Calculation of Eigenfields for the European XFEL Cavities 2010-12-21.pdf12.5 mm 60.0 mm 3.4 mm 16.0...

44
Calculation of Eigenfields for the European XFEL Cavities Wolfgang Ackermann , Erion Gjonaj, Wolfgang F. O. Müller, Thomas Weiland Institut Theorie Elektromagnetischer Felder, TU Darmstadt Status Meeting December 21, 2010 DESY, Hamburg December 21, 2010 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 1

Transcript of Calculation of Eigenfields for the European XFEL Cavities 2010-12-21.pdf12.5 mm 60.0 mm 3.4 mm 16.0...

Page 1: Calculation of Eigenfields for the European XFEL Cavities 2010-12-21.pdf12.5 mm 60.0 mm 3.4 mm 16.0 mm TEM TE 11 TE 21 TEM TE 11 TE 21 f 0 = 1.3 GHz f 0 = 1.3 GHz Dispersion relation

Calculation of Eigenfields for the

European XFEL Cavities

Wolfgang Ackermann, Erion Gjonaj, Wolfgang F. O. Müller, Thomas Weiland

Institut Theorie Elektromagnetischer Felder, TU Darmstadt

Status MeetingDecember 21, 2010DESY, Hamburg

December 21, 2010 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 1

Page 2: Calculation of Eigenfields for the European XFEL Cavities 2010-12-21.pdf12.5 mm 60.0 mm 3.4 mm 16.0 mm TEM TE 11 TE 21 TEM TE 11 TE 21 f 0 = 1.3 GHz f 0 = 1.3 GHz Dispersion relation

Overview

▪ Task

- Calculation of fields for the European XFEL cavities in 3D

considering coupling ports as well as non-ideal geometries

- Coupling ports:

• Modeling of ports

• Include ports in the eigenvalue formulation

• Implementation for large scale applications

- Non-ideal geometries

• Support flexible geometry description in 3D

December 21, 2010 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 2

Page 3: Calculation of Eigenfields for the European XFEL Cavities 2010-12-21.pdf12.5 mm 60.0 mm 3.4 mm 16.0 mm TEM TE 11 TE 21 TEM TE 11 TE 21 f 0 = 1.3 GHz f 0 = 1.3 GHz Dispersion relation

Motivation

▪ Particle accelerators

- Linear accelerator at DESY, Hamburg

http://www.desy.de

Cavity 1.3 GHz

Cavity 3.9 GHz

December 21, 2010 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 3

Page 4: Calculation of Eigenfields for the European XFEL Cavities 2010-12-21.pdf12.5 mm 60.0 mm 3.4 mm 16.0 mm TEM TE 11 TE 21 TEM TE 11 TE 21 f 0 = 1.3 GHz f 0 = 1.3 GHz Dispersion relation

Computational Model

▪ Superconducting resonator

- Geometry

9-Cell Cavity Beam Tube

Upstream

Higher Order Mode

Coupler

Downstream Higher Order Mode Coupler

Input Coupler

December 21, 2010 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 4

Page 5: Calculation of Eigenfields for the European XFEL Cavities 2010-12-21.pdf12.5 mm 60.0 mm 3.4 mm 16.0 mm TEM TE 11 TE 21 TEM TE 11 TE 21 f 0 = 1.3 GHz f 0 = 1.3 GHz Dispersion relation

Computational Model

▪ Available grid structures

‚Staircase‘-grid partially filled cells tetrahedral mesh

December 21, 2010 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 5

Page 6: Calculation of Eigenfields for the European XFEL Cavities 2010-12-21.pdf12.5 mm 60.0 mm 3.4 mm 16.0 mm TEM TE 11 TE 21 TEM TE 11 TE 21 f 0 = 1.3 GHz f 0 = 1.3 GHz Dispersion relation

▪ Modeling using CST Studio Suite

- 3d.tet:NodeID, X, Y, Z

EdgeID, NodeID0, NodeID1

FaceID, EdgeID0, EdgeID1, EdgeID2

ElemID, FaceID0, FaceID1, FaceID2, FaceID3

ElemID, NodeID0, NodeID1, NodeID2, NodeID3

Object3D GroupID, #Elems <immediately followed by> ElemID List

Object2D GroupID, #Faces <immediately followed by> FaceID List

Object1D GroupID, #Edges <immediately followed by> EdgeID List

Object0D GroupID, #Nodes <immediately followed by> NodeID List

- bc3d.tetObj3D_ID, MediaCode

Obj2D_ID, BCCode

Obj1D_ID, BCCode

Computational Model

December 21, 2010 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 6

PEC, PMC and port

boundary conditions

can be extracted

Page 7: Calculation of Eigenfields for the European XFEL Cavities 2010-12-21.pdf12.5 mm 60.0 mm 3.4 mm 16.0 mm TEM TE 11 TE 21 TEM TE 11 TE 21 f 0 = 1.3 GHz f 0 = 1.3 GHz Dispersion relation

▪ Modeling using CST Studio Suite

- 3d.tet:NodeID, X, Y, Z

EdgeID, NodeID0, NodeID1

FaceID, EdgeID0, EdgeID1, EdgeID2

ElemID, FaceID0, FaceID1, FaceID2, FaceID3

ElemID, NodeID0, NodeID1, NodeID2, NodeID3

Object3D GroupID, #Elems <immediately followed by> ElemID List

Object2D GroupID, #Faces <immediately followed by> FaceID List

Object1D GroupID, #Edges <immediately followed by> EdgeID List

Object0D GroupID, #Nodes <immediately followed by> NodeID List

Computational Model

December 21, 2010 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 7

CST 3d.tet

modify point locations but maintain the topology

Modify 3d.tet

Page 8: Calculation of Eigenfields for the European XFEL Cavities 2010-12-21.pdf12.5 mm 60.0 mm 3.4 mm 16.0 mm TEM TE 11 TE 21 TEM TE 11 TE 21 f 0 = 1.3 GHz f 0 = 1.3 GHz Dispersion relation

Computational Model

▪ Modeling using CST Studio Suite

- 3d.tet:

linear element curvilinear element

December 21, 2010 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 8

only linear geometry transformation available

standard points

Page 9: Calculation of Eigenfields for the European XFEL Cavities 2010-12-21.pdf12.5 mm 60.0 mm 3.4 mm 16.0 mm TEM TE 11 TE 21 TEM TE 11 TE 21 f 0 = 1.3 GHz f 0 = 1.3 GHz Dispersion relation

Computational Model

▪ Modeling using CST Studio Suite

- 3d.tet:

linear element curvilinear element

December 21, 2010 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 9

insert additional control points (at the surface)

additional points

Page 10: Calculation of Eigenfields for the European XFEL Cavities 2010-12-21.pdf12.5 mm 60.0 mm 3.4 mm 16.0 mm TEM TE 11 TE 21 TEM TE 11 TE 21 f 0 = 1.3 GHz f 0 = 1.3 GHz Dispersion relation

Computational Model

▪ Modeling using CST Studio Suite

- 3d.slim:

linear element curvilinear element

December 21, 2010 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 10

available in CST but not yet used here… (ToDo)

control points

Page 11: Calculation of Eigenfields for the European XFEL Cavities 2010-12-21.pdf12.5 mm 60.0 mm 3.4 mm 16.0 mm TEM TE 11 TE 21 TEM TE 11 TE 21 f 0 = 1.3 GHz f 0 = 1.3 GHz Dispersion relation

Motivation

▪ Input coupler and coupler to extract unwanted modes

Beam Tube

Downstream Higher Order Mode Coupler

Coaxial Input Coupler

Coaxial Line

Antennas

December 21, 2010 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 11

Page 12: Calculation of Eigenfields for the European XFEL Cavities 2010-12-21.pdf12.5 mm 60.0 mm 3.4 mm 16.0 mm TEM TE 11 TE 21 TEM TE 11 TE 21 f 0 = 1.3 GHz f 0 = 1.3 GHz Dispersion relation

Motivation

▪ Input coupler and coupler to extract unwanted modes

Antennas

in linear scale

Beam TubeCoaxial Line

Downstream Higher Order Mode Coupler

Coaxial Input Coupler

f0 = 1.300 GHz

December 21, 2010 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 12

Page 13: Calculation of Eigenfields for the European XFEL Cavities 2010-12-21.pdf12.5 mm 60.0 mm 3.4 mm 16.0 mm TEM TE 11 TE 21 TEM TE 11 TE 21 f 0 = 1.3 GHz f 0 = 1.3 GHz Dispersion relation

Motivation

▪ Input coupler and coupler to extract unwanted modes

Antennas

in linear scale

Beam TubeCoaxial Line

Downstream Higher Order Mode Coupler

Coaxial Input Coupler

f0 = 1.709 GHz

December 21, 2010 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 13

Page 14: Calculation of Eigenfields for the European XFEL Cavities 2010-12-21.pdf12.5 mm 60.0 mm 3.4 mm 16.0 mm TEM TE 11 TE 21 TEM TE 11 TE 21 f 0 = 1.3 GHz f 0 = 1.3 GHz Dispersion relation

▪ Problem definition

- Accelerating field

Motivation

Determine the accelerating

-mode with high precision

9-Cell Cavity

including couplers

December 21, 2010 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 14

Page 15: Calculation of Eigenfields for the European XFEL Cavities 2010-12-21.pdf12.5 mm 60.0 mm 3.4 mm 16.0 mm TEM TE 11 TE 21 TEM TE 11 TE 21 f 0 = 1.3 GHz f 0 = 1.3 GHz Dispersion relation

Computational Model

▪ Problem formulation

- Fundamental equations

- Boundary conditions

Maxwell‘s equations

Material relations

December 21, 2010 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 15

Page 16: Calculation of Eigenfields for the European XFEL Cavities 2010-12-21.pdf12.5 mm 60.0 mm 3.4 mm 16.0 mm TEM TE 11 TE 21 TEM TE 11 TE 21 f 0 = 1.3 GHz f 0 = 1.3 GHz Dispersion relation

0 5 10 15 200

100

200

300

400

0 2 4 6 8 100

50

100

150

200

Motivation

▪ Wave propagation in the applied coaxial lines

- Main coupler

- HOM coupler

12.5 mm

60.0 mm

3.4 mm

16.0 mm

TEM

TE11 TE21

TEM

TE11 TE21

f0 = 1.3 GHz

f0 = 1.3 GHz

Dispersion relation

propagation

damping

December 21, 2010 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 16

Page 17: Calculation of Eigenfields for the European XFEL Cavities 2010-12-21.pdf12.5 mm 60.0 mm 3.4 mm 16.0 mm TEM TE 11 TE 21 TEM TE 11 TE 21 f 0 = 1.3 GHz f 0 = 1.3 GHz Dispersion relation

Computational Model

▪ Problem formulation

- Local Ritz approach

continuous eigenvalue problem

+ boundary conditions

vectorial function

global index

number of DOFs

scalar coefficient

discrete eigenvalue problem

Galerkin

December 21, 2010 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 17

Page 18: Calculation of Eigenfields for the European XFEL Cavities 2010-12-21.pdf12.5 mm 60.0 mm 3.4 mm 16.0 mm TEM TE 11 TE 21 TEM TE 11 TE 21 f 0 = 1.3 GHz f 0 = 1.3 GHz Dispersion relation

Computational Model

▪ Numerical formulation

- Function definition

Pär

Ingels

tröm

,

A N

ew

Se

t o

f H

(cu

rl)-

Co

nfo

rmin

g H

iera

rch

ica

l

Ba

sis

Fu

nctio

ns fo

r Te

tra

he

dra

l Me

sh

es,

IEE

E T

RA

NS

AC

TIO

NS

ON

MIC

RO

WA

VE

TH

EO

RY

AN

D T

EC

HN

IQU

ES

,

VO

L. 5

4, N

O.

1, JA

NU

AR

Y 2

00

6

FEM06: lowest order approximation

(edge elements, Nedelec)

scala

rvecto

r

December 21, 2010 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 18

Page 19: Calculation of Eigenfields for the European XFEL Cavities 2010-12-21.pdf12.5 mm 60.0 mm 3.4 mm 16.0 mm TEM TE 11 TE 21 TEM TE 11 TE 21 f 0 = 1.3 GHz f 0 = 1.3 GHz Dispersion relation

Computational Model

▪ Numerical formulation

- Function definition

Pär

Ingels

tröm

,

A N

ew

Se

t o

f H

(cu

rl)-

Co

nfo

rmin

g H

iera

rch

ica

l

Ba

sis

Fu

nctio

ns fo

r Te

tra

he

dra

l Me

sh

es,

IEE

E T

RA

NS

AC

TIO

NS

ON

MIC

RO

WA

VE

TH

EO

RY

AN

D T

EC

HN

IQU

ES

,

VO

L. 5

4, N

O.

1, JA

NU

AR

Y 2

00

6

scala

rvecto

r

FEM12: higher order approximation

December 21, 2010 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 19

Page 20: Calculation of Eigenfields for the European XFEL Cavities 2010-12-21.pdf12.5 mm 60.0 mm 3.4 mm 16.0 mm TEM TE 11 TE 21 TEM TE 11 TE 21 f 0 = 1.3 GHz f 0 = 1.3 GHz Dispersion relation

Computational Model

▪ Numerical formulation

- Function definition

Pär

Ingels

tröm

,

A N

ew

Se

t o

f H

(cu

rl)-

Co

nfo

rmin

g H

iera

rch

ica

l

Ba

sis

Fu

nctio

ns fo

r Te

tra

he

dra

l Me

sh

es,

IEE

E T

RA

NS

AC

TIO

NS

ON

MIC

RO

WA

VE

TH

EO

RY

AN

D T

EC

HN

IQU

ES

,

VO

L. 5

4, N

O.

1, JA

NU

AR

Y 2

00

6

scala

rvecto

r

FEM20: higher order approximation

December 21, 2010 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 20

Page 21: Calculation of Eigenfields for the European XFEL Cavities 2010-12-21.pdf12.5 mm 60.0 mm 3.4 mm 16.0 mm TEM TE 11 TE 21 TEM TE 11 TE 21 f 0 = 1.3 GHz f 0 = 1.3 GHz Dispersion relation

Computational Model

▪ Numerical formulation

- Implementation

contribution of

element-matrices

ready availabe

December 21, 2010 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 21

Page 22: Calculation of Eigenfields for the European XFEL Cavities 2010-12-21.pdf12.5 mm 60.0 mm 3.4 mm 16.0 mm TEM TE 11 TE 21 TEM TE 11 TE 21 f 0 = 1.3 GHz f 0 = 1.3 GHz Dispersion relation

Computational Model

▪ Eigenvalue formulation

- Fundamental equation

- Matrix properties

- Fundamental properties

Notation:

A - stiffness matrix

B - mass matrix

C - damping matrix

December 21, 2010 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 22

for proper chosen scalar and vector basis functions

orstatic dynamic

Page 23: Calculation of Eigenfields for the European XFEL Cavities 2010-12-21.pdf12.5 mm 60.0 mm 3.4 mm 16.0 mm TEM TE 11 TE 21 TEM TE 11 TE 21 f 0 = 1.3 GHz f 0 = 1.3 GHz Dispersion relation

Computational Model

▪ Fundamental properties

- Number of eigenvalues

- Orthogonality relation

Notation:

A - stiffness matrix

B - mass matrix

C - damping matrixMatrix B nonsingular:

• matrix polynomial is regular

• 2n finite eigenvalues

December 21, 2010 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 23

If the vectors and are no longer B-orthogonal:

Page 24: Calculation of Eigenfields for the European XFEL Cavities 2010-12-21.pdf12.5 mm 60.0 mm 3.4 mm 16.0 mm TEM TE 11 TE 21 TEM TE 11 TE 21 f 0 = 1.3 GHz f 0 = 1.3 GHz Dispersion relation

Computational Model

▪ Fundamental properties

- Orthogonality relation

- Scalar product

1)

2)

3)

December 21, 2010 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 24

currently not available

Page 25: Calculation of Eigenfields for the European XFEL Cavities 2010-12-21.pdf12.5 mm 60.0 mm 3.4 mm 16.0 mm TEM TE 11 TE 21 TEM TE 11 TE 21 f 0 = 1.3 GHz f 0 = 1.3 GHz Dispersion relation

Computational Model

▪ Eigenvalue formulation

- Fundamental equation

- Companion notation

Notation:

A - stiffness matrix

B - mass matrix

C - damping matrix

real symmetric

matrices

real asymmetric

matrices

A, B, C: real symmetric

conjugate complex eigenvalues

December 21, 2010 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 25

Page 26: Calculation of Eigenfields for the European XFEL Cavities 2010-12-21.pdf12.5 mm 60.0 mm 3.4 mm 16.0 mm TEM TE 11 TE 21 TEM TE 11 TE 21 f 0 = 1.3 GHz f 0 = 1.3 GHz Dispersion relation

Computational Model

▪ Eigenvalue solution

- Fundamental equation

- Subspace projection method

- Companion notation for the projected system

Notation:

A - stiffness matrix

B - mass matrix

C - damping matrix

December 21, 2010 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 26

Page 27: Calculation of Eigenfields for the European XFEL Cavities 2010-12-21.pdf12.5 mm 60.0 mm 3.4 mm 16.0 mm TEM TE 11 TE 21 TEM TE 11 TE 21 f 0 = 1.3 GHz f 0 = 1.3 GHz Dispersion relation

▪ Problem definition

- Geometry

Numerical Examples

TESLA 3rd harmonic

9-cell cavity

including couplers

December 21, 2010 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 27

Page 28: Calculation of Eigenfields for the European XFEL Cavities 2010-12-21.pdf12.5 mm 60.0 mm 3.4 mm 16.0 mm TEM TE 11 TE 21 TEM TE 11 TE 21 f 0 = 1.3 GHz f 0 = 1.3 GHz Dispersion relation

▪ Problem definition

- Geometry

- Task

Numerical Examples

Distribution

on 64 nodes

ParMeTiS, VTK and

CST - Studio Suite®

Search for the - mode field distribution

9-Cell Cavity

including couplers

December 21, 2010 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 28

Page 29: Calculation of Eigenfields for the European XFEL Cavities 2010-12-21.pdf12.5 mm 60.0 mm 3.4 mm 16.0 mm TEM TE 11 TE 21 TEM TE 11 TE 21 f 0 = 1.3 GHz f 0 = 1.3 GHz Dispersion relation

Numerical Examples

▪ Efficient solution of large problems

- Domain composition

parallel computing

domain #2

domain #1

cavity model

December 21, 2010 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 29

Page 30: Calculation of Eigenfields for the European XFEL Cavities 2010-12-21.pdf12.5 mm 60.0 mm 3.4 mm 16.0 mm TEM TE 11 TE 21 TEM TE 11 TE 21 f 0 = 1.3 GHz f 0 = 1.3 GHz Dispersion relation

▪ Fields along the axis of an accelerator cavity

Numerical Examples

9-Cell Cavity

including couplers

z

Ez

Longitudinal

electric field strength

December 21, 2010 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 30

Page 31: Calculation of Eigenfields for the European XFEL Cavities 2010-12-21.pdf12.5 mm 60.0 mm 3.4 mm 16.0 mm TEM TE 11 TE 21 TEM TE 11 TE 21 f 0 = 1.3 GHz f 0 = 1.3 GHz Dispersion relation

▪ Simulation results

Numerical Examples

0.5 0.4 0.3 0.2 0.1 0.0 0.10.015

0.010

0.005

0.000

0.005

0.010

0.015

Longitudinal coordinate, z m

Field

component,

Ex

Ez0

607 576 cells

reduced linear

full linear

reduced quadratic

hierarchical set of

basis functions

December 21, 2010 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 31

Page 32: Calculation of Eigenfields for the European XFEL Cavities 2010-12-21.pdf12.5 mm 60.0 mm 3.4 mm 16.0 mm TEM TE 11 TE 21 TEM TE 11 TE 21 f 0 = 1.3 GHz f 0 = 1.3 GHz Dispersion relation

0.5 0.4 0.3 0.2 0.1 0.0 0.10.015

0.010

0.005

0.000

0.005

0.010

0.015

Longitudinal coordinate, z m

Field

component,

Ex

Ez0

▪ Simulation results

Numerical Examples

2 064 944 cells

reduced linear

full linearreduced quadratic

December 21, 2010 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 32

hierarchical set of

basis functions

Page 33: Calculation of Eigenfields for the European XFEL Cavities 2010-12-21.pdf12.5 mm 60.0 mm 3.4 mm 16.0 mm TEM TE 11 TE 21 TEM TE 11 TE 21 f 0 = 1.3 GHz f 0 = 1.3 GHz Dispersion relation

Numerical Examples

▪ Transversal grid information

- Cut plane plots

Iris

Equator

unsymmetric mesh generation

December 21, 2010 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 33

Page 34: Calculation of Eigenfields for the European XFEL Cavities 2010-12-21.pdf12.5 mm 60.0 mm 3.4 mm 16.0 mm TEM TE 11 TE 21 TEM TE 11 TE 21 f 0 = 1.3 GHz f 0 = 1.3 GHz Dispersion relation

Numerical Examples

▪ Symmetric mesh generation

Coaxial coupler

Higher order mode coupler (HOM)

HOM

Beam tube

TESLA 9 cell cavity

Idea:

1) Meshing performed only

on ¼ of the model

2) Copy mesh to assemble

the full information

CST – Microwave Studio

December 21, 2010 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 34

Page 35: Calculation of Eigenfields for the European XFEL Cavities 2010-12-21.pdf12.5 mm 60.0 mm 3.4 mm 16.0 mm TEM TE 11 TE 21 TEM TE 11 TE 21 f 0 = 1.3 GHz f 0 = 1.3 GHz Dispersion relation

Numerical Examples

▪ Transversal grid information

- Cut plane plots

Iris

Equator

symmetric mesh generation

December 21, 2010 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 35

Page 36: Calculation of Eigenfields for the European XFEL Cavities 2010-12-21.pdf12.5 mm 60.0 mm 3.4 mm 16.0 mm TEM TE 11 TE 21 TEM TE 11 TE 21 f 0 = 1.3 GHz f 0 = 1.3 GHz Dispersion relation

Numerical Examples

▪ Simulation results

- Transverse mesh properties

arbitrary distribution

of tetrahedra

tetrahedra faces aligned

along coordinate faces

symmetric distribution

of tetrahedra

December 21, 2010 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 36

Page 37: Calculation of Eigenfields for the European XFEL Cavities 2010-12-21.pdf12.5 mm 60.0 mm 3.4 mm 16.0 mm TEM TE 11 TE 21 TEM TE 11 TE 21 f 0 = 1.3 GHz f 0 = 1.3 GHz Dispersion relation

0.5 0.4 0.3 0.2 0.1 0.0 0.1

0.010

0.008

0.006

0.004

0.002

0.000

Longitudinal coordinate, z m

Field

component,

Ex

Ez0

▪ Simulation results

Numerical Examples

3 282 467 cells

reduced quadratic set of basis functions

1 904 470 cells

652 742 cells

December 21, 2010 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 37

Page 38: Calculation of Eigenfields for the European XFEL Cavities 2010-12-21.pdf12.5 mm 60.0 mm 3.4 mm 16.0 mm TEM TE 11 TE 21 TEM TE 11 TE 21 f 0 = 1.3 GHz f 0 = 1.3 GHz Dispersion relation

▪ Simulation results

Numerical Examples

Symmetric mesh:

1 904 470 cells

11 780 962 DOFs

Symmetric mesh:

3 282 467 cells

20 370 322 DOFs

c0 Bxc0 By

c0 Bz

(no contribution)

December 21, 2010 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 38

Page 39: Calculation of Eigenfields for the European XFEL Cavities 2010-12-21.pdf12.5 mm 60.0 mm 3.4 mm 16.0 mm TEM TE 11 TE 21 TEM TE 11 TE 21 f 0 = 1.3 GHz f 0 = 1.3 GHz Dispersion relation

Numerical Examples

▪ Simulation results

Ex

z zFx

Fy

Ey

c0 By

c0 Bx

Contributions to the force for

a particle moving with speed

of light along the axis

December 21, 2010 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 39

Page 40: Calculation of Eigenfields for the European XFEL Cavities 2010-12-21.pdf12.5 mm 60.0 mm 3.4 mm 16.0 mm TEM TE 11 TE 21 TEM TE 11 TE 21 f 0 = 1.3 GHz f 0 = 1.3 GHz Dispersion relation

Computational Model

▪ Eigenvalue distribution

0f/MHz

f/MHz

target frequency

search direction

desired mode

December 21, 2010 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 40

Page 41: Calculation of Eigenfields for the European XFEL Cavities 2010-12-21.pdf12.5 mm 60.0 mm 3.4 mm 16.0 mm TEM TE 11 TE 21 TEM TE 11 TE 21 f 0 = 1.3 GHz f 0 = 1.3 GHz Dispersion relation

Motivation

▪ Superconducting Resonator

9-Cell Cavity Beam Tube

Upstream

Higher Order Mode

Coupler

Downstream Higher Order Mode Coupler

Input Coupler

December 21, 2010 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 41

Page 42: Calculation of Eigenfields for the European XFEL Cavities 2010-12-21.pdf12.5 mm 60.0 mm 3.4 mm 16.0 mm TEM TE 11 TE 21 TEM TE 11 TE 21 f 0 = 1.3 GHz f 0 = 1.3 GHz Dispersion relation

Numerical Examples

December 21, 2010 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 42

in linear scale

f 0 =

1.3

00 G

Hz

f 0 =

1.7

09 G

Hz

Page 43: Calculation of Eigenfields for the European XFEL Cavities 2010-12-21.pdf12.5 mm 60.0 mm 3.4 mm 16.0 mm TEM TE 11 TE 21 TEM TE 11 TE 21 f 0 = 1.3 GHz f 0 = 1.3 GHz Dispersion relation

Numerical Examples

December 21, 2010 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 43

in linear scale

f 0 =

1.8

02 G

Hz

f 0 =

1.8

90 G

Hz

Page 44: Calculation of Eigenfields for the European XFEL Cavities 2010-12-21.pdf12.5 mm 60.0 mm 3.4 mm 16.0 mm TEM TE 11 TE 21 TEM TE 11 TE 21 f 0 = 1.3 GHz f 0 = 1.3 GHz Dispersion relation