Bounds for VIX Futures given S&P 500 Smiles · 2017. 10. 19. · VIX future expiring at T 1 = the...

70
Introduction LP formulation Analytical sub/superreplicating portfolios When are the classical bounds optimal? Specific families of smiles Conclusion Bounds for VIX Futures given S&P 500 Smiles Julien Guyon Bloomberg L.P. Quantitative Research FRE Lecture Series NYU Tandon School of Engineering New York, September 29, 2016 Joint work with Marcel Nutz (Columbia University) and Romain Menegaux (Bloomberg L.P.) {jguyon2,rmenegaux}@bloomberg.net, [email protected] Julien Guyon Bloomberg L.P. Bounds for VIX Futures given S&P 500 Smiles

Transcript of Bounds for VIX Futures given S&P 500 Smiles · 2017. 10. 19. · VIX future expiring at T 1 = the...

Page 1: Bounds for VIX Futures given S&P 500 Smiles · 2017. 10. 19. · VIX future expiring at T 1 = the instrument that pays V VIX T1 at T 1 V 2 VIX T1 can be replicated using vanilla options

Introduction LP formulation Analytical sub/superreplicating portfolios When are the classical bounds optimal? Specific families of smiles Conclusion

Bounds for VIX Futures given S&P 500 Smiles

Julien Guyon

Bloomberg L.P.Quantitative Research

FRE Lecture SeriesNYU Tandon School of Engineering

New York, September 29, 2016

Joint work with Marcel Nutz (Columbia University)and Romain Menegaux (Bloomberg L.P.)

{jguyon2,rmenegaux}@bloomberg.net, [email protected]

Julien Guyon Bloomberg L.P.

Bounds for VIX Futures given S&P 500 Smiles

Page 2: Bounds for VIX Futures given S&P 500 Smiles · 2017. 10. 19. · VIX future expiring at T 1 = the instrument that pays V VIX T1 at T 1 V 2 VIX T1 can be replicated using vanilla options

Introduction LP formulation Analytical sub/superreplicating portfolios When are the classical bounds optimal? Specific families of smiles Conclusion

ssrn.com/abstract=2840890

Julien Guyon Bloomberg L.P.

Bounds for VIX Futures given S&P 500 Smiles

Page 3: Bounds for VIX Futures given S&P 500 Smiles · 2017. 10. 19. · VIX future expiring at T 1 = the instrument that pays V VIX T1 at T 1 V 2 VIX T1 can be replicated using vanilla options

Introduction LP formulation Analytical sub/superreplicating portfolios When are the classical bounds optimal? Specific families of smiles Conclusion

Motivation

Objectives:

Derive sharp bounds for the prices of VIX futures using the fullinformation of S&P 500 smiles

Derive the corresponding sub/superreplicating portfolios

Test our results on market data: see if we improved the classical boundsand portfolios

Characterize the market smiles for which the classical bounds are sharp

Study specific families of smiles µ1, µ2 and corresponding portfolios

Julien Guyon Bloomberg L.P.

Bounds for VIX Futures given S&P 500 Smiles

Page 4: Bounds for VIX Futures given S&P 500 Smiles · 2017. 10. 19. · VIX future expiring at T 1 = the instrument that pays V VIX T1 at T 1 V 2 VIX T1 can be replicated using vanilla options

Introduction LP formulation Analytical sub/superreplicating portfolios When are the classical bounds optimal? Specific families of smiles Conclusion

Reminder on the VIX

VIX = Volatility IndeX

Published every 15 seconds by the Chicago Board Options Exchange

Indicator of short-term options-implied volatility

Definition:VIX = the implied volatility of the 30-day variance swap on theS&P 500

Equivalently, using the link between realized variance and log-contracts(Neuberger ’90):VIX at date T1 = the implied volatility of a log-contract that deliversln(S2/S1) at T2 = T1 + τ (τ = 30 days):

V 2 ≡ (VIXT1)2 ≡ − 2

τPriceT1

[ln

(S2

S1

)]S1 = S&P 500 at T1, S2 = S&P 500 at T2, V = VIX at T1

We have assumed zero interest rates, repos, and dividends for simplicity

The log-contract can itself be replicated at T1 using OTM call and putoptions on the S&P 500 with maturity T2

Julien Guyon Bloomberg L.P.

Bounds for VIX Futures given S&P 500 Smiles

Page 5: Bounds for VIX Futures given S&P 500 Smiles · 2017. 10. 19. · VIX future expiring at T 1 = the instrument that pays V VIX T1 at T 1 V 2 VIX T1 can be replicated using vanilla options

Introduction LP formulation Analytical sub/superreplicating portfolios When are the classical bounds optimal? Specific families of smiles Conclusion

Reminder on VIX futures

The VIX index cannot be traded, but VIX futures can

VIX future expiring at T1 = the instrument that pays V ≡ VIXT1 at T1

V 2 ≡ VIX2T1

can be replicated using vanilla options on the S&P 500:

V 2 ≡ (VIXT1)2 ≡ − 2

τPriceT1

[ln

(S2

S1

)]But its square root V ≡ VIXT1 cannot

Instead, sub/superreplication in the S&P 500 and its options leads tomodel-free lower/upper bounds on the price of the VIX future

Julien Guyon Bloomberg L.P.

Bounds for VIX Futures given S&P 500 Smiles

Page 6: Bounds for VIX Futures given S&P 500 Smiles · 2017. 10. 19. · VIX future expiring at T 1 = the instrument that pays V VIX T1 at T 1 V 2 VIX T1 can be replicated using vanilla options

Introduction LP formulation Analytical sub/superreplicating portfolios When are the classical bounds optimal? Specific families of smiles Conclusion

Options on realized variance vs Options on implied variance

Options on realized variance Options on implied variance

Call/put on realized variance VIX future, call/put on VIXPath-dependent option Vanilla option on listed option prices

on underlying asset on underlying assetSkorokhod embedding problem Martingale optimal transport

Carr and Lee, 2003 De Marco and Henry-Labordere, 2015Dupire, 2005

Carr and Lee, 2008Cox and Wang, 2013

...

Julien Guyon Bloomberg L.P.

Bounds for VIX Futures given S&P 500 Smiles

Page 7: Bounds for VIX Futures given S&P 500 Smiles · 2017. 10. 19. · VIX future expiring at T 1 = the instrument that pays V VIX T1 at T 1 V 2 VIX T1 can be replicated using vanilla options

Introduction LP formulation Analytical sub/superreplicating portfolios When are the classical bounds optimal? Specific families of smiles Conclusion

Options on realized variance vs Options on implied variance

Option on realized variance Option on implied variance

Call/put on realized variance VIX future, call/put on VIXPath-dependent option Vanilla option on listed option prices

on underlying asset on underlying assetSkorokhod embedding problem Martingale optimal transport

Carr and Lee, 2003 De Marco and Henry-Labordere, 2015Dupire, 2005

Carr and Lee, 2008Cox and Wang, 2013

...

Julien Guyon Bloomberg L.P.

Bounds for VIX Futures given S&P 500 Smiles

Page 8: Bounds for VIX Futures given S&P 500 Smiles · 2017. 10. 19. · VIX future expiring at T 1 = the instrument that pays V VIX T1 at T 1 V 2 VIX T1 can be replicated using vanilla options

Introduction LP formulation Analytical sub/superreplicating portfolios When are the classical bounds optimal? Specific families of smiles Conclusion

Options on realized variance vs Options on implied variance

Option on realized variance Option on implied variance

Call/put on realized variance VIX future, call/put on VIXPath-dependent option Vanilla option on listed option prices

on underlying asset on underlying assetSkorokhod embedding problem Martingale optimal transport

Carr and Lee, 2003 De Marco and Henry-Labordere, 2015Dupire, 2005 This talk

Carr and Lee, 2008Cox and Wang, 2013

...

Julien Guyon Bloomberg L.P.

Bounds for VIX Futures given S&P 500 Smiles

Page 9: Bounds for VIX Futures given S&P 500 Smiles · 2017. 10. 19. · VIX future expiring at T 1 = the instrument that pays V VIX T1 at T 1 V 2 VIX T1 can be replicated using vanilla options

Introduction LP formulation Analytical sub/superreplicating portfolios When are the classical bounds optimal? Specific families of smiles Conclusion

Notations and assumptions

µ1 = risk-neutral distribution of S1 ←→ market smile of S&P at T1

µ2 = risk-neutral distribution of S2 ←→ market smile of S&P at T2

Julien Guyon Bloomberg L.P.

Bounds for VIX Futures given S&P 500 Smiles

Page 10: Bounds for VIX Futures given S&P 500 Smiles · 2017. 10. 19. · VIX future expiring at T 1 = the instrument that pays V VIX T1 at T 1 V 2 VIX T1 can be replicated using vanilla options

Introduction LP formulation Analytical sub/superreplicating portfolios When are the classical bounds optimal? Specific families of smiles Conclusion

Notations and assumptions

L(x) = − 2τ

lnx: convex, decreasing

V 2 ≡ (VIXT1)2 ≡ − 2

τPriceT1

[ln

(S2

S1

)]= PriceT1

[L

(S2

S1

)]

0 1 2 3 4 540

20

0

20

40

60

L(s)

Julien Guyon Bloomberg L.P.

Bounds for VIX Futures given S&P 500 Smiles

Page 11: Bounds for VIX Futures given S&P 500 Smiles · 2017. 10. 19. · VIX future expiring at T 1 = the instrument that pays V VIX T1 at T 1 V 2 VIX T1 can be replicated using vanilla options

Introduction LP formulation Analytical sub/superreplicating portfolios When are the classical bounds optimal? Specific families of smiles Conclusion

Notations and assumptions

We assume

Ei[Si] = S0, Ei[|L(Si)|] <∞, i ∈ {1, 2}

We define

σ212 ≡ E2[L(S2)]− E1[L(S1)]

= PriceT0=0

[L

(S2

S1

)]= PriceT0=0[V 2]

No calendar arbitrage =⇒ µ1 � µ2 (convex order) =⇒ σ212 ≥ 0

σ12 is the implied volatility at time 0 of the forward-startinglog-contract/variance swap on the S&P 500 starting at T1 and maturingat T2

Julien Guyon Bloomberg L.P.

Bounds for VIX Futures given S&P 500 Smiles

Page 12: Bounds for VIX Futures given S&P 500 Smiles · 2017. 10. 19. · VIX future expiring at T 1 = the instrument that pays V VIX T1 at T 1 V 2 VIX T1 can be replicated using vanilla options

Introduction LP formulation Analytical sub/superreplicating portfolios When are the classical bounds optimal? Specific families of smiles Conclusion

Classical superreplication of VIX futures

Julien Guyon Bloomberg L.P.

Bounds for VIX Futures given S&P 500 Smiles

Page 13: Bounds for VIX Futures given S&P 500 Smiles · 2017. 10. 19. · VIX future expiring at T 1 = the instrument that pays V VIX T1 at T 1 V 2 VIX T1 can be replicated using vanilla options

Introduction LP formulation Analytical sub/superreplicating portfolios When are the classical bounds optimal? Specific families of smiles Conclusion

Classical sub/superreplication of VIX futures

Replicate exactly V 2: buy L(S2), sell L(S1) at time 0

Classical upper bound = σ12

Classical lower bound = 0

Concavity of the square root =⇒ Classical upper bound is good, classicallower bound is bad

Julien Guyon Bloomberg L.P.

Bounds for VIX Futures given S&P 500 Smiles

Page 14: Bounds for VIX Futures given S&P 500 Smiles · 2017. 10. 19. · VIX future expiring at T 1 = the instrument that pays V VIX T1 at T 1 V 2 VIX T1 can be replicated using vanilla options

Introduction LP formulation Analytical sub/superreplicating portfolios When are the classical bounds optimal? Specific families of smiles Conclusion

1. LP formulation

Julien Guyon Bloomberg L.P.

Bounds for VIX Futures given S&P 500 Smiles

Page 15: Bounds for VIX Futures given S&P 500 Smiles · 2017. 10. 19. · VIX future expiring at T 1 = the instrument that pays V VIX T1 at T 1 V 2 VIX T1 can be replicated using vanilla options

Introduction LP formulation Analytical sub/superreplicating portfolios When are the classical bounds optimal? Specific families of smiles Conclusion

Optimal sub/superreplication formulation: LP problem (De Marco,Henry-Labordere, 2015)

Available instruments:

At time 0:u1(S1): vanilla payoff maturity T1 (including cash)u2(S2): vanilla payoff maturity T2

Cost: E1[u1(S1)] + E2[u2(S2)]

At time T1:∆S(S1, V )(S2 − S1): delta hedge∆L(S1, V )(L(S2/S1)− V 2): enter in ∆L(S1, V ) log-contractsCost: 0

Superreplicating portfolio Usuper: for all (s1, s2, v) ∈ (R∗+)2 × R+

u1(s1) + u2(s2) + ∆S(s1, v)(s2 − s1) + ∆L(s1, v)

(L

(s2

s1

)− v2

)≥ v

Optimal model-free no-arbitrage upper bound:

Psuper ≡ infUsuper

{E1[u1(S1)] + E2[u2(S2)]

}LP problem with infinity of params u1, u2,∆

S ,∆L and infinity of constraintsJulien Guyon Bloomberg L.P.

Bounds for VIX Futures given S&P 500 Smiles

Page 16: Bounds for VIX Futures given S&P 500 Smiles · 2017. 10. 19. · VIX future expiring at T 1 = the instrument that pays V VIX T1 at T 1 V 2 VIX T1 can be replicated using vanilla options

Introduction LP formulation Analytical sub/superreplicating portfolios When are the classical bounds optimal? Specific families of smiles Conclusion

Optimal sub/superreplication formulation: LP problem (De Marco,Henry-Labordere, 2015)

Available instruments:

At time 0:u1(S1): vanilla payoff maturity T1 (including cash)u2(S2): vanilla payoff maturity T2

Cost: E1[u1(S1)] + E2[u2(S2)]

At time T1:∆S(S1, V )(S2 − S1): delta hedge∆L(S1, V )(L(S2/S1)− V 2): enter in ∆L(S1, V ) log-contractsCost: 0

Subreplicating portfolio Usub: for all (s1, s2, v) ∈ (R∗+)2 × R+

u1(s1) + u2(s2) + ∆S(s1, v)(s2 − s1) + ∆L(s1, v)

(L

(s2

s1

)− v2

)≤ v

Optimal model-free no-arbitrage lower bound:

Psub ≡ supUsub

{E1[u1(S1)] + E2[u2(S2)]

}LP problem with infinity of params u1, u2,∆

S ,∆L and infinity of constraintsJulien Guyon Bloomberg L.P.

Bounds for VIX Futures given S&P 500 Smiles

Page 17: Bounds for VIX Futures given S&P 500 Smiles · 2017. 10. 19. · VIX future expiring at T 1 = the instrument that pays V VIX T1 at T 1 V 2 VIX T1 can be replicated using vanilla options

Introduction LP formulation Analytical sub/superreplicating portfolios When are the classical bounds optimal? Specific families of smiles Conclusion

Optimal sub/superreplication formulation: LP problem (De Marco,Henry-Labordere, 2015)

Available instruments:

At time 0:u1(S1): vanilla payoff maturity T1 (including cash)u2(S2): vanilla payoff maturity T2

Cost: E1[u1(S1)] + E2[u2(S2)]

At time T1:∆S(S1, V )(S2 − S1): delta hedge∆L(S1, V )(L(S2/S1)− V 2): enter in ∆L(S1, V ) log-contractsCost: 0

Subreplicating portfolio Usub: for all (s1, s2, v) ∈ (R∗+)2 × R+

u1(s1) + u2(s2) + ∆S(s1, v)(s2 − s1) + ∆L(s1, v)

(L

(s2

s1

)− v2

)≤ v

Optimal model-free no-arbitrage lower bound:

Psub ≡ supUsub

{E1[u1(S1)] + E2[u2(S2)]

}LP problem with infinity of params u1, u2,∆

S ,∆L and infinity of constraintsJulien Guyon Bloomberg L.P.

Bounds for VIX Futures given S&P 500 Smiles

Page 18: Bounds for VIX Futures given S&P 500 Smiles · 2017. 10. 19. · VIX future expiring at T 1 = the instrument that pays V VIX T1 at T 1 V 2 VIX T1 can be replicated using vanilla options

Introduction LP formulation Analytical sub/superreplicating portfolios When are the classical bounds optimal? Specific families of smiles Conclusion

Classical sub/superreplication of VIX futures

∆S ≡ 0, ∆L(s1, v) = −a, u1(s1) = −aL(s1) + b, u2(s2) = aL(s2)

u1(s1) + u2(s2) + ∆S(s1, v)(s2 − s1) + ∆L(s1, v)

(L

(s2

s1

)− v2

)= −aL(s1) + b+ aL(s2)− a

(L

(s2

s1

)− v2

)= av2 + b

does not depend on s1, s2: perfect replication of v2

Classical (nonoptimal) superreplication: Minimize E1[u1(S1)] +E2[u2(S2)] overall a, b such that av2 + b ≥ v =⇒

a∗ =1

2σ12, b∗ =

σ12

2, E1[u1(S1)] + E2[u2(S2)] = σ12

Classical (nonoptimal) subreplication: Maximize E1[u1(S1)] + E2[u2(S2)] overall a, b such that av2 + b ≤ v =⇒

a∗ = 0, b∗ = 0, E1[u1(S1)] + E2[u2(S2)] = 0

Julien Guyon Bloomberg L.P.

Bounds for VIX Futures given S&P 500 Smiles

Page 19: Bounds for VIX Futures given S&P 500 Smiles · 2017. 10. 19. · VIX future expiring at T 1 = the instrument that pays V VIX T1 at T 1 V 2 VIX T1 can be replicated using vanilla options

Introduction LP formulation Analytical sub/superreplicating portfolios When are the classical bounds optimal? Specific families of smiles Conclusion

LP solver: numerical results

SABR risk-neutral densities

Julien Guyon Bloomberg L.P.

Bounds for VIX Futures given S&P 500 Smiles

Page 20: Bounds for VIX Futures given S&P 500 Smiles · 2017. 10. 19. · VIX future expiring at T 1 = the instrument that pays V VIX T1 at T 1 V 2 VIX T1 can be replicated using vanilla options

Introduction LP formulation Analytical sub/superreplicating portfolios When are the classical bounds optimal? Specific families of smiles Conclusion

LP solver: numerical results for subreplication

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8s1

−200

−150

−100

−50

0

u1(s1)

Julien Guyon Bloomberg L.P.

Bounds for VIX Futures given S&P 500 Smiles

Page 21: Bounds for VIX Futures given S&P 500 Smiles · 2017. 10. 19. · VIX future expiring at T 1 = the instrument that pays V VIX T1 at T 1 V 2 VIX T1 can be replicated using vanilla options

Introduction LP formulation Analytical sub/superreplicating portfolios When are the classical bounds optimal? Specific families of smiles Conclusion

LP solver: numerical results for subreplication

0.5 1.0 1.5 2.0 2.5 3.0 3.5s2

−200

−150

−100

−50

0

50

u2(s2)

Julien Guyon Bloomberg L.P.

Bounds for VIX Futures given S&P 500 Smiles

Page 22: Bounds for VIX Futures given S&P 500 Smiles · 2017. 10. 19. · VIX future expiring at T 1 = the instrument that pays V VIX T1 at T 1 V 2 VIX T1 can be replicated using vanilla options

Introduction LP formulation Analytical sub/superreplicating portfolios When are the classical bounds optimal? Specific families of smiles Conclusion

LP solver: numerical results for subreplication

s1

0.0 0.5 1.0 1.5 2.0 2.53.0

3.54.0

4.5

v

0.0

0.5

1.0

1.5

2.0

2.5

∆S

−500

0

500

1000

1500

2000

2500

3000

3500

4000

Julien Guyon Bloomberg L.P.

Bounds for VIX Futures given S&P 500 Smiles

Page 23: Bounds for VIX Futures given S&P 500 Smiles · 2017. 10. 19. · VIX future expiring at T 1 = the instrument that pays V VIX T1 at T 1 V 2 VIX T1 can be replicated using vanilla options

Introduction LP formulation Analytical sub/superreplicating portfolios When are the classical bounds optimal? Specific families of smiles Conclusion

LP solver: numerical results for subreplication

s1

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

v

0.0

0.5

1.0

1.5

2.0

2.5

∆L

−20

0

20

40

60

80

100

120

140

Julien Guyon Bloomberg L.P.

Bounds for VIX Futures given S&P 500 Smiles

Page 24: Bounds for VIX Futures given S&P 500 Smiles · 2017. 10. 19. · VIX future expiring at T 1 = the instrument that pays V VIX T1 at T 1 V 2 VIX T1 can be replicated using vanilla options

Introduction LP formulation Analytical sub/superreplicating portfolios When are the classical bounds optimal? Specific families of smiles Conclusion

LP solver: numerical results for subreplication

s1 = 1.03, s2 = 1.18

0 1 2 3 4 5v2 = VIX2

T1

0.0

0.5

1.0

1.5

2.0

Πnum(s1, s2, v)

v

Julien Guyon Bloomberg L.P.

Bounds for VIX Futures given S&P 500 Smiles

Page 25: Bounds for VIX Futures given S&P 500 Smiles · 2017. 10. 19. · VIX future expiring at T 1 = the instrument that pays V VIX T1 at T 1 V 2 VIX T1 can be replicated using vanilla options

Introduction LP formulation Analytical sub/superreplicating portfolios When are the classical bounds optimal? Specific families of smiles Conclusion

LP solver: numerical results for subreplication

v = 0.47

s1

0

1

2

3

4

5

s2

01

23

45−16000

−14000

−12000

−10000

−8000

−6000

−4000

−2000

0

Julien Guyon Bloomberg L.P.

Bounds for VIX Futures given S&P 500 Smiles

Page 26: Bounds for VIX Futures given S&P 500 Smiles · 2017. 10. 19. · VIX future expiring at T 1 = the instrument that pays V VIX T1 at T 1 V 2 VIX T1 can be replicated using vanilla options

Introduction LP formulation Analytical sub/superreplicating portfolios When are the classical bounds optimal? Specific families of smiles Conclusion

LP solver: numerical results for subreplication

Lower bound = 7.2%� 0 = classical lower bound

Upper bound = 22.8% = σ12 = classical upper bound

Practical problem: How do we try all u1(s1), u2(s2), ∆S(s1, v),∆L(s1, v)? How do we check the sub/superreplicating constraintseverywhere?

=⇒ Build a richer family of analytical sub/superreplicating portfolios,guaranteed to satisfy the constraints everywhere

s1

0

1

2

3

4

5

s2

01

23

45−20000

−15000

−10000

−5000

0

5000

Julien Guyon Bloomberg L.P.

Bounds for VIX Futures given S&P 500 Smiles

Page 27: Bounds for VIX Futures given S&P 500 Smiles · 2017. 10. 19. · VIX future expiring at T 1 = the instrument that pays V VIX T1 at T 1 V 2 VIX T1 can be replicated using vanilla options

Introduction LP formulation Analytical sub/superreplicating portfolios When are the classical bounds optimal? Specific families of smiles Conclusion

2. A new family offunctionally generated

sub/superreplicating portfolios

Julien Guyon Bloomberg L.P.

Bounds for VIX Futures given S&P 500 Smiles

Page 28: Bounds for VIX Futures given S&P 500 Smiles · 2017. 10. 19. · VIX future expiring at T 1 = the instrument that pays V VIX T1 at T 1 V 2 VIX T1 can be replicated using vanilla options

Introduction LP formulation Analytical sub/superreplicating portfolios When are the classical bounds optimal? Specific families of smiles Conclusion

A new family of functionally generated sub/superreplicating portfolios

For a convex function ϕ : R∗+ × R→ R and s1 > 0, we denote by

ϕ∗super(s1) ≡ supv≥0

{v − ϕ(s1, L(s1) + v2)

}the smallest function u1 : R∗+ → R ∪ {+∞} such that

∀s1 > 0, ∀v ≥ 0, u1(s1) + ϕ(s1, L(s1) + v2) ≥ v

Proposition

Let ϕ : R∗+ × R→ R be a convex function. The following portfoliosuperreplicates the VIX:

u1(s1) = ϕ∗super(s1), u2(s2) = ϕ(s2, L(s2))

∆S(s1, v) = −∂1,rϕ(s1, L(s1) + v2), ∆L(s1, v) = −∂2,rϕ(s1, L(s1) + v2)

Julien Guyon Bloomberg L.P.

Bounds for VIX Futures given S&P 500 Smiles

Page 29: Bounds for VIX Futures given S&P 500 Smiles · 2017. 10. 19. · VIX future expiring at T 1 = the instrument that pays V VIX T1 at T 1 V 2 VIX T1 can be replicated using vanilla options

Introduction LP formulation Analytical sub/superreplicating portfolios When are the classical bounds optimal? Specific families of smiles Conclusion

A new family of functionally generated sub/superreplicating portfolios

Proof.

Since ϕ is convex, ϕ is above tangent hyperplane:

ϕ(s2, L(s2))− ϕ(s1, L(s1) + v2) ≥

∂1,rϕ(s1, L(s1) + v2)(s2 − s1) + ∂2,rϕ(s1, L(s1) + v2)(L(s2)− L(s1)− v2)

This yields

u1(s1) + u2(s2) + ∆S(s1, v)(s2 − s1) + ∆L(s1, v)

(L

(s2

s1

)− v2

)= u1(s1) + ϕ(s2, L(s2))− ∂1,rϕ(s1, L(s1) + v2)(s2 − s1)

−∂2,rϕ(s1, L(s1) + v2)(L(s2)− L(s1)− v2)

≥ u1(s1) + ϕ(s1, L(s1) + v2) ≥ v

Julien Guyon Bloomberg L.P.

Bounds for VIX Futures given S&P 500 Smiles

Page 30: Bounds for VIX Futures given S&P 500 Smiles · 2017. 10. 19. · VIX future expiring at T 1 = the instrument that pays V VIX T1 at T 1 V 2 VIX T1 can be replicated using vanilla options

Introduction LP formulation Analytical sub/superreplicating portfolios When are the classical bounds optimal? Specific families of smiles Conclusion

A new family of functionally generated sub/superreplicating portfolios

ϕ(s2, L(s2))− ϕ(s1, L(s1) + v2) ≥

∂1,rϕ(s1, L(s1) + v2)(s2 − s1) + ∂2,rϕ(s1, L(s1) + v2)(L(s2)− L(s1)− v2)

Interpretation at T1:

Price of S2 at T1 is S1

Price of L(S2) at T1 is L(S1) + V 2

Price of u2(S2) ≡ ϕ(S2, L(S2)) at T1 is ≥ ϕ(S1, L(S1) + V 2)(←→ Jensen’s inequality)

We can exactly superreplicate u1(S1) + ϕ(S1, L(S1) + V 2) at T1

Choose u1 and ϕ such that this is always ≥ VJulien Guyon Bloomberg L.P.

Bounds for VIX Futures given S&P 500 Smiles

Page 31: Bounds for VIX Futures given S&P 500 Smiles · 2017. 10. 19. · VIX future expiring at T 1 = the instrument that pays V VIX T1 at T 1 V 2 VIX T1 can be replicated using vanilla options

Introduction LP formulation Analytical sub/superreplicating portfolios When are the classical bounds optimal? Specific families of smiles Conclusion

A new family of functionally generated sub/superreplicating portfolios

Classical superreplication portfolio:

ϕ(x, y) = ay

u2(s2) = aL(s2), ∆S(s1, v) = 0, and ∆L(s1, v) = −aFor ϕ∗super(s1) to be finite, one must choose a > 0. Then

ϕ∗super(s1) =1

4a− aL(s1) ≡ u1(s1)

E1 [u1(S1)] + E2[u2(S2)] = 14a− aE1 [L(S1)] + aE2[L(S2)] = 1

4a+ aσ2

12

Minimizing over the parameter a gives a = 12σ12

and we recover theclassical superreplication portfolio

The proposition tells us that, in order to build analyticalsuperreplicating portfolios, instead of considering a payoff u2(s2)which is linear in L(s2), one can more generally consider convexfunctions of (s2, L(s2))

Julien Guyon Bloomberg L.P.

Bounds for VIX Futures given S&P 500 Smiles

Page 32: Bounds for VIX Futures given S&P 500 Smiles · 2017. 10. 19. · VIX future expiring at T 1 = the instrument that pays V VIX T1 at T 1 V 2 VIX T1 can be replicated using vanilla options

Introduction LP formulation Analytical sub/superreplicating portfolios When are the classical bounds optimal? Specific families of smiles Conclusion

A new family of functionally generated sub/superreplicating portfolios

For a concave function ϕ : R∗+ × R→ R and s1 > 0, we denote by

ϕ∗sub(s1) ≡ infv≥0

{v − ϕ(s1, L(s1) + v2)

}the largest function u1 : R∗+ → R ∪ {−∞} such that

∀s1 > 0, ∀v ≥ 0, u1(s1) + ϕ(s1, L(s1) + v2) ≤ v

Proposition

Let ϕ : R∗+ × R→ R be a concave function. The following portfoliosubreplicates the VIX:

u1(s1) = ϕ∗sub(s1), u2(s2) = ϕ(s2, L(s2))

∆S(s1, v) = −∂1,rϕ(s1, L(s1) + v2), ∆L(s1, v) = −∂2,rϕ(s1, L(s1) + v2)

Julien Guyon Bloomberg L.P.

Bounds for VIX Futures given S&P 500 Smiles

Page 33: Bounds for VIX Futures given S&P 500 Smiles · 2017. 10. 19. · VIX future expiring at T 1 = the instrument that pays V VIX T1 at T 1 V 2 VIX T1 can be replicated using vanilla options

Introduction LP formulation Analytical sub/superreplicating portfolios When are the classical bounds optimal? Specific families of smiles Conclusion

A new family of functionally generated sub/superreplicating portfolios

Julien Guyon Bloomberg L.P.

Bounds for VIX Futures given S&P 500 Smiles

Page 34: Bounds for VIX Futures given S&P 500 Smiles · 2017. 10. 19. · VIX future expiring at T 1 = the instrument that pays V VIX T1 at T 1 V 2 VIX T1 can be replicated using vanilla options

Introduction LP formulation Analytical sub/superreplicating portfolios When are the classical bounds optimal? Specific families of smiles Conclusion

A new family of functionally generated sub/superreplicating portfolios

Portfolio family parameterized by convex/concave functionϕ : R∗+ × R→ R=⇒ Optimize over convex/concave functions in dimension 2

Problem: How to test all convex/concave functions in dimension 2?

Dimension 1: Extreme rays of the convex cone of convex functions =call/put payoffs

Johansen (1972): In dimension d ≥ 2, the extreme rays are dense in thecone

Scarsini [Multivariate convex orderings, dependence, and stochasticequality, J. Appl. Prob., 35:93–103, 1998]: “No simple characterizationfor the convex ordering in dimension d ≥ 2 can be hoped for.”

Workaround: Consider only the functions of the type ϕ(x, y) = ψ(ax+ y)with ψ : R→ R convex/concave

Optimize on a and ψ: decompose ψ on call/put payoffs, and optimize onweights

Julien Guyon Bloomberg L.P.

Bounds for VIX Futures given S&P 500 Smiles

Page 35: Bounds for VIX Futures given S&P 500 Smiles · 2017. 10. 19. · VIX future expiring at T 1 = the instrument that pays V VIX T1 at T 1 V 2 VIX T1 can be replicated using vanilla options

Introduction LP formulation Analytical sub/superreplicating portfolios When are the classical bounds optimal? Specific families of smiles Conclusion

Examples of subreplicating portfolios

ϕ(x, y) = ψ(ax+ y), ψ concave polygonal line (piecewise affine)

Julien Guyon Bloomberg L.P.

Bounds for VIX Futures given S&P 500 Smiles

Page 36: Bounds for VIX Futures given S&P 500 Smiles · 2017. 10. 19. · VIX future expiring at T 1 = the instrument that pays V VIX T1 at T 1 V 2 VIX T1 can be replicated using vanilla options

Introduction LP formulation Analytical sub/superreplicating portfolios When are the classical bounds optimal? Specific families of smiles Conclusion

Examples of subreplicating portfolios

ϕ(x, y) = ψ(ax+ y), ψ cut square root

Julien Guyon Bloomberg L.P.

Bounds for VIX Futures given S&P 500 Smiles

Page 37: Bounds for VIX Futures given S&P 500 Smiles · 2017. 10. 19. · VIX future expiring at T 1 = the instrument that pays V VIX T1 at T 1 V 2 VIX T1 can be replicated using vanilla options

Introduction LP formulation Analytical sub/superreplicating portfolios When are the classical bounds optimal? Specific families of smiles Conclusion

Numerical results

SABR risk-neutral densities

Julien Guyon Bloomberg L.P.

Bounds for VIX Futures given S&P 500 Smiles

Page 38: Bounds for VIX Futures given S&P 500 Smiles · 2017. 10. 19. · VIX future expiring at T 1 = the instrument that pays V VIX T1 at T 1 V 2 VIX T1 can be replicated using vanilla options

Introduction LP formulation Analytical sub/superreplicating portfolios When are the classical bounds optimal? Specific families of smiles Conclusion

Numerical results

ϕ(x, y) = ψ(ax+ y), ψ concave polygonal line (piecewise affine)

Julien Guyon Bloomberg L.P.

Bounds for VIX Futures given S&P 500 Smiles

Page 39: Bounds for VIX Futures given S&P 500 Smiles · 2017. 10. 19. · VIX future expiring at T 1 = the instrument that pays V VIX T1 at T 1 V 2 VIX T1 can be replicated using vanilla options

Introduction LP formulation Analytical sub/superreplicating portfolios When are the classical bounds optimal? Specific families of smiles Conclusion

Numerical results

ϕ(x, y) = cut square root

Julien Guyon Bloomberg L.P.

Bounds for VIX Futures given S&P 500 Smiles

Page 40: Bounds for VIX Futures given S&P 500 Smiles · 2017. 10. 19. · VIX future expiring at T 1 = the instrument that pays V VIX T1 at T 1 V 2 VIX T1 can be replicated using vanilla options

Introduction LP formulation Analytical sub/superreplicating portfolios When are the classical bounds optimal? Specific families of smiles Conclusion

Numerical results

SABR modelT1 = 2 months

Market smiles as ofMay 5, 2016; T1 = 10 days

Lowerbound

Classical lower bound 0% 0%ψ polygonal (N = 1 kink) 4.6% 4.4%ψ polygonal (N = 10 kinks) 5.2% 7.2%

ψ cut square root 6.0% 7.8%Lower bound from LP solver 7.2% 8.4%

Classical upper bound 22.8% 16.7%

Upper bound from LP solver 22.8% 16.7%

Numerically: upper bound = σ12

Theoretically: Can we characterize the market smiles µ1 and µ2 for whichoptimal upper bound = σ12?

Julien Guyon Bloomberg L.P.

Bounds for VIX Futures given S&P 500 Smiles

Page 41: Bounds for VIX Futures given S&P 500 Smiles · 2017. 10. 19. · VIX future expiring at T 1 = the instrument that pays V VIX T1 at T 1 V 2 VIX T1 can be replicated using vanilla options

Introduction LP formulation Analytical sub/superreplicating portfolios When are the classical bounds optimal? Specific families of smiles Conclusion

3. When are the classical boundsoptimal?

Julien Guyon Bloomberg L.P.

Bounds for VIX Futures given S&P 500 Smiles

Page 42: Bounds for VIX Futures given S&P 500 Smiles · 2017. 10. 19. · VIX future expiring at T 1 = the instrument that pays V VIX T1 at T 1 V 2 VIX T1 can be replicated using vanilla options

Introduction LP formulation Analytical sub/superreplicating portfolios When are the classical bounds optimal? Specific families of smiles Conclusion

Monge-Kantorovich duality

M(µ1, µ2) = the martingale measures µ on (R∗+)2 with marginals µ1 andµ2:

S1 ∼ µ1, S2 ∼ µ2, Eµ [S2|S1] = S1

Price at T1 of the log-contract in Model µ ∈M(µ1, µ2):

Λµ(S1) ≡ Eµ[L

(S2

S1

)∣∣∣∣S1

]Corresponds to the situation where the VIX is a function of S1

For all µ ∈M(µ1, µ2),

Λµ(S1) ≥ 0

E1[Λµ(S1)] = σ212

Julien Guyon Bloomberg L.P.

Bounds for VIX Futures given S&P 500 Smiles

Page 43: Bounds for VIX Futures given S&P 500 Smiles · 2017. 10. 19. · VIX future expiring at T 1 = the instrument that pays V VIX T1 at T 1 V 2 VIX T1 can be replicated using vanilla options

Introduction LP formulation Analytical sub/superreplicating portfolios When are the classical bounds optimal? Specific families of smiles Conclusion

Monge-Kantorovich duality

M(µ1, µ2) naturally arises in the dual formulation of the classicalmartingale optimal transportation problem (no VIX):

(u1, u2,∆) ∈ Usuper ⇐⇒ u1(s1) + u2(s2) + ∆(s1)(s2 − s1) ≥ g(s1, s2)

Psuper ≡ infUsuper

{E1[u1(S1)] + E2[u2(S2)]

}Dsuper ≡ sup

µ∈M(µ1,µ2)

Eµ[g(S1, S2)]

MK duality: Dsuper ≤ Psuper (weak), Dsuper = Psuper (strong)

With the VIX:

(u1, u2,∆S ,∆L) ∈ Usuper ⇐⇒ u1(s1) + u2(s2) + ∆S(s1, v)(s2 − s1)

+∆L(s1, v)(L(s2/s1)− v2) ≥ vPsuper ≡ inf

Usuper

{E1[u1(S1)] + E2[u2(S2)]

}Dsuper ≡ sup

µ∈MV (µ1,µ2)

Eµ[V ]

Julien Guyon Bloomberg L.P.

Bounds for VIX Futures given S&P 500 Smiles

Page 44: Bounds for VIX Futures given S&P 500 Smiles · 2017. 10. 19. · VIX future expiring at T 1 = the instrument that pays V VIX T1 at T 1 V 2 VIX T1 can be replicated using vanilla options

Introduction LP formulation Analytical sub/superreplicating portfolios When are the classical bounds optimal? Specific families of smiles Conclusion

Monge-Kantorovich duality

MV (µ1, µ2) = the set of all the probability distributions µ on (R∗+)2 ×R+

such that

S1 ∼ µ1, S2 ∼ µ2, Eµ [S2|S1, V ] = S1, Eµ[L

(S2

S1

)∣∣∣∣S1, V

]= V 2

Corresponds to the general situation where the VIX V is not necessarilya function of S1

When we project V 2 onto functions of S1, we must find back Λµ(S1):

Eµ[V 2|S1] = Λµ(S1)

(extending the definition of Λµ(S1) to µ ∈MV (µ1, µ2))

Note that for all µ ∈MV (µ1, µ2),

Eµ[V 2] = σ212

Julien Guyon Bloomberg L.P.

Bounds for VIX Futures given S&P 500 Smiles

Page 45: Bounds for VIX Futures given S&P 500 Smiles · 2017. 10. 19. · VIX future expiring at T 1 = the instrument that pays V VIX T1 at T 1 V 2 VIX T1 can be replicated using vanilla options

Introduction LP formulation Analytical sub/superreplicating portfolios When are the classical bounds optimal? Specific families of smiles Conclusion

Absence of a duality gap

Superreplication of f(s1, s2, v), e.g., f(s1, s2, v) = v:

Theorem

Let f : R∗+ × R∗+ × R+ → R be upper semicontinuous and satisfy

|f(s1, s2, v)| ≤ C(1 + s1 + s2 + |L(s1)|+ |L(s2)|+ v2)

for some constant C > 0. Then

Dsuper ≡ supµ∈MV (µ1,µ2)

Eµ[f ] = infUsuper

{E1[u1(S1)] + E2[u2(S2)]

}≡ Psuper.

Moreover, Dsuper 6= −∞ if and only if MV (µ1, µ2) 6= ∅, and in that case thesupremum is attained.

Of course a similar results holds for the subreplication of f(s1, s2, v)

Julien Guyon Bloomberg L.P.

Bounds for VIX Futures given S&P 500 Smiles

Page 46: Bounds for VIX Futures given S&P 500 Smiles · 2017. 10. 19. · VIX future expiring at T 1 = the instrument that pays V VIX T1 at T 1 V 2 VIX T1 can be replicated using vanilla options

Introduction LP formulation Analytical sub/superreplicating portfolios When are the classical bounds optimal? Specific families of smiles Conclusion

Local volatility property of the superreplication price

Superreplication of VIX futures: A dual optimal measure can be chosen of the“local volatility type”, i.e., s.t. the VIX is a function of S1:

Proposition

Dsuper ≡ supµ∈MV (µ1,µ2)

Eµ[V ] = supµ∈M(µ1,µ2)

E1[√

Λµ(S1)]

Proof uses:

µ(1,2) = projection of µ ∈MV (µ1, µ2) onto the first two coordinates

Conversely, for µ ∈M(µ1, µ2), µΛ = extension of µ defined by

V 2 = Λµ(S1)

µ ∈MV (µ1, µ2) =⇒ µ(1,2) ∈M(µ1, µ2)

µ ∈M(µ1, µ2) =⇒ µΛ ∈MV (µ1, µ2)

Julien Guyon Bloomberg L.P.

Bounds for VIX Futures given S&P 500 Smiles

Page 47: Bounds for VIX Futures given S&P 500 Smiles · 2017. 10. 19. · VIX future expiring at T 1 = the instrument that pays V VIX T1 at T 1 V 2 VIX T1 can be replicated using vanilla options

Introduction LP formulation Analytical sub/superreplicating portfolios When are the classical bounds optimal? Specific families of smiles Conclusion

Local volatility property of the superreplication price

Proof.

For any µ ∈MV (µ1, µ2),

Eµ[V ] = Eµ[√V 2] = Eµ

[Eµ[√V 2∣∣∣S1

]]≤ Eµ

[√Eµ[V 2|S1]

]= Eµ

[√Λµ(S1)

]= E1

[√Λµ(1,2)

(S1)]

and µ(1,2) ∈M(µ1, µ2). As a consequence,

Dsuper = supµ∈MV (µ1,µ2)

Eµ[V ] ≤ supµ∈M(µ1,µ2)

E1

[√Λµ(S1)

]Conversely, for any µ ∈M(µ1, µ2),

E1

[√Λµ(S1)

]= EµΛ

[√Λµ(S1)

]= EµΛ [V ]

and µΛ ∈MV (µ1, µ2). As a consequence,

supµ∈M(µ1,µ2)

E1

[√Λµ(S1)

]≤ supµ∈MV (µ1,µ2)

Eµ[V ] = Dsuper

Julien Guyon Bloomberg L.P.

Bounds for VIX Futures given S&P 500 Smiles

Page 48: Bounds for VIX Futures given S&P 500 Smiles · 2017. 10. 19. · VIX future expiring at T 1 = the instrument that pays V VIX T1 at T 1 V 2 VIX T1 can be replicated using vanilla options

Introduction LP formulation Analytical sub/superreplicating portfolios When are the classical bounds optimal? Specific families of smiles Conclusion

What do we mean by arbitrage-free?

S-arbitrage: when only the S&P 500 and vanilla options on it are available fortrading:

U0S = the functions (u1, u2,∆) s.t.

u1(s1) + u2(s2) + ∆(s1)(s2 − s1) ≥ 0

An arbitrage = an element of U0S such that E1[u1(S1)] + E2[u2(S2)] < 0

(S, V )-arbitrage: when it is also possible to trade the log-contract at T1:

U0S,V = the functions (u1, u2,∆

S ,∆L) s.t.

u1(s1) + u2(s2) + ∆S(s1, v)(s2 − s1) + ∆L(s1, v)

(L

(s2

s1

)− v2

)≥ 0

An arbitrage = an element of U0S,V such that E1[u1(S1)] + E2[u2(S2)] < 0

Julien Guyon Bloomberg L.P.

Bounds for VIX Futures given S&P 500 Smiles

Page 49: Bounds for VIX Futures given S&P 500 Smiles · 2017. 10. 19. · VIX future expiring at T 1 = the instrument that pays V VIX T1 at T 1 V 2 VIX T1 can be replicated using vanilla options

Introduction LP formulation Analytical sub/superreplicating portfolios When are the classical bounds optimal? Specific families of smiles Conclusion

What do we mean by arbitrage-free?

Clearly, absence of (S, V )-arbitrage implies absence of S-arbitrage. Actually,both notions are equivalent:

Theorem

The following assertions are equivalent:

(i) The market is free of S-arbitrage,

(ii) The market is free of (S, V )-arbitrage,

(iii) M(µ1, µ2) 6= ∅,(iv) MV (µ1, µ2) 6= ∅,(v) µ1 and µ2 are in convex order, i.e., for any convex function f : R∗+ → R,

E1[f(S1)] ≤ E2[f(S2)].

Not surprisingly, the possibility of trading the FSLC at T1 does not addany restriction in our model-free setting

However, our proof uses (the difficult direction of) Strassen’s theorem

Julien Guyon Bloomberg L.P.

Bounds for VIX Futures given S&P 500 Smiles

Page 50: Bounds for VIX Futures given S&P 500 Smiles · 2017. 10. 19. · VIX future expiring at T 1 = the instrument that pays V VIX T1 at T 1 V 2 VIX T1 can be replicated using vanilla options

Introduction LP formulation Analytical sub/superreplicating portfolios When are the classical bounds optimal? Specific families of smiles Conclusion

When is the classical upper bound optimal?

Denote

`1 ≡ E1[L(S1)], `2 ≡ E2[L(S2)]; σ212 = `2 − `1

Let M(µ1, µ2) be the subset of M(µ1, µ2) made of the martingale measures µsuch that Λµ(S1) is a.s. constant. In this case, Λµ(S1) = σ2

12 a.s.

Theorem

The following assertions are equivalent:

(i) Psuper = σ12,

(ii) there exists µ ∈MV (µ1, µ2) such that V = σ12 µ-a.s.,

(iii) M(µ1, µ2) 6= ∅,(iv) Lawµ1(S1, L(S1)− `1) and Lawµ2(S2, L(S2)− `2) are in convex order,

(iv’) Lawµ1(S1, L(S1) + σ212) and Lawµ2(S2, L(S2)) are in convex order.

Julien Guyon Bloomberg L.P.

Bounds for VIX Futures given S&P 500 Smiles

Page 51: Bounds for VIX Futures given S&P 500 Smiles · 2017. 10. 19. · VIX future expiring at T 1 = the instrument that pays V VIX T1 at T 1 V 2 VIX T1 can be replicated using vanilla options

Introduction LP formulation Analytical sub/superreplicating portfolios When are the classical bounds optimal? Specific families of smiles Conclusion

When is the classical upper bound optimal?

Proof.

(i) ⇒ (ii) Jensen’s inequality + strict concavity of the square root function(ii) ⇒ (iii) Projection onto the first two coordinates(iii) ⇔ (iv) ⇔ (iv’) Define M1 = (S1, L(S1)− `1), M2 = (S2, L(S2)− `2), and

µM1(dx, dy) = µ1(dx)δL(x)−`1(dy), µM2(dx, dy) = µ2(dx)δL(x)−`2(dy).

M(µ1, µ2) is precisely the set of probability measures ν on (R∗+)2 such that

M1 ∼ µM1 , M2 ∼ µM2 , Eν [M2|M1] = M1.

By Strassen’s theorem, this set is nonempty if and only if µM1 and µM2 are inconvex order, which yields the equivalence of (iii) and (iv), and then alsoof (iv’) due to σ2

12 = `2 − `1.(iii) ⇒ (i) Extension of µ ∈ M(µ1, µ2) to µΛ ∈MV (µ1, µ2)

Julien Guyon Bloomberg L.P.

Bounds for VIX Futures given S&P 500 Smiles

Page 52: Bounds for VIX Futures given S&P 500 Smiles · 2017. 10. 19. · VIX future expiring at T 1 = the instrument that pays V VIX T1 at T 1 V 2 VIX T1 can be replicated using vanilla options

Introduction LP formulation Analytical sub/superreplicating portfolios When are the classical bounds optimal? Specific families of smiles Conclusion

Conditions under which the classical upper bound is not optimal

Necessary and sufficient conditions in the previous theorem are notstraightforward to check given the marginals: no simple family of convextest functions exists in two or more dimensions=⇒ We are interested in simpler criteria, at the expense of not beingsharp. The following is a condition that involves only call and put prices

Proposition

Denote by Ci(K) and Pi(K) the prices at time 0 of the call and put optionswith maturity Ti and strike K. Let

Ψ1(K) ≡ Φ1

(K +

1

2σ2

12τ

), Ψ2(K) ≡ Φ2(K),

where

Φi(K) =

{Ci(e

K)S0

−∫∞eK

Ci(k)

k2 dk if K > lnS0

lnS0 −K + Pi(eK)

S0−∫ S0

eKPi(k)

k2 dk −∫∞S0

Ci(k)

k2 dk otherwise.

If there exists K ∈ R such that Ψ1(K) > Ψ2(K), then Psuper < σ12.

Proof: Take f(s, L(s)− `) = g(L(s)− `) and apply Carr-Madan’s formulaJulien Guyon Bloomberg L.P.

Bounds for VIX Futures given S&P 500 Smiles

Page 53: Bounds for VIX Futures given S&P 500 Smiles · 2017. 10. 19. · VIX future expiring at T 1 = the instrument that pays V VIX T1 at T 1 V 2 VIX T1 can be replicated using vanilla options

Introduction LP formulation Analytical sub/superreplicating portfolios When are the classical bounds optimal? Specific families of smiles Conclusion

When is the classical lower bound optimal?

The classical bound is never sharp in practice:

Theorem

Psub = 0 if and only if µ1 = µ2.

Proof.

Assume that Psub = 0, thus Dsub = 0 and the infimum defining Dsub isattained. Hence, there exists µ ∈MV (µ1, µ2) such that Eµ[V ] = 0. SinceV ≥ 0 µ-a.s., this means that V = 0 µ-a.s. and thus σ2

12 = 0, whence µ1 = µ2.

Conversely, if µ1 = µ2, let µ be the law of (S1, S1, 0) under µ1. Thenµ ∈MV (µ1, µ2) and Eµ[V ] = 0, so that Psub = Dsub = 0.

Julien Guyon Bloomberg L.P.

Bounds for VIX Futures given S&P 500 Smiles

Page 54: Bounds for VIX Futures given S&P 500 Smiles · 2017. 10. 19. · VIX future expiring at T 1 = the instrument that pays V VIX T1 at T 1 V 2 VIX T1 can be replicated using vanilla options

Introduction LP formulation Analytical sub/superreplicating portfolios When are the classical bounds optimal? Specific families of smiles Conclusion

When is the classical lower bound optimal?

Better: when µ1 6= µ2, we can construct an explicit, functionally generatedsubreplicating portfolio that has strictly positive price:

Proposition

Let µ1 6= µ2 be in convex order. Then there exists a functionally generatedsubreplicating portfolio (u1, u2,∆

S ,∆L) ∈ Usub with strictly positive price.

It is generated by the concave function ψ(z) ≡ −γ(z + b)− and a constanta > 0, where γ > 0 and b ∈ R. The values of the constants depend on µ1, µ2

and can be found explicitly.

Julien Guyon Bloomberg L.P.

Bounds for VIX Futures given S&P 500 Smiles

Page 55: Bounds for VIX Futures given S&P 500 Smiles · 2017. 10. 19. · VIX future expiring at T 1 = the instrument that pays V VIX T1 at T 1 V 2 VIX T1 can be replicated using vanilla options

Introduction LP formulation Analytical sub/superreplicating portfolios When are the classical bounds optimal? Specific families of smiles Conclusion

4. Specific families of smiles µ1, µ2and corresponding portfolios

Julien Guyon Bloomberg L.P.

Bounds for VIX Futures given S&P 500 Smiles

Page 56: Bounds for VIX Futures given S&P 500 Smiles · 2017. 10. 19. · VIX future expiring at T 1 = the instrument that pays V VIX T1 at T 1 V 2 VIX T1 can be replicated using vanilla options

Introduction LP formulation Analytical sub/superreplicating portfolios When are the classical bounds optimal? Specific families of smiles Conclusion

Examples where Psuper < σ12

when µ2 = a Bernoulli distribution:except for very special µ1

when µ2 has compact support:if µ1 puts weight close to the edges of supp(µ2)

when µ2 = a three-point distribution:if and only if a very graphical condition on supp(µ1) holds

Julien Guyon Bloomberg L.P.

Bounds for VIX Futures given S&P 500 Smiles

Page 57: Bounds for VIX Futures given S&P 500 Smiles · 2017. 10. 19. · VIX future expiring at T 1 = the instrument that pays V VIX T1 at T 1 V 2 VIX T1 can be replicated using vanilla options

Introduction LP formulation Analytical sub/superreplicating portfolios When are the classical bounds optimal? Specific families of smiles Conclusion

The case where µ2 is a Bernoulli distribution

µ2 = pδsu2 +(1−p)δsd2 , 0 < sd2 < S0 < su2 , p =S0 − sd2su2 − sd2

∈ (0, 1) (5.1)

In the absence of arbitrage, the sets M(µ1, µ2) and MV (µ1, µ2) bothhave a unique element (complete model)

=⇒ Dsuper = Dsub and this number can be computed explicitly as theexpectation under the unique risk-neutral measure

Unique martingale transition probabilities:

πu(s1) ≡ s1 − sd2su2 − sd2

, πd(s1) ≡ su2 − s1

su2 − sd2= 1− πu(s1)

Risk-neutral price of the FSLC in the one-step binomial model:

Λb(s1) ≡ πu(s1)L

(su2s1

)+ πd(s1)L

(sd2s1

), s1 > 0

Its square root: λb(s1) =√

Λb(s1), s1 ∈ [sd2, su2 ]

Julien Guyon Bloomberg L.P.

Bounds for VIX Futures given S&P 500 Smiles

Page 58: Bounds for VIX Futures given S&P 500 Smiles · 2017. 10. 19. · VIX future expiring at T 1 = the instrument that pays V VIX T1 at T 1 V 2 VIX T1 can be replicated using vanilla options

Introduction LP formulation Analytical sub/superreplicating portfolios When are the classical bounds optimal? Specific families of smiles Conclusion

The case where µ2 is a Bernoulli distribution

0 5 10 15 20 250.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

λ 2b (s)

λb(s)

Λb(s)

sd2 su2

Figure : Λb and its square-root, λb

Julien Guyon Bloomberg L.P.

Bounds for VIX Futures given S&P 500 Smiles

Page 59: Bounds for VIX Futures given S&P 500 Smiles · 2017. 10. 19. · VIX future expiring at T 1 = the instrument that pays V VIX T1 at T 1 V 2 VIX T1 can be replicated using vanilla options

Introduction LP formulation Analytical sub/superreplicating portfolios When are the classical bounds optimal? Specific families of smiles Conclusion

The case where µ2 is a Bernoulli distribution

Theorem

Let µ2 be the Bernoulli distribution (5.1). Then, there is no arbitrage, orequivalently M(µ1, µ2) 6= ∅, if and only if supp(µ1) ⊂ [sd2, s

u2 ]. In this case,

M(µ1, µ2) has a unique element β, given by

β(ds1, ds2) = µ1(ds1)(πu(s1)δsu2 (ds2) + πd(s1)δsd2

(ds2))

and MV (µ1, µ2) has a unique element βV , given by

βV (ds1, ds2, dv) = β(ds1, ds2)δλb(s1)(dv).

In particular, V = λb(S1) βV -a.s. Moreover,

(i) if µ1 is the Bernoulli distribution that takes values in {λ−1b,−(σ), λ−1

b,+(σ)}for some σ ∈ [0, λb(S0)], then β ∈ M(µ1, µ2) and Psuper = σ12,

(ii) if µ1 is a different distribution, then M(µ1, µ2) = ∅ andPsuper = E1[λb(S1)] < σ12.

Julien Guyon Bloomberg L.P.

Bounds for VIX Futures given S&P 500 Smiles

Page 60: Bounds for VIX Futures given S&P 500 Smiles · 2017. 10. 19. · VIX future expiring at T 1 = the instrument that pays V VIX T1 at T 1 V 2 VIX T1 can be replicated using vanilla options

Introduction LP formulation Analytical sub/superreplicating portfolios When are the classical bounds optimal? Specific families of smiles Conclusion

The case where µ2 is a Bernoulli distribution

0 5 10 15 200.2

0.0

0.2

0.4

0.6

0.8

λb (s)

σ

λ−1b,− (σ) λ−1

b,+(σ)

Figure : {λ−1b,−(σ), λ−1

b,+(σ)}

Julien Guyon Bloomberg L.P.

Bounds for VIX Futures given S&P 500 Smiles

Page 61: Bounds for VIX Futures given S&P 500 Smiles · 2017. 10. 19. · VIX future expiring at T 1 = the instrument that pays V VIX T1 at T 1 V 2 VIX T1 can be replicated using vanilla options

Introduction LP formulation Analytical sub/superreplicating portfolios When are the classical bounds optimal? Specific families of smiles Conclusion

The case where µ2 is a Bernoulli distribution

Back to the primal problem: Find ε-optimal portfolio u1, u2, ∆S , ∆L

Such a portfolio can be chosen of the functionally generated formϕ(x, y) = ψ(ax+ y) with ψ(z) ≡ 1

2ε(z + b)+:

u1(s1) =

{λb(s1) if s1 ∈ [sd1,ε, s

u1,ε]

ε if s1 /∈ [sd1,ε, su1,ε],

∆S(s1, v) =∆b

2ε1v≥λb(s1),

u2(s2) =

{0 if s2 ∈ [sd2, s

u2 ]

− 12ε

Λb(s2) if s2 /∈ [sd2, su2 ],

∆L(s1, v) = −1

2ε1v≥λb(s1)

0 5 10 15 200.2

0.0

0.2

0.4

0.6

0.8

u1(s)

ε

sd1, ε su1, εsd2 su2

0 5 10 15 20 250.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

u2(s)

− 12ε

Λb(s)

sd2 su2

Julien Guyon Bloomberg L.P.

Bounds for VIX Futures given S&P 500 Smiles

Page 62: Bounds for VIX Futures given S&P 500 Smiles · 2017. 10. 19. · VIX future expiring at T 1 = the instrument that pays V VIX T1 at T 1 V 2 VIX T1 can be replicated using vanilla options

Introduction LP formulation Analytical sub/superreplicating portfolios When are the classical bounds optimal? Specific families of smiles Conclusion

The case where µ2 has compact support in R∗+

sd2 ≡ min supp(µ2) > 0, su2 ≡ max supp(µ2) < +∞ (5.2)

We assume that the market is arbitrage-free, i.e., that µ1 and µ2 are inconvex order

=⇒ supp(µ1) ⊂ [sd2, su2 ]; in particular, sd2 ≤ sd1 ≤ su1 ≤ su2 , where

sd1 ≡ min supp(µ1), su1 ≡ max supp(µ1)

Sufficient conditions on the market smiles µ1 and µ2 under whichPsuper < σ12? 3 strategies:

Find a superreplicating portfolio whose price is strictly smaller than σ12; or

Show that Lawµ1(S1, L(S1)− `1) and Lawµ2(S2, L(S2)− `2) are not inconvex order; or

Verify that M(µ1, µ2) = ∅.

Julien Guyon Bloomberg L.P.

Bounds for VIX Futures given S&P 500 Smiles

Page 63: Bounds for VIX Futures given S&P 500 Smiles · 2017. 10. 19. · VIX future expiring at T 1 = the instrument that pays V VIX T1 at T 1 V 2 VIX T1 can be replicated using vanilla options

Introduction LP formulation Analytical sub/superreplicating portfolios When are the classical bounds optimal? Specific families of smiles Conclusion

The case where µ2 has compact support in R∗+

Proposition

Assume (5.2) and absence of arbitrage. Each of the following impliesPsuper < σ12:

(i) E1 [λb(S1)] < σ12,

(ii) L(sd1)− `1 > L(sd2)− `2, which holds in particular if sd1 = sd2 and µ1 6= µ2,

(iii) µ1(A) > 0 for A ≡ (sd2, λ−1b,−(σ12)) ∪ (λ−1

b,+(σ12), su2 ).

0 5 10 15 200.2

0.0

0.2

0.4

0.6

0.8

λb (s)

σ

λ−1b,− (σ) λ−1

b,+(σ)

Figure : {λ−1b,−(σ), λ−1

b,+(σ)}

Julien Guyon Bloomberg L.P.

Bounds for VIX Futures given S&P 500 Smiles

Page 64: Bounds for VIX Futures given S&P 500 Smiles · 2017. 10. 19. · VIX future expiring at T 1 = the instrument that pays V VIX T1 at T 1 V 2 VIX T1 can be replicated using vanilla options

Introduction LP formulation Analytical sub/superreplicating portfolios When are the classical bounds optimal? Specific families of smiles Conclusion

The case where µ2 is a three-point distribution

0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.30.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

π1 (s)

constraints

σ12 = 0

σ12 = σ− > 0

σ12 = σ+> σ−

Figure : πi(S1) represents the conditional probability that S2 = yi given S1. It musta.s. lie within the triangle. The three curves are the graphs of π∗

1,σ212

for three values

of σ12: 0 < σ− < σ+

Julien Guyon Bloomberg L.P.

Bounds for VIX Futures given S&P 500 Smiles

Page 65: Bounds for VIX Futures given S&P 500 Smiles · 2017. 10. 19. · VIX future expiring at T 1 = the instrument that pays V VIX T1 at T 1 V 2 VIX T1 can be replicated using vanilla options

Introduction LP formulation Analytical sub/superreplicating portfolios When are the classical bounds optimal? Specific families of smiles Conclusion

5. Conclusion

Julien Guyon Bloomberg L.P.

Bounds for VIX Futures given S&P 500 Smiles

Page 66: Bounds for VIX Futures given S&P 500 Smiles · 2017. 10. 19. · VIX future expiring at T 1 = the instrument that pays V VIX T1 at T 1 V 2 VIX T1 can be replicated using vanilla options

Introduction LP formulation Analytical sub/superreplicating portfolios When are the classical bounds optimal? Specific families of smiles Conclusion

Conclusion: main takeaways

A longstanding, important question in volatility markets:

What information on the dynamics of the surface of implied vol iscontained in the surface itself?

How is the surface dynamics constrained by the state of the surface itself?

What information on the vol of vol is contained in the surface of impliedvol?

What information on the price of volatility derivatives is contained in thesurface of implied vol?

Julien Guyon Bloomberg L.P.

Bounds for VIX Futures given S&P 500 Smiles

Page 67: Bounds for VIX Futures given S&P 500 Smiles · 2017. 10. 19. · VIX future expiring at T 1 = the instrument that pays V VIX T1 at T 1 V 2 VIX T1 can be replicated using vanilla options

Introduction LP formulation Analytical sub/superreplicating portfolios When are the classical bounds optimal? Specific families of smiles Conclusion

Conclusion: main takeaways

Our contributions:

Given two slices of the implied vol surface: the smiles at T1 and T2

Volatility derivative: VIX future. Derivative on options-implied volatility

The price of the VIX future (∼ stdev of VIXT1) is constrained:Well known: price cannot be too large (classical upper bound, correspondsto zero stdev of VIXT1

)New: price cannot be too small, i.e., stdev of VIXT1 cannot be too large

0% ≤ price ≤ 16% −→ 8% ≤ price ≤ 16%

New: sharp bounds and the corresponding portfolios, usingLP solver ora new family of functionally generated sub/superreplicating portfolios

New: in typical markets, classical upper bound is sharp: stdev of VIXT1

can be zeroNew: explicit examples where the classical upper bound is not sharp andthe corresponding portfoliosNew: absence of a duality gap =⇒ optimal bounds can be computed in thedual manner

Julien Guyon Bloomberg L.P.

Bounds for VIX Futures given S&P 500 Smiles

Page 68: Bounds for VIX Futures given S&P 500 Smiles · 2017. 10. 19. · VIX future expiring at T 1 = the instrument that pays V VIX T1 at T 1 V 2 VIX T1 can be replicated using vanilla options

Introduction LP formulation Analytical sub/superreplicating portfolios When are the classical bounds optimal? Specific families of smiles Conclusion

Acknowledgements

I would like to thank Bruno Dupire for valuable feedback and interestingdiscussions, as well as Lorenzo Bergomi, Stefano De Marco, and PierreHenry-Labordere for their comments on a preliminary version of this article.

Julien Guyon Bloomberg L.P.

Bounds for VIX Futures given S&P 500 Smiles

Page 69: Bounds for VIX Futures given S&P 500 Smiles · 2017. 10. 19. · VIX future expiring at T 1 = the instrument that pays V VIX T1 at T 1 V 2 VIX T1 can be replicated using vanilla options

Introduction LP formulation Analytical sub/superreplicating portfolios When are the classical bounds optimal? Specific families of smiles Conclusion

A few selected references

Beiglbock, M., Henry-Labordere, P., Penkner, F.: Model-independent bounds foroption prices: A mass-transport approach, Finance and Stochastics,17(3):477–501, 2013.

Beiglbock, M., Nutz, M., Touzi, N.: Complete Duality for Martingale OptimalTransport on the Line Ann. Prob., forthcoming, 2016.

Bouchard B., Nutz M.:Arbitrage and Duality in Nondominated Discrete-Time

Models, Ann. Appl. Probab., 25(2):823–859, 2015.

Carr, P., Lee, R.: Robust replication of volatility derivatives, working paper, 2003.

Carr, P., Lee, R.: Hedging variance options on continuous semimartingales,Finance Stoch. 14:2, 179–207, 2010.

Cox, A., Wang., J.: Root’s barrier: construction, optimality and applications to

variance options, Ann. Appl. Prob. 23(3):859–894, 2013.

De Marco, S., Henry-Labordere, P.: Linking vanillas and VIX options: Aconstrained martingale optimal transport problem, SIAM J. Financial Math.,6(1):1171-1194, 2015.

Dupire, B.: Model free results on volatility derivatives, SAMSI, Research Triangle

Park, 2006.Julien Guyon Bloomberg L.P.

Bounds for VIX Futures given S&P 500 Smiles

Page 70: Bounds for VIX Futures given S&P 500 Smiles · 2017. 10. 19. · VIX future expiring at T 1 = the instrument that pays V VIX T1 at T 1 V 2 VIX T1 can be replicated using vanilla options

Introduction LP formulation Analytical sub/superreplicating portfolios When are the classical bounds optimal? Specific families of smiles Conclusion

A few selected references

Galichon, A., Henry-Labordere, P., Touzi, N.: A stochastic control approach tono-arbitrage bounds given marginals, with an application to Lookback options,Annals of Applied Probability, to appear, 2013.

Hobson, D.: Robust hedging of the lookback option, Finance Stoch 2:329–347,1998.

Johansen, S.: A representation theorem for a convex cone of quasi convexfunctions, Math. Scand., 30:297–312, 1972.

Johansen, S.: The extremal convex functions, Math. Scand., 34:61–68, 1974.

Neuberger, A.: Volatility trading, LBS working paper, 1990.

Scarsini, M.: Multivariate convex orderings, dependence, and stochastic equality,J. Appl. Prob., 35:93–103, 1998.

Strassen, V.: The existence of probability measures with given marginals, Ann.Math. Statist., 36:423–439, 1965.

Villani, C.: Topics in optimal transportation, Graduate studies in Mathematics

AMS, Vol 58.

Julien Guyon Bloomberg L.P.

Bounds for VIX Futures given S&P 500 Smiles