Bose-Einstein Condensation in Microgravity

18
Bose-Einstein Condensation in Microgravity S. T. Seidel, Institute of Quantum Optics, Leibniz University of Hanover

Transcript of Bose-Einstein Condensation in Microgravity

Page 1: Bose-Einstein Condensation in Microgravity

Bose-Einstein Condensation in Microgravity

S. T. Seidel, Institute of Quantum Optics, Leibniz University of Hanover

Page 2: Bose-Einstein Condensation in Microgravity

Page 2S. T. Seidel Bose-Einstein Condensation in Microgravity Varenna, 30.06.2009

Motivation: Microgravity

2Takacc ××=Drr

j

22 TAmAtomrot µW×=D

rr

hj

Sagnac Interferometer

a

W Sensitivity:

§ Extended time of evolution

T

Page 3: Bose-Einstein Condensation in Microgravity

Page 3S. T. Seidel Bose-Einstein Condensation in Microgravity Varenna, 30.06.2009

Motivation: BEC

§ Slower free expansion compared to ultra-cold thermal atoms§ Coherent source

BECBEC

Slowing the free expansion by lowering thetrap depth before release of the condensate

Less interaction and potential energyconverted into kinetic energy

Page 4: Bose-Einstein Condensation in Microgravity

Page 4S. T. Seidel Bose-Einstein Condensation in Microgravity Varenna, 30.06.2009

The drop tower Bremen

Platform µg-Quality [g] µg-Duration

ISS 10-4 days to months

Space carrier 10-6 3 days

Parabola flights 10-2 20 seconds

Ballistic rockets 10-5 6 minutes

Drop tower 10-6 4.8 s, x 2 with catapult

Page 5: Bose-Einstein Condensation in Microgravity

Page 5S. T. Seidel Bose-Einstein Condensation in Microgravity Varenna, 30.06.2009

The drop tower Bremen

§ Free fall: 4.8 s

§ Residual acceleration:

10-5 m/s2 below 100 Hz

§ 3 flights per day

§ Capsule decelerationup to 500 m/s2

§ Strict requirements:

§ Dimensions < 0.6 Æ

x 1.73 m

§ Payload < 234 kg

Page 6: Bose-Einstein Condensation in Microgravity

Page 6S. T. Seidel Bose-Einstein Condensation in Microgravity Varenna, 30.06.2009

The QUANTUS Experiment

286 cm

20 cm

Page 7: Bose-Einstein Condensation in Microgravity

Page 7S. T. Seidel Bose-Einstein Condensation in Microgravity Varenna, 30.06.2009

Principles of an atom chip: Chip MOT

Page 8: Bose-Einstein Condensation in Microgravity

Page 8S. T. Seidel Bose-Einstein Condensation in Microgravity Varenna, 30.06.2009

Experimental Sequence loading phase: 1.1 x 107 atoms in the MOT

temperature: 230 µKloading time: 4,2 s

chip-MOT: 6.5 x 107 atomstemperature: 230 µK

positioning of the trap in 20 ms

molassis phase: cooling down to 15 µK

5.0 x 106 atomsdetuning (29,0 ± 0,4) MHz

Page 9: Bose-Einstein Condensation in Microgravity

Page 9S. T. Seidel Bose-Einstein Condensation in Microgravity Varenna, 30.06.2009

loading phase: 1.1 x 107 atoms in the MOT

temperature: 230 µKloading time: 4,2 s

chip-MOT: 6.5 x 106 atoms temperature: 230 µK

positioning of the trap in 20 ms

molasses phase: cooling down to 15 µK

5.0 x 106 atomsdetuning (29,0 ± 0,4) MHz

magnetic trap: 4,5 x 106 atomstemperature: 25 µK

Experimental Sequence

Page 10: Bose-Einstein Condensation in Microgravity

Page 10S. T. Seidel Bose-Einstein Condensation in Microgravity Varenna, 30.06.2009

Bose-Einstein Condensate in Microgravity

50 ms

500 ms

1000 ms

1400 µm

§ Over 180 drops

§ Studied the evolution of theoutcoupled condensate forup to 1 second

Page 11: Bose-Einstein Condensation in Microgravity

Page 11S. T. Seidel Bose-Einstein Condensation in Microgravity Varenna, 30.06.2009

Next Steps: Bragg atom interferometry

0 1 2

|g>Ener

gy

|e>

)( dw +hdh

wh

Dh

khMomentum in

time

)( dw +hwh

§ Currently in ground test phase

Page 12: Bose-Einstein Condensation in Microgravity

Page 12S. T. Seidel Bose-Einstein Condensation in Microgravity Varenna, 30.06.2009

QUANTUS2

§ Adding a second atomic species (potassium)à Demonstrate first Degenerate Fermi Gases in µgà Demonstrate first Bose-Fermi-Mixtures in µgà Test of the weak equivalence principle

§ Increasing the atom number in the BEC to ~105

àbetter signal to noise ratio after longer TOF

§ Capability for high precision atom interferometry

§ Use of the catapult mode of the drop tower in Bremen

Page 13: Bose-Einstein Condensation in Microgravity

Page 13S. T. Seidel Bose-Einstein Condensation in Microgravity Varenna, 30.06.2009

The new apparatus QUANTUS2: Overview - Capsules

QU

ANTU

S (d

rop

mod

e)

QU

ANTU

S2 (c

atap

ult

mod

e)

Payload area:ø600x1730 mm à ø600x950 mm

Payload mass:234 kgà163,8 kg

2860

mm

2094

mm

Reduction of size and mass:

Page 14: Bose-Einstein Condensation in Microgravity

Page 14S. T. Seidel Bose-Einstein Condensation in Microgravity Varenna, 30.06.2009

The new apparatus QUANTUS2: Vacuum systemCapsule with/without magnetic shields

Vacuum pumpsand electronics

Vacuum chamberMagnetic shield

Laser systems

Used by ZARM

Page 15: Bose-Einstein Condensation in Microgravity

Page 15S. T. Seidel Bose-Einstein Condensation in Microgravity Varenna, 30.06.2009

The new apparatus QUANTUS2: Vacuum systemDouble MOT System:

CCD camera head

telescopes

Experiment chamber 2D-MOT

coils

CF16 valve

~420mm

Page 16: Bose-Einstein Condensation in Microgravity

Page 16S. T. Seidel Bose-Einstein Condensation in Microgravity Varenna, 30.06.2009

Micro optical bankAlN 13x4x1mm3

Master-OscillatorDFB-RW-LaserPower Amplifier

Trapered- amplifier

Micro lensGRIN-rod lens

The new apparatus QUANTUS2: Laser systemDevelopment of new technologies:

• e.g. Hybrid MOPA system:

• DFB/DBR laser for 767nm• narrow linewidth DFB/DBR laser diodes• ECDL laser on a micro bank

Housing(2.5x2.5x1mm)

At the HU Berlin/Ferdinant-Braun Institutfür Hochfrequenztechnik (FBH)

Page 17: Bose-Einstein Condensation in Microgravity

Page 17S. T. Seidel Bose-Einstein Condensation in Microgravity Varenna, 30.06.2009

TEXUS

§ Ballistic missile launch§ Quality of microgravity 10-5 (ZARM 10-6)§ 6 minutes of microgravity (ZARM 9s)

Page 18: Bose-Einstein Condensation in Microgravity

Page 18S. T. Seidel Bose-Einstein Condensation in Microgravity Varenna, 30.06.2009

Thank you for your attention

QUANTUS is a collaboration of

Financed by: