Calculation - MWI

9
DATE ENGINEER PROJECT REVISI PROJECT NO : SIZE : OWNER : TYPE : CLASS : Equipment Number = • Length Overall ( L ) : 200 M • Length (96% of L) : 200 M • Breadth Moulded ( B ) : 9.2 M • Depth Moulded ( H ) : 1.8 M • Draft ( T ) : 1.10 M • Displacement : 2074.600 tons • Status : A = area, in m2, in profile view of hull, within the Rule length of the vessel, and of superstructures and houses above the summer load waterline, which are within the Rule length of the vessel, and also having a breadth greater than B/4 b = breadth, in metres, of the widest superstructure or deckhouse on each tier f = freeboard amidships, in metres, from the summer load waterline h = the height, in metres, of each tier of superstructure or deckhouse at side having a breadth of B/4 or greater. In calculation of h, sheer and trim are to be ignored. Hence, B/4 = 2.30 m f = 1.80 - 1.10 = 0.70 m Tier No. Breadth, b Height, h Area, bh 1 Main Dk. To A Deck 9.20 0.70 6.440 2 Forecastle Deck 3 1st Deck 4 Navigation Deck bh = 6.440 Profile Area Item Length (m) Height (m) Area (m 2 ) 1 Main Dk. To A Deck 200.000 0.700 140.000 2 Forecastle Deck 3 1st Deck 4 Navigation Deck A = 140.000 Therefore, Equipment Number ΕΝ = (2074.60^2/3) + (2 x ((9.20 x 0.70) + 6.44)) + (140.00/10) = 202.42 : 14-04-2014 : Muji : 200m Barge : 0 Description Description Exceeding (FOR INFORMATION ONLY) LLYOD REGISTER EQUIPMENT NUMBER CALCULATION 8245 200 x 19.2 x 1.8m Barge National Environment Agency BARGE EQUIPMENT NUMBER CALCULATION ( ) 10 2 3 2 A bh Bf + Σ + + Δ

Transcript of Calculation - MWI

Page 1: Calculation - MWI

DATEENGINEERPROJECTREVISI

PROJECT NO :SIZE :OWNER :TYPE :CLASS :

Equipment Number =

• Length Overall ( L ) : 200 M• Length (96% of L) : 200 M• Breadth Moulded ( B ) : 9.2 M• Depth Moulded ( H ) : 1.8 M• Draft ( T ) : 1.10 M• Displacement : 2074.600 tons• Status :

A = area, in m2, in profile view of hull, within the Rule length of the vessel, and of superstructures and houses abovethe summer load waterline, which are within the Rule length of the vessel, and also having a breadth greaterthan B/4

b = breadth, in metres, of the widest superstructure or deckhouse on each tier

f = freeboard amidships, in metres, from the summer load waterline

h = the height, in metres, of each tier of superstructure ordeckhouse at side having a breadth of B/4 or greater.In calculation of h, sheer and trim are to be ignored.

Hence, B/4 = 2.30 mf = 1.80 - 1.10

= 0.70 m

Tier No. Breadth, b Height, h Area, bh1 Main Dk. To A Deck 9.20 0.70 6.4402 Forecastle Deck3 1st Deck4 Navigation Deck

∑bh = 6.440Profile Area

Item Length (m) Height (m) Area (m2)1 Main Dk. To A Deck 200.000 0.700 140.0002 Forecastle Deck3 1st Deck4 Navigation Deck

∑A = 140.000

Therefore, Equipment NumberΕΝ = (2074.60^2/3) + (2 x ((9.20 x 0.70) + 6.44)) + (140.00/10)

= 202.42

: 14-04-2014: Muji: 200m Barge: 0

Description

Description

Exceeding

(FOR INFORMATION ONLY)

LLYOD REGISTER

EQUIPMENT NUMBER CALCULATION

8245200 x 19.2 x 1.8m BargeNational Environment AgencyBARGE

EQUIPMENT NUMBER CALCULATION

( )10

23

2 AbhBf +Σ++∆

Page 2: Calculation - MWI

DATEENGINEERPROJECTREVISI

: 14-04-2014: Muji: 200m Barge: 0(FOR INFORMATION ONLY)

EQUIPMENT NUMBER CALCULATION

Table 13.7.2

Equipment Exceeding Not exceeding Numeral Number Mass in Kg Length (m) D1 D2 D3

150 175 107 2 480 275 22 19 19175 205 108 2 570 302.5 24 20.5 20.5205 240 109 3 660 302.5 26 22 20.5

* As stated in specification for U2 stud link cable according to class requirement plus 2mm.

Table 13.7.3Equipment

Numeral

150 175 107 180 100 3 120175 205 108 180 110 3 120205 240 109 180 130 4 120

Table 13.7.5

Grade MaterialU1 Mild Steel

Special qualitysteel(wrought)Special qualitysteel(cast)Extra qualitysteel

SUMMARYEquipment

Numeral Number Mass in Kg Length (m) D1 D2 D3

108 2 570 303 24 21 21

108 180 110 3 120 60

Towline Mooring line

Min. Length (m)

490 - 690

Tensile strength (N/mm2)

55

U2 (b)

202.42

690 min.

Equipment Number

202.42

Equipment NumberNumeral

Equipment

Min. breaking strength (KN)

Number

Stud link chain cables for bower achorsStockless Bower Anchor

U3

Min. Length

(m)

Min. Breaking strength (KN)

6065

U2 (a)

300 - 490

Mooring line

Exceeding Min. breaking strength (KN)

Min. Length (m)

490 - 690

Equipment Number

NumberMin.

Length (m)

Stud link chain cables for bower achorsStockless Bower Anchor

Min. Breaking strength (KN)

Not exceeding

Equipment Number Tow line

Page 3: Calculation - MWI

DATE :

ENGINEER :

PROJECT :

REVISI :

Nominal

Diameter D D1 H H1 t t1 t2 h1 e b h2 l 1 r

200 216.3 270 378 300 10 8 9 70 8 500 0 0 0

Nominal

Diameter B L h t3 l R Rib

200 290 860 85 8 160 25 8 x 70

Nominal

Diameter f1 f2 f3 f4 f5

200 4 3 6 6 8

Hemp Synthetic

No. 2 No. 4 No. 5 No. 6 Rope Fibre Rope

(6x12) (6x24) (6x30) (6x37)

200 14 12.5 12.5 12.5 36 26

Appli. Rope (KN)

79.5 78

POST

Diameter

NominalDiameter of Applicable Rope (Reference)

Wire Rope

Mass (KG)

BOLLARD DETAIL'SJ.I.S. STANDARD

22-10-2010

Muji

NBT 030

BEDPLATE

BEDPLATE Reference Cal. Max. Break. Load

0

DIMENSION

Page 4: Calculation - MWI

Client : PT. Top Great Engineering & MarineProject : SFP I, II,III,IV,V & VI Subject : Anchor paternAuthor : MujiDate : 4/15/2014Revision : 0

Notes : all are linear horizontal meters

Start time Stop timeAnchor location Bollard locations Ligne length Bollard locations Ligne length

Anchor n° x y x1 y1 L1 x2 y2 L2(m) (m) (m) (m) (m) (m) (m) (m)

1 15.9 25 15.9 9.6 15 21 10 162 55.95 25 56.0 9.6 15 61 10 163 96 25 96.0 9.6 15 101 10 164 136.1 25 136.1 9.6 15 141 10 165 176.2 25 176.2 9.6 15 181 10 16678

85.4 20.425

-100

0

100

0 100 200 300

y (m

) fr

om p

ipel

ine

tow

ard

sout

h

x (m) from stren 1 toward west

Anchor patern for bad weather

anchors

Barge 1

Barge 2

Lignes 1

Lignes 2

Barge

Lignes

Page 5: Calculation - MWI

Start Actual StopLength (m) 0 0 5% 0 0% 5

Actual without loadAnchor location Fearlead locations Ligne length Line tension Cable length Axis tension Yaw tension

Anchor n° x y x2 y2 horizontal T -horizontal l. T T(m) (m) (m) (m) (m) (kN) (m) (kN) (kN)

1 15.875 25 16 10 15.40 60 1.32 0 602 55.95 25 56 10 15.40 60 1.32 0 603 96 25 96 10 15.40 60 1.32 0 604 136.1 25 136 10 15.40 60 1.32 0 605 176.2 25 176 10 15.40 60 1.32 0 60678

P/L tension (kN) : -300Total (kN) = -300 300

Yaw : -0.307 m (y direction)

Actual with loadsAnchor location Fearlead locations Ligne length Line tension Cable length Rised length Line tension Axis tension Yaw tension

Anchor n° x y x2 y2 L dL -horizontal l. L T T T(m) (m) (m) (m) (m) (m) (m) (m) (kN) (kN) (kN)

1 15.875 25 16 10 15.09 -0.31 1.01 271 102 0 1022 55.95 25 56 10 15.09 -0.31 1.01 271 102 0 1023 96 25 96 10 15.09 -0.31 1.01 271 102 0 1024 136.1 25 136 10 15.09 -0.31 1.01 271 102 0 1025 176.2 25 176 10 15.09 -0.31 1.01 271 102 0 102678

P/L tension (kN) : -300Total (kN) = -300 511

Total anchor line tension against yaw direction = 511 kNTotal environmental load as per DNV CN 30.5 = 565 kNError on the transversal force equilibre = 53 kN

present Line tension presentAnchor n° SWL T SWL / T

(kN) (kN) (%)1 131 102 1.3 Using Mooring Riope diameter 28mm2 131 102 1.3 Using Mooring Riope diameter 28mm3 131 102 1.3 Using Mooring Riope diameter 28mm4 131 102 1.3 Using Mooring Riope diameter 28mm5 131 102 1.3 Using Mooring Riope diameter 28mm6 1 0 0%7 1 0 0%8 3 0 0%

Page 6: Calculation - MWI

Client : PT. Top Great Engineering & MarineProject : SFP I, II,III,IV,V & VI Subject : Anchor paternAuthor : MujiDate : 4/15/2014Revision : 0

Notes : Input data in bold.Environmental load calculation as per DNV classification notes No 30.5The wind and current dirrection are supposed to be normal to the barge length.

WIND LOAD CALCULATION Usual Principia Principia Principia Stop Crane boom Abandon Abandon Maximummass density of air 1.225 kg/m3 C1 C2 C3 S laying down + 1 tug (before) (after) (summer)gravitational acceleration : 9.81 m/s² Wind speed (m/s) 6.1 15.4 15.4 12 10.5 10.5 20.5 20.5 26air kinematic viscosity 1.46E-05 m²/s Wind speed (kts) 12 30 30 23 20 20 40 40 51

Basic wind pressure (N/m²) 23 145 145 88 68 68 257 257 414Three dimentional bodies placed on a horizontal surface Wind Wind Wind Wind Wind Wind Wind Wind Wind

item height width length shape coef. area force force force force force force force force force(m) (m) (m) (m²) (kN) (kN) (kN) (kN) (kN) (kN) (kN) (kN) (kN)

hull 0.70 19.20 200.00 1.20 140.00 3.829 24.404 24.404 14.818 11.345 11.345 43.244 43.244 69.560Truck 3.6 3.4 12 1.20 43.20 1.181 7.530 7.530 4.572 3.501 3.501 13.344 13.344 21.464

Cylinder Wind Wind Wind Wind Wind Wind Wind Wind Winditem Diameter length shape coef. area force force force force force force force force force

(m) (m) (m²) (kN) (kN) (kN) (kN) (kN) (kN) (kN) (kN) (kN)

Pipe 0.09 120.00 1.20 10.68 0.292 1.862 1.862 1.130 0.865 0.865 3.299 3.299 5.306Pipe 0.09 122.5 1.20 10.90 0.298 1.900 1.900 1.154 0.883 0.883 3.368 3.368 5.417

0.00 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000.00 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000.00 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000.00 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Other shape Wind Wind Wind Wind Wind Wind Wind Wind Winditem Diameter Shape length shape coef. area force force force force force force force force force

(m) (m) (m²) (kN) (kN) (kN) (kN) (kN) (kN) (kN) (kN) (kN)

Outriger mast 0.32 H 25.00 1.90 8.00 0.346 2.208 2.208 1.341 1.026 1.026 3.913 3.913 6.294Davits frame 0.25 H 16.72 1.90 4.18 0.181 1.154 1.154 0.700 0.536 0.536 2.044 2.044 3.288

Total wind force (kN) = 6 39 39 24 18 18 69 69 111Total wind force (metric tons) = 1 4 4 2 2 2 7 7 11

CURRENT LOAD CALCULATION

Page 7: Calculation - MWI

Mass density of water 1025 kg/m3 Usual Principia Principia Principia Stop Crane boom Abandon Abandon Maximumgravitational acceleration : 9.81 m/s² C1 C2 C3 S laying down + 1 tug (before) (after) (summer)

Current speed (kts) 2.43 3.3 3.3 3.3 3 3 3 3 3Current speed (m/s) 1.25 1.70 1.70 1.70 1.54 1.54 1.54 1.54 1.54

Three dimentional bodies placed on a horizontal surface Drag Drag Drag Drag Drag Drag Drag Drag Dragitem height width length shape coef. area force force force force force force force force force

(m) (m) (m) (m²) (kN) (kN) (kN) (kN) (kN) (kN) (kN) (kN) (kN)

hull 0.70 19.20 200.00 1.20 140.00 135 248 248 248 205 205 205 205 205Cargo barge hull 4.70 2.00 10.00 1.20 47.00 45

Cylinder Drag Drag Drag Drag Drag Drag Drag Drag Dragitem Diameter length shape coef. area force force force force force force force force force

(m) (m) (m²) (kN) (kN) (kN) (kN) (kN) (kN) (kN) (kN) (kN)

Pipe 0.77 40.00 1.20 30.80 30 55 55 55 45 45 45Stinger tube 1 0.00 0 0 0 0 0 0 0 0 0Stinger tube 1 0.00 0 0 0 0 0 0 0 0 0

Total current drag force (kN) = 209 303 303 303 250 250 250 205 205Total current drag force (tons) = 21 31 31 31 26 26 26 21 21

WAVE AVERAGE LOAD CALCULATION (100% dam) Usual Principia Principia Principia Stop Crane boom Abandon Abandon MaximumMass density of water 1025 kg/m3 C1 C2 C3 S laying down + 1 tug (before) (after) (summer)Gravitational acceleration : 9.81 m/s² Swell height (m) 0.5 2 2 1.5 1 1 1 1 1.2Correction coefficient : 9.5 Swell incidence (°) 90 90 90 90 90 90 90 90 90Wall Wave Wave Wave Wave Wave Wave Wave Wave Wave

item height length force force force force force force force force force(m) (m) (kN) (kN) (kN) (kN) (kN) (kN) (kN) (kN) (kN)

hull 1.80 200.00 26 423 423 238 106 106 106 106 152

Total average wave force (kN) = 26 423 423 238 106 106 106 106 152Total average wave force (tons) = 3 43 43 24 11 11 11 11 16

TUG THRUST Usual Principia Principia Principia Stop Crane boom Abandon Abandon MaximumC1 C2 C3 S laying down + 1 tug (before) (after) (summer)

Main tug Engine power (BHP) : 3500 3500 3500Bollard pull at zero speed (kN) : 300 300 300

Correction factor for manual remote control : 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70Correction factor for inflow velocity (**) : 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85

Thrust (kN) = 0 0 0 0 0 0 178.5 178.5 178.5AHT Engine power (BHP) : 1500 1500 1500 1500

Bollard pull (kN) : 100 100 100 100Correction factor for inflow velocity (**) : 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85

Correction factor for manual remote control : 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70Thrust (kN) = 0 0 0 0 0 59.5 59.5 59.5 59.5

Total tug force (kN) = 0 0 0 0 0 59.5 238 238 238

Page 8: Calculation - MWI

TOTAL ENVIRONMENTAL LOADS Usual Principia Principia Principia Stop Crane boom Abandon Abandon MaximumC1 C2 C3 S laying down + 1 tug (before) (after) (summer)

Data sumary Wind (knots) : 12 30 30 23 20 20 40 40 51Current (knots) : 2.4 3.3 3.3 3.3 3.0 3.0 3.0 3.0 3.0

Wave (m) : 0.5 2.0 2.0 1.5 1.0 1.0 1.0 1.0 1.2Loads Wind load (kN) : 6 39 39 24 18 18 69 69 111

Current load (kN) : 209 303 303 303 250 250 250 205 205Wave load (kN) : 26 423 423 238 106 106 106 106 152

Total Total environmental loads (kN) = 242 765 765 565 374 374 425 380 469Total environmental loads (m tons) = 25 78 78 58 38 38 43 39 48

LOAD PER ANCHOR LINE Usual Principia Principia Principia Stop Crane boom Abandon Abandon MaximumC1 C2 C3 S laying down + 1 tug (before) (after) (summer)

Total environmental loads (kN) = 242 765 765 565 374 374 425 380 469Tug thrust (kN) = 0 0 0 0 0 59.5 238 238 238

Total environmental loads - tug thrust (kN) = 242 765 765 565 374 315 187 142 231Number of holding anchor line : #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!

Load per anchor line (kN) = #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!Anchor line Safe Working Load (kN) : 442 442 442 442 442 442 442 442 442

Safety coef. (*) = #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!

Notes :* Safety factor as per API RP 2SK (2cd edition 1996) :

Quasi-static Total dynamicload load

Permanent mooring :intact load condition 1.8 1.5damaged load condition 1.2 1.0

Temporaty mooringintact load condition 1.0 0.8 Principia = 1.67 0.60damaged load condition Not required Not required

As per the Vryhof Anchor manual (2000), the factor of safety used by the major classification socieies are generally similar to those givenin API RP 2SK.Safety factor for Vertical Loads Anchors are higher than the above.

** Correction factor for inflow velocity as par API RP 2SK (effective date : March 1 1997)Inflow velocity in knots :

Propeler type : 1 2 3 4Open propeler 0.95 0.90 0.85 0.80Nozzled propeler 0.94 0.88 0.82 0.76

Page 9: Calculation - MWI

PT. Marcapada Waruna Indonesia

Project: SFP I, II,III,IV,V & VI Subject: Spud DesignDate: 4/15/2014Rev. 0

input data =boldF METHODE : BROMS 1964

ELoad data :

Load : 153 kN FLoad height : 4 m E

Pile data :Above ground pile length : 0 m

L Under ground pile length : 14 m LPile external diameter : 0.914 m D 36" SCH 30

L/D ratio : 15.32 L/DWall thicness : 15.88 mm th

Yield strength : 235 Mpa

D Soil data :Submerged density = 3.7 kN/m3 gamma'Internal drag angle : 5 ° Fi

1.2 KpResults : bearing capacity : 3 time passive soil load (RANKINE)

Ultimate lateral resistance = 309.3 kN Hu= 31,531 kg

Pile loading ratio = 49% =F/HuMax moment depth = 5.03 m f

Maximum bending moment = 1125.6 kN/m MmaxPile inertia = 0.0023194 m4 I

Maximum stress = 222 Mpa SMYS 1.1 %

-15

-14

-13

-12

-11

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

-0.5 0.5

Load

Momentmax

Pile

Pileinside

Page 1