Bottomonium and bottomonium –like states

download Bottomonium  and  bottomonium –like states

If you can't read please download the document

description

Bottomonium and bottomonium –like states. Alex Bondar On behalf of Belle Collaboration. Cracow Epiphany Conference “Present and Future B-physics” (9 - 11, January, 2012, Cracow, Poland ). Observation of Z b. . Outline.  (1S)  +  -  (2S)  +  -  (3S)  +  - - PowerPoint PPT Presentation

Transcript of Bottomonium and bottomonium –like states

  • *Bottomonium and bottomoniumlike statesAlex BondarOn behalf of Belle CollaborationCracow Epiphany Conference Present and Future B-physics (9 - 11, January, 2012, Cracow, Poland )

  • *Observation of hb(1P) and hb(2P)Outline(5S) Zb(10610)+ -Zb(10650)+ -(1S)+ -(2S)+ -(3S)+ -hb(1P)+ - b(1S) + - hb(2P)+ -arXiv:1103.3419accepted by PRLat BB* and B*B* thresholds molecules

  • *PRL100,112001(2008)(MeV)102PRD82,091106R(2010)Anomalous production of (nS) +-1. Rescattering (5S)BB(nS)?Simonov JETP Lett 87,147(2008)2. Similar effect in charmonium? shapes of Rb and () different (2)to distinguish energy scan (5S)line shape of YbY(4260) with anomalous (J/ +-) assume Yb close to (5S)

  • *hb(1P) & hb(2P)Observation of

  • *TriggerY(4260)Yb search for hb(nP)+- @ (5S)CLEO observed e+e- hc + @ ECM=4170MeVPRL107, 041803 (2011)(hc +) (J/ +)4260Hint of rise in (hc+-) @ Y(4260) ?Y(4260)

  • *Introduction to hb(nP)(bb) : S=0 L=1 JPC=1+-MHF test of hyperfine interactionFor hc MHF = 0.00 0.15 MeV, expect smaller deviation for hb(nP)_Expected mass (Mb0 + 3 Mb1 + 5 Mb2) / 9 (3S) 0 hb(1P)BaBar3.0arXiv:1102.4565PRD 84, 091101Previous search

  • *Introduction to hb(nP)(bb) : S=0 L=1 JPC=1+-MHF test of hyperfine interactionFor hc MHF = 0.00 0.15 MeV, expect smaller deviation for hb(nP)_Expected mass (Mb0 + 3 Mb1 + 5 Mb2) / 9 (3S) 0 hb(1P)BaBar3.0arXiv:1102.4565PRD 84, 091101Previous search

  • *(5S) hb +- reconstructionhb ggg, b ( gg) no good exclusive final statesMissing mass(1S)(2S)(3S)hb(2P)hb(1P)

  • *Results121.4 fb-1hb(1P) 5.5hb(2P) 11.2Significance w/ systematics

  • *Hyperfine splittinghb(1P) (1.7 1.5) MeV/c2hb(2P) (0.5 +1.6 ) MeV/c2-1.2Deviations from CoG (Center of Gravity) of bJ massesconsistent with zero, as expectedRatio of production rates Mechanism of (5S) hb(nP) +- decay violates Heavy Quark Spin Symmetry for hb(1P)for hb(2P)no spin-flip=spin-flipProcess with spin-flip of heavy quark is not suppressed

  • *Resonant structure of (5S)hb(nP) +-

  • *Resonant structure of (5S) hb(1P) +-M(hb), GeV/c2phase-space MCM(hb+), GeV/c2

  • *Resonant structure of (5S) hb(1P) +-Resultsnon-res.~0Significance(16 w/ syst)18121.4 fb-1M(hb), GeV/c2phase-space MCM(hb+), GeV/c2fit Mmiss(+) in M(hb) bins M(hb), GeV/c2hb(1P) yield / 10MeV Zb(10610), Zb(10650)

  • **Resonant structure of (5S) hb(2P) +-Significances(5.6 w/ syst)6.7M(hb), GeV/c2phase-space MCM(hb+), GeV/c2fit Mmiss(+) in M(hb) bins 121.4 fb-1M(hb), GeV/c2hb(1P) yield / 10MeVnon-res.~0hb(1P)+-hb(2P)+-non-res. set to zerodegreesMeV/c2MeV/c2MeVc o n s i s t e n tMeV

  • *Resonant structure of (5S)(nS) +-(n=1,2,3)

  • *(5S) (nS) +- +-(n = 1,2,3)(1S)(2S)(3S)reflectionsMmiss (+-), GeV/c2

  • *(1S)(2S)(3S)(5S) (nS) +-(n = 1,2,3)Mmiss (+-), GeV/c2purity 92 94% +-

  • *(5S) (nS) +- Dalitz plots(1S)(2S)(3S)

  • *(5S) (nS) +- Dalitz plots(1S)(2S)(3S) Signals of Zb(10610) and Zb(10650)

  • *heavy quark spin-flip amplitude is suppressedFitting the Dalitz plotsSignal amplitude parameterization:S(s1,s2) = A(Zb1) + A(Zb2) + A(f0(980)) + A(f2(1275)) + ANRANR = C1 + C2m2()Parameterization of the non-resonant amplitude is discussed in [1] M.B. Voloshin, Prog. Part. Nucl. Phys. 61:455, 2008. [2] M.B. Voloshin, Phys. Rev. D74:054022, 2006. A(Zb1) + A(Zb2) + A(f2(1275))A(f0(980)) Breit-Wigner Flatte(5S) Zb, Zb (nS) no spin orientation changeS-waveS-waveSpins of (5S) and (nS) can be ignoredAngular analysis favors JP=1+Non-resonant

  • **Results: (1S)+-M((1 S)+), GeVM((1S)-), GeVsignalsreflections

  • *Results: (2S)+-reflectionssignalsM((2S)+), GeVM((2S)-), GeV

  • *Results: (3S)+-M((3S)+), GeVM((3S)-), GeV

  • * M1 = 10607.22.0 MeV 1 = 18.42.4 MeV M2 = 10652.21.5 MeV 2 = 11.5 2.2 MeVSummary of Zb parametersAverage over 5 channels

  • * M1 = 10607.22.0 MeV 1 = 18.42.4 MeV M2 = 10652.21.5 MeV 2 = 11.5 2.2 MeVZb(10610) yield ~ Zb(10650) yield in every channelRelative phases: 0o for and 180o for hbSummary of Zb parametersAverage over 5 channels = 180o = 0o

  • *Angular analysis

  • *Angular analysisExample : (5S) Zb+(10610) - [(2S)+] -(0 is forbidden by parity conservation)Color coding: JP= 1+ 1- 2+ 2-Best discrimination: cos2 for 1- (3.6) and 2- (2.7);non-resonantcombinatorialcos1cos2, radcos1 for 2+ (4.3)i (i,e+), [plane(1,e+), plane(1, 2)]Definition of angles

  • *Summary of angular analysisAll angular distributions are consistent with JP=1+ for Zb(10610) & Zb(10650).All other JP with J2 are disfavored at typically 3 level.Probabilities at which different JP hypotheses are disfavored compared to 1+procedure to deal with non-resonant contribution is approximate,no mutual cross-feed of Zbs Preliminary:

  • *Heavy quark structure in ZbWave func. at large distance B(*)B*A.B.,A.Garmash,A.Milstein,R.Mizuk,M.Voloshin PRD84 054010 (arXiv:1105.4473)Why hb is unsuppressed relative to Relative phase ~0 for and ~1800 for hbProduction rates of Zb(10610) and Zb(10650) are similarWidths

    Existence of other similar statesExplainsPredictsOther Possible ExplanationsCoupled channel resonances (I.V.Danilkin et al, arXiv:1106.1552)Cusp (D.Bugg Europhys.Lett.96 (2011),arXiv:1105.5492)Tetraquark (M.Karliner, H.Lipkin, arXiv:0802.0649)

  • *Observation of hb(1P)b(1S)

  • *Introduction to bGodfrey & Rosner, PRD66 014012 (2002)hb(1P) ggg (57%), b(1S) (41%), gg (2%)

    hb(2P) ggg (63%), b(1S) (13%), b(2S) (19%), gg (2%)Expected decays of hbLarge hb(mP) samples give opportunity to study b(nS) states.Experimental status of bM[b(1S)] = 9390.9 2.8 MeV (BaBar + CLEO)M[(1S)] M[b(1S)] = 69.3 2.8 MeV Width of b(1S): no informationpNRQCD: 4114 MeV Lattice: 608 MeVKniehl et al., PRL92,242001(2004)Meinel, PRD82,114502(2010)(3S) b(1S)

  • *Methodreconstruct b(mS) hb (nP) +Decay chainUse missing mass to identify signalsM(hb)true +-fake fake +-true true +-true MC simulation

  • *Methodreconstruct b(mS) hb (nP) +Decay chainUse missing mass to identify signalsM(hb)true +-fake fake +-true true +-true MC simulationMmiss(+- ) Mmiss(+-) Mmiss(+-) + M[hb]

  • *Methodreconstruct b(mS) hb (nP) +Decay chainUse missing mass to identify signalsM(hb)MC simulationMmiss(+- ) Mmiss(+-) Mmiss(+-) + M[hb]Approach:fit Mmiss(+-) spectra in Mmiss(+-) bins hb(1P) yield vs. Mmiss(+-) search for b(1S) signal

  • *Resultsb(1S)13potential models : = 5 20 MeVGodfrey & Rosner : BF = 41%BaBar (3S) b(1S) BaBar (2S)CLEO (3S)BELLE preliminarypNRQCDLatticeN.Brambilla et al., Eur.Phys.J.C71(2011) 1534 (arXiv:1010.5827)MHF [b(1S)] = 59.3 1.9 +2.4 MeV/c21.4

  • *Observation of two charged bottomonium-like resonances in 5 final statesM = 10607.2 2.0 MeV = 18.4 2.4 MeVM = 10652.2 1.5 MeV = 11.5 2.2 MeVFirst observation of hb(1P) and hb(2P)Hyperfine splitting consistent with zero, as expected Anomalous production ratesarXiv:1103.3419accepted by PRLarXiv:1105.4583,

    arXiv:1110.2251,accepted by PRLSummary(1S)+, (2S) +, (3S)+, hb(1P)+, hb(2P)+Angular analyses favour JP = 1+ , decay pattern IG = 1+Masses are close to BB* and B*B* thresholds molecule?Observation of hb(1P)b(1S)The most precise single meas., significantly different from WA, decreases tension w/ theoryWill Zbs become a key to understanding of all other quarkonium-like states?arXiv:1110.3934Zb(10610)Zb(10610)

  • *Back up

  • *U(5S)U(6S)U(?S)IG(JP)B*B*BB*BB0-(1+)1+(1+)0+(0+)1-(0+)0+(1+)1-(1+)0+(2+)1-(2+)prwhrrww12GeV11.5GeVgZbWb0Wb1Wb2gggUp hbphbrUh hbwUw hbhUr hbpUw Ur UwUr arXiv:1105.5829Xb0-(1-)

  • *

  • *Coupled channel resonance?I.V.Danilkin, V.D.Orlovsky, Yu.Simonov arXiv:1106.1552No interaction between B(*)B* or is needed to form resonanceNo other resonances predictedB(*)B* interaction switched on individual mass in every channel?

  • *Cusp?D.Bugg Europhys.Lett.96 (2011) (arXiv:1105.5492)AmplitudeLine-shapeNot a resonance

  • *Tetraquark?M ~ 10.5 10.8 GeVTao Guo, Lu Cao, Ming-Zhen Zhou, Hong Chen, (1106.2284)M ~ 10.2 10.3 GeVYing Cui, Xiao-lin Chen, Wei-Zhen Deng, Shi-Lin Zhu, High Energy Phys.Nucl.Phys.31:7-13, 2007(hep-ph/0607226)M ~ 9.4, 11 GeVM.Karliner, H.Lipkin, (0802.0649)

  • *SelectionRequire intermediate Zb : 10.59 < MM() < 10.67 GeVZbHadronic event selection; continuum suppression using event shape; 0 veto.R2
  • *Mmiss(+-) spectrumrequirement of intermediate ZbUpdate of M [hb(1P)] :Previous Belle meas.:hb(1P)3S1S(2S)MHF [hb(1P)] = (+0.8 1.1)MeV/c2MHF [hb(1P)] = (+1.6 1.5)MeV/c2arXiv:1103.3411

  • *Results of fits to Mmiss(+-) spectrano significant structuresb(1S)hb(1P) yieldReflection yield(2S) yieldPeaking background?MC simulation none.

  • *Calibrationhb(1P) b(1S) cosHel > 0.2MC simulationc1 J/ Photon energy spectrum

  • *Calibration (2)data Correction of MCE s.b. subtractedfudge-factorfor resolutionM(J/), GeV/c21.15 0.06 0.06Resolution:double-sided CrystalBall function with asymmetric core

  • *BsIntegrated Luminosity at B-factories > 1 ab-1On resonance:(5S): 121 fb-1(4S): 711 fb-1(3S): 3 fb-1(2S): 24 fb-1(1S): 6 fb-1Off reson./scan : ~100 fb-1 530 fb-1On resonance:(4S): 433 fb-1(3S): 30 fb-1(2S): 14 fb-1Off reson./scan : ~54 fb-1(fb-1)asymmetric e+e- collisions

  • *(5S)Belle took data atE=10867 1 M 2M(Bs)BaBar PRL 102, 012001 (2009)(6S)(4S)e+e- hadronic cross-sectionmain motivationfor taking data at (5S)(1S)(2S)(3S)(4S)2M(B)e+ e- ->(4S) -> BB, where B is B+ or B0e+ e- -> bb ((5S)) -> B(*)B(*), B(*)B(*)p, BBpp, Bs(*)Bs(*), (1S) pp , X ______

  • *Residuals(1S)Example of fitDescription of fit to MM(+-)Three fit regions123Ks generic(3S)kinematic boundaryMM(+-)M(+-)MM(+-)BG: Chebyshev polynomial, 6th or 7th order Signal: shape is fixed from +-+- dataResiduals subtract polynomial from data pointsKS contribution: subtract bin-by-bin

  • Results: Y(5S)Y(2S)+-*

  • Results: Y(5S)Y(2S)+-*

    *************************************************************AAAAA.Drutskoy, 32 Int'l Conference on HEP, August 16-22, 2004*e^+e^-\to\Upsilon(4S)\to B\bar BB\bar B\ {\rm threshold}b\bar b*