Bose-Einstein condensation of metastable He

15
Bose-Einstein condensation of metastable He Chris Westbrook l’Institut d’Optique, Orsay, France EPS-12 August 2002

description

Bose-Einstein condensation of metastable He. Chris Westbrook l’Institut d’Optique, Orsay, France EPS-12 August 2002. the helium atom. …. lifetimes: 2 3 S 1  1 1 S 0 : ~ 9000 s 2 3 P 2  2 3 S 1 : ~ 100 ns 2 3 P 2  1 1 S 0 : ~ 2 s. 0. {. J =. 1. 2. 1083 nm. 2 3 P J. …. - PowerPoint PPT Presentation

Transcript of Bose-Einstein condensation of metastable He

Page 1: Bose-Einstein condensation of metastable He

Bose-Einstein condensation of metastable He

Chris Westbrookl’Institut d’Optique, Orsay, FranceEPS-12 August 2002

Page 2: Bose-Einstein condensation of metastable He

the helium atom

lifetimes:

23S111S0 : ~ 9000 s

23P223S1 : ~ 100 ns

23P211S0 : ~ 2 s11S0

23S1

23PJ

J =

1083 nm

20 eV58 nm

singlets triplets

0

12

Page 3: Bose-Einstein condensation of metastable He

Why He*? If laser cooling of He* is a good idea, so

is evaporative cooling. metastability: detection… Penning ionization

He* + He* He + He + e

s 1 1 0 1/2 1/2

stot 0,1,2 0,1

Strong suppression of ionization (Amsterdam)Expts: Amsterdam, Utrecht, Canberra, Paris, Orsay

Page 4: Bose-Einstein condensation of metastable He

Apparatus

Page 5: Bose-Einstein condensation of metastable He

At the BEC transition

0.08 0.10 0.120.0

0.1

0.2

0.3

arrival time (s)

MC

P c

urre

nt

MCP

v

we measure N, T,

Page 6: Bose-Einstein condensation of metastable He

Summary

N0 ~ , n0 ~ cm

scattering length a = 18 ± 8 nm

Thomas-Fermi parameter: = N0 a/

collision rate at TC: = nv ~ s

hydrodynamic regime quantum depletion (na3) ~ 0.01

Science, 292, 461 (2001), PRL 68, 3459 (2001)

Page 7: Bose-Einstein condensation of metastable He

Observation of ions

MCP

-30 V

trapped atoms

He+

Page 8: Bose-Einstein condensation of metastable He

loss and ionization rate

dNdt

=−β n2dV∫ −L n3dV∫

Γ =1N

dIdt

= ˜ β n + ˜ L n2

dIdt

=β2

n2dV∫ +L3

n3dV∫

N = f (t;β,L)

Page 9: Bose-Einstein condensation of metastable He

Analysis of ion signal

lifetime: difficult to analyse

we can measure dI/dt

and measure N, T, nbest for a "pure" BEC

Trap off

Γ =1N

dIdt

=β n +L n2

Page 10: Bose-Einstein condensation of metastable He

ion rate vs density (quasi-pure BEC)

Page 11: Bose-Einstein condensation of metastable He

decay of the number of atoms

Independent of the ion detection

Ionization accounts for most of the loss

O. Sirjean et al. cond-mat/0208108

N = f(t,,L)

Page 12: Bose-Einstein condensation of metastable He

Γ3−bodyBEC =

13!

1+ 64π n0a

3[ ]Ln0

2

conclusions Calibration of N and I is difficult. We use a to get N0. 2 body ionization rate coeff: -14 cm3s-1

3 body ionization is important cm6s-1

Statistical factors (2! or 3!) are important, but:

50% correctionKagan, Svistunov, Shlyapnikov, JETP Lett. 42, 209 (1985)

We need the same for a thermal cloud and a better measurement of a.

Page 13: Bose-Einstein condensation of metastable He

making correlated atom pairs

Four wave mixing NIST: Science 398, 218 (1999)

MIT: cond-mat/0203286 (2002)

Atoms (photons) created in entangled pairs

PRL 85, 3987 (2000)PRL 85, 3991 (2000)

Data from NIST 1999

Page 14: Bose-Einstein condensation of metastable He

detecting the pairs Spontaneous 4 wave mixing ("perfect

correlations")

Raman pulses create colliding, untrapped condensates (other ways?)

Spatial correlations become temporal correlations

|0> + |0> collisions: Inelastic rate !

MCP detector

Page 15: Bose-Einstein condensation of metastable He

Thank you

groupe ‘hélium’: O. Sirjean, S. Seidelin, J.Gomes, R. HoppelerD. Boiron, A.Aspect, C.W.G. Shlyapnikov

groupe d’optique atomiqueG. Delannoy, Y. Lecoq, F. Gerbier, R. Simon, J. Estève, C. Aussibal, M. Fauquembergue, S. Rangwala, J. Thywissen, D. Stevens, V. Savalli, P. Bouyer, N. Westbrook, I. Bouchoule