above to show that supS  = 1 where S  = [0, 1]and S  = [0, 1), respectively; see Example 8 and Example 9.

Dr Jonathan Kress (UNSW Maths & Stats)   MATH1151   17 / 20

Page 74: MATH1151 Calculus Notes

7/25/2019 MATH1151 Calculus Notes

http://slidepdf.com/reader/full/math1151-calculus-notes 74/87

Example 11

Let S  = {4 −   1n   : n  = 1, 2, 3, . . .}. Find supS  if it exists.

Dr Jonathan Kress (UNSW Maths & Stats)   MATH1151   18 / 20

Bernouilli’s question – Revisited

We proved, for x n  =

1 +

 1

n

,

Page 75: MATH1151 Calculus Notes

7/25/2019 MATH1151 Calculus Notes

http://slidepdf.com/reader/full/math1151-calculus-notes 75/87

p

Dr Jonathan Kress (UNSW Maths & Stats)   MATH1151   19 / 20

Bernouilli’s question – Revisited

We proved, for x n  =

1 +

 1

n

,

Page 76: MATH1151 Calculus Notes

7/25/2019 MATH1151 Calculus Notes

http://slidepdf.com/reader/full/math1151-calculus-notes 76/87

◮ x n   is increasing;

Dr Jonathan Kress (UNSW Maths & Stats)   MATH1151   19 / 20

Bernouilli’s question – Revisited

We proved, for x n  =

1 +

 1

n

,

Page 77: MATH1151 Calculus Notes

7/25/2019 MATH1151 Calculus Notes

http://slidepdf.com/reader/full/math1151-calculus-notes 77/87

◮ x n   is increasing;◮ x n  is bounded above.

Dr Jonathan Kress (UNSW Maths & Stats)   MATH1151   19 / 20

Bernouilli’s question – Revisited

We proved, for x n  =

1 +

 1

n

,

Page 78: MATH1151 Calculus Notes

7/25/2019 MATH1151 Calculus Notes

http://slidepdf.com/reader/full/math1151-calculus-notes 78/87

◮ x n   is increasing;

◮ x n  is bounded above.Let

S  =

1 +

 1

: n  = 1, 2, 3, . . .

.

Then S  has a least upper bound by the least upper bound axiom.

Dr Jonathan Kress (UNSW Maths & Stats)   MATH1151   19 / 20

Bernouilli’s question – Revisited

We proved, for x n  =

1 +

 1

n

,

Page 79: MATH1151 Calculus Notes

7/25/2019 MATH1151 Calculus Notes

http://slidepdf.com/reader/full/math1151-calculus-notes 79/87

◮ x n   is increasing;

◮ x n  is bounded above.Let

S  =

1 +

 1

: n  = 1, 2, 3, . . .

.

Then S  has a least upper bound by the least upper bound axiom.

Let L  = supS . Then for any ǫ > 0, L − ǫ is not an upper bound ofS .

Dr Jonathan Kress (UNSW Maths & Stats)   MATH1151   19 / 20

Bernouilli’s question – Revisited

We proved, for x n  =

1 +

 1

n

,

Page 80: MATH1151 Calculus Notes

7/25/2019 MATH1151 Calculus Notes

http://slidepdf.com/reader/full/math1151-calculus-notes 80/87

◮ x n   is increasing;

◮ x n  is bounded above.Let

S  =

1 +

 1

: n  = 1, 2, 3, . . .

.

Then S  has a least upper bound by the least upper bound axiom.

Let L  = supS . Then for any ǫ > 0, L − ǫ is not an upper bound ofS .

Hence there exists n 0 ∈ Z+ such that x n 0  > L− ǫ.

Dr Jonathan Kress (UNSW Maths & Stats) MATH1151 19 / 20

Bernouilli’s question – Revisited

We proved, for x n  =

1 +

 1

n

,

Page 81: MATH1151 Calculus Notes

7/25/2019 MATH1151 Calculus Notes

http://slidepdf.com/reader/full/math1151-calculus-notes 81/87

◮ x n   is increasing;

◮ x n  is bounded above.Let

S  =

1 +

 1

: n  = 1, 2, 3, . . .

.

Then S  has a least upper bound by the least upper bound axiom.

Let L  = supS . Then for any ǫ > 0, L − ǫ is not an upper bound ofS .

Hence there exists n 0 ∈ Z+ such that x n 0  > L− ǫ.Since {x n } is increasing we have

L − ǫ < x n  ≤ L   for all n  ≥ n 0.

Dr Jonathan Kress (UNSW Maths & Stats) MATH1151 19 / 20

Bernouilli’s question – Revisited

We proved, for x n  =

1 +

 1

n

,

Page 82: MATH1151 Calculus Notes

7/25/2019 MATH1151 Calculus Notes

http://slidepdf.com/reader/full/math1151-calculus-notes 82/87

◮ x n   is increasing;

◮ x n  is bounded above.Let

S  =

1 +

 1

: n  = 1, 2, 3, . . .

.

Then S  has a least upper bound by the least upper bound axiom.

Let L  = supS . Then for any ǫ > 0, L − ǫ is not an upper bound ofS .

Hence there exists n 0 ∈ Z+ such that x n 0  > L− ǫ.Since {x n } is increasing we have

L − ǫ < x n  ≤ L   for all n  ≥ n 0.Hence

∀ǫ > 0, ∃n 0 ∈ Z+ : ∀n  ≥ n 0, |x n  − L| < ǫ.   (1)

Dr Jonathan Kress (UNSW Maths & Stats) MATH1151 19 / 20

We say that L is the limit of the sequence {x n }∞n =1 and write

limn →∞

x n  = L   or   x n  → L as  n  → ∞meaning x approaches (or converges to) L as n tends to infinity

Page 83: MATH1151 Calculus Notes

7/25/2019 MATH1151 Calculus Notes

http://slidepdf.com/reader/full/math1151-calculus-notes 83/87

meaning x n  approaches (or converges to) L as  n  tends to infinity

(or increases arbitrarily).

Dr Jonathan Kress (UNSW Maths & Stats) MATH1151 20 / 20

We say that L is the limit of the sequence {x n }∞n =1 and write

limn →∞

x n  = L   or   x n  → L as  n  → ∞meaning xn approaches (or converges to) L as n tends to infinity

Page 84: MATH1151 Calculus Notes

7/25/2019 MATH1151 Calculus Notes

http://slidepdf.com/reader/full/math1151-calculus-notes 84/87

meaning x n  approaches (or converges to) L as  n  tends to infinity

(or increases arbitrarily).

The order in (1) is important:  ǫ is given first and n 0  depends on ǫ.

If ǫ  =  10−6 then we would generally have to choose a larger  n 0than that when ǫ =  10−2.

Dr Jonathan Kress (UNSW Maths & Stats) MATH1151 20 / 20

We say that L is the limit of the sequence {x n }∞n =1 and write

limn →∞

x n  = L   or   x n  → L as  n  → ∞meaning xn approaches (or converges to) L as n tends to infinity

Page 85: MATH1151 Calculus Notes

7/25/2019 MATH1151 Calculus Notes

http://slidepdf.com/reader/full/math1151-calculus-notes 85/87

meaning x n  approaches (or converges to) L as  n  tends to infinity

(or increases arbitrarily).

The order in (1) is important:  ǫ is given first and n 0  depends on ǫ.

If ǫ  =  10−6 then we would generally have to choose a larger  n 0than that when ǫ =  10−2.

The convergence of {x n }∞n =1  is slow.

x 103  = 2.7169239322 · · ·x 106  = 2.718280469 · · ·

L =  2.7182818284590 · · ·

Dr Jonathan Kress (UNSW Maths & Stats) MATH1151 20 / 20

We say that L is the limit of the sequence {x n }∞n =1 and write

limn →∞

x n  = L   or   x n  → L as  n  → ∞meaning xn approaches (or converges to) L as n tends to infinity

Page 86: MATH1151 Calculus Notes

7/25/2019 MATH1151 Calculus Notes

http://slidepdf.com/reader/full/math1151-calculus-notes 86/87

meaning x n  approaches (or converges to) L as  n  tends to infinity

(or increases arbitrarily).

The order in (1) is important:  ǫ is given first and n 0  depends on ǫ.

If ǫ  =  10−6 then we would generally have to choose a larger  n 0than that when ǫ =  10−2.

The convergence of {x n }∞n =1  is slow.

x 103  = 2.7169239322 · · ·x 106  = 2.718280469 · · ·

L =  2.7182818284590 · · ·L is denoted (by Euler) by  e .

Dr Jonathan Kress (UNSW Maths & Stats) MATH1151 20 / 20

We say that L is the limit of the sequence {x n }∞n =1 and write

limn →∞

x n  = L   or   x n  → L as  n  → ∞meaning xn approaches (or converges to) L as n tends to infinity

Page 87: MATH1151 Calculus Notes

7/25/2019 MATH1151 Calculus Notes

http://slidepdf.com/reader/full/math1151-calculus-notes 87/87

meaning x n  approaches (or converges to) L as  n  tends to infinity

(or increases arbitrarily).

The order in (1) is important:  ǫ is given first and n 0  depends on ǫ.

If ǫ  =  10−6 then we would generally have to choose a larger  n 0than that when ǫ =  10−2.

The convergence of {x n }∞n =1  is slow.

x 103  = 2.7169239322 · · ·x 106  = 2.718280469 · · ·

L =  2.7182818284590 · · ·L is denoted (by Euler) by  e .

Later in this course we will learn that

limn →∞

1 +

 x 

n = e x  for all x  ∈ R.

Dr Jonathan Kress (UNSW Maths & Stats) MATH1151 20 / 20