BorgWarner DCTWet ClutchesFrictionMtrls Gold (1)

download BorgWarner DCTWet ClutchesFrictionMtrls Gold (1)

of 45

Transcript of BorgWarner DCTWet ClutchesFrictionMtrls Gold (1)

  • 7/22/2019 BorgWarner DCTWet ClutchesFrictionMtrls Gold (1)

    1/45

    Module X

    Slide 0

    Dual Clutches and Friction Materials

    Wet DCT

  • 7/22/2019 BorgWarner DCTWet ClutchesFrictionMtrls Gold (1)

    2/45

    Module X

    Slide 1

    Content

    Function of a Dual Clutch

    DC Architecture

    Clutch Sizing

    Thermal Simulation

    Wet versus Dry

    DC Wet Friction Material

    DC Trends and New Developments

  • 7/22/2019 BorgWarner DCTWet ClutchesFrictionMtrls Gold (1)

    3/45

    Slide 2

    Dual Clutch Function

  • 7/22/2019 BorgWarner DCTWet ClutchesFrictionMtrls Gold (1)

    4/45

    Module X

    Slide 3

    Principle of Dual Clutch

    2 clutches, each of them connected to a transmission shaft

    Independent opening and closing of clutches

    Very smooth shifting no power flow interruption

    Clutches = launch clutches;

    no TC required

  • 7/22/2019 BorgWarner DCTWet ClutchesFrictionMtrls Gold (1)

    5/45

    Module X

    Slide 4

    Dual Clutchmain components

    PistonsActuation of clutches

    Main hubDistribution of oil flows

    Return SpringsOpen the clutches

    Clutch packsFriction and Separator

    plates for torque transfer

    Clutch HubsConnection to

    transmission shafts

    Input hubConnection to engine

  • 7/22/2019 BorgWarner DCTWet ClutchesFrictionMtrls Gold (1)

    6/45

    Module X

    Slide 5

    Actuation of Outer Clutch

    Pressure Oil

    Piston Ring OC

    movement

  • 7/22/2019 BorgWarner DCTWet ClutchesFrictionMtrls Gold (1)

    7/45

    Module X

    Slide 6

    Actuation of Inner Clutch

    Piston ring IC

    movement

    Pressure Oil

  • 7/22/2019 BorgWarner DCTWet ClutchesFrictionMtrls Gold (1)

    8/45

    Module X

    Slide 7

    Cooling of Clutches

    Lube Oil

  • 7/22/2019 BorgWarner DCTWet ClutchesFrictionMtrls Gold (1)

    9/45

    Slide 8

    Architecture ofWet Dual Clutches

  • 7/22/2019 BorgWarner DCTWet ClutchesFrictionMtrls Gold (1)

    10/45

    Module X

    Slide 9

    Traditional architectures

    Nested vs Parallel

    Clutch packs

  • 7/22/2019 BorgWarner DCTWet ClutchesFrictionMtrls Gold (1)

    11/45

    Module X

    Slide 10

    Clutch pack architecture

    nested parallel

    more efficient use of cooling flow

    both clutches same thermal capacity

    shorter axial length smaller outer diameter

    smaller inertias to be synchronized

    lower cost

  • 7/22/2019 BorgWarner DCTWet ClutchesFrictionMtrls Gold (1)

    12/45

    Module X

    Slide 11

    DualTronic PowerSplit Transmission

    2 single clutches

    Driven by a chain

    Small and micro cars

    Compact transmission design

    Lower torque applications (~200Nm)

  • 7/22/2019 BorgWarner DCTWet ClutchesFrictionMtrls Gold (1)

    13/45

    Module X

    Slide 12

    Clutch conceptsw/o support with support

    nested

    parallel Technically possiblebut long axial dimension

  • 7/22/2019 BorgWarner DCTWet ClutchesFrictionMtrls Gold (1)

    14/45

    Slide 13

    Clutch Sizing

  • 7/22/2019 BorgWarner DCTWet ClutchesFrictionMtrls Gold (1)

    15/45

    Module X

    Slide 14

    Clutch capacity calculation

    G = Md / p = * zf* AAp* rmean

    pmax,st = pmax - pspr

    AAp = apply piston area

    Md = * zf* p * AAp* rmean

    rmean= 2 / 3 * (r3f,outr

    3f,in) / (r

    2f,outr

    2f,in)

    = friction coefficient

    Zf = number of friction surfaces

  • 7/22/2019 BorgWarner DCTWet ClutchesFrictionMtrls Gold (1)

    16/45

    Module X

    Slide 15

    Odd Clutch

    0.000

    0.200

    0.400

    0.600

    0.800

    1.000

    1.200

    1.400

    1.600

    1.800

    0 1000 2000 3000 4000 5000 6000 7000 8000 9000 1000

    0

    1100

    0

    1200

    0

    Drehzahl [U/min]

    Druck

    [bar]

    resultierender Zentrifugaldruck

    Federdruck

    Federdruck - res. Differenzdruck

    Even Clutch

    -4.000

    -3.000

    -2.000

    -1.000

    0.000

    1.000

    2.000

    3.0004.000

    5.000

    6.000

    0 1000 2000 3000 4000 5000 6000 7000 8000 9000 1000

    0

    1100

    0

    1200

    0

    Drehzahl [U/min]

    Druck[bar]

    resultierender Zentrifugaldruck

    Federdruck

    Federdruck - res. Differenzdruck

    Clutch hydraulic balancing

    Fc= m * v2/ r

    Pressure

    chamber Balance

    chamber

  • 7/22/2019 BorgWarner DCTWet ClutchesFrictionMtrls Gold (1)

    17/45

    Slide 16

    Thermal Simulation

  • 7/22/2019 BorgWarner DCTWet ClutchesFrictionMtrls Gold (1)

    18/45

    Module X

    Slide 17

    Simulation (hill hold and launch)

    2400 U/min

    141 C

    4000 U/min @ 5s

  • 7/22/2019 BorgWarner DCTWet ClutchesFrictionMtrls Gold (1)

    19/45

    Module X

    Slide 18

    Simulation (race start)

    4500 U/min

    142 C

  • 7/22/2019 BorgWarner DCTWet ClutchesFrictionMtrls Gold (1)

    20/45

    Slide 19

    Wet vs Dry

  • 7/22/2019 BorgWarner DCTWet ClutchesFrictionMtrls Gold (1)

    21/45

    Module X

    Slide 20

    Main characteristicsWet Clutch* Dry Clutch**

    compact size actuation system space demanding

    cooling lubricant no lubricant

    high energy inputs possible limited use

    all vehicle classes limited use

    pump to circulate cooling oil required ambient air cooled

    minimal wear high wear

    *w ith hydraulic piston actuation system **w ith release system

  • 7/22/2019 BorgWarner DCTWet ClutchesFrictionMtrls Gold (1)

    22/45

    Module X

    Slide 21

    Projects in series production

    Nm

    rpm

    6000

    7000

    8000

    9000

    100 300 500 700 900 1100

    BW Wet DCT

    Wet DCTDry DCT

  • 7/22/2019 BorgWarner DCTWet ClutchesFrictionMtrls Gold (1)

    23/45

    Slide 22

    Friction Material

  • 7/22/2019 BorgWarner DCTWet ClutchesFrictionMtrls Gold (1)

    24/45

    Module X

    Slide 23

    Current Trends in Transmissions and Requirements of

    Wet Friction Materials

    TRANSMISSION TRENDS WET FRICTION MATERIAL REQUIREMENTS

    Higher pressures Low deformation, low lining loss

    Improved efficiency

    Smaller pump, lower ATF flow Higher energy facings, higher heat resistance at low lubrication flow

    Reduce drag loss Improved groove pattern design

    Reduced size/weight Higher , increased heat resistance

    Higher speeds, higher energies Stable coefficients of friction, no hot spots

    Continuous slip clutches Good V; no shudder; no noise

    ATF compatibility Inert to chemical and physical interactions with fluids

    Better consistency of shift qualityBetter PVT stability, positive -V slope; reduced variation under

    various conditions

  • 7/22/2019 BorgWarner DCTWet ClutchesFrictionMtrls Gold (1)

    25/45

    Module X

    Slide 24

    Development of Todays High Heat Resistance and High

    Performance Friction Materials

    FRICTION PROPERTYWET FRICTION MATERIAL CONTROLLING

    FACTORS

    o, low speed dynamic coefficient Friction material ingredients and ATF additives adsorption

    i, initial dynamic coefficient at high speed Hydrodynamic effects / porosity / compression / roughness

    Mechanical strength Fiber type, fiber fibrillation, fiber / resin bond strengths

    Heat resistance More synthetic fibers (aramid, carbon), higher porosity

    Positive -V slope Balance of paper ingredients with ATF additives adsorption and poresize

    Hot spot resistance Resiliency, oil film

    Glazing Ingredient compatibility with ATF additives, pore size

    Compression set Optimization of fibers/, fillers and resins type / amounts

  • 7/22/2019 BorgWarner DCTWet ClutchesFrictionMtrls Gold (1)

    26/45

    Module X

    Slide 25

    ATF additives

    Friction Material chemical effects

    Smoothness/uniformity

    ATF film

    Lining permeability

    Compressibility

    Groove effects

    Surface Smoothness

    0 0.2 0.4 0.6 0.8 10

    100

    200

    300

    Time (seconds)

    Torque(Nm)

    Asperity Torque

    Hydrodynamic

    Torque

    Total Torque

    Controlling Factors for Engagement

    Torque Curve Slope

    Time (seconds)

    Torque(Nm)

    Lining permeability

    Compressibility

    Groove effects

    Surface Smoothness

    ATF additives

    Friction Material Chemical effects

    Smoothness/uniformity

    ATF film

  • 7/22/2019 BorgWarner DCTWet ClutchesFrictionMtrls Gold (1)

    27/45

    Module X

    Slide 26

    BWs Unified Friction System Model

    RegionI

    OilFilm

    RegionII

    OilFilm

    RegionIII

    OilFilm

    RegionIV

    Oil Film

    RPM

    DragTorque

    RegionI

    Full Oil

    Sheet

    RegIII

    Rivulet

    Sheet

    RegionIV

    NoOil Sheet

    RegII

    Tran-

    sition

    Interface Temperature vs Time

    0 20 40 60 80 1000

    50

    100

    150

    200

    250

    300

    Time-Seconds

    il

    Thermoelastic

    InstabilityThermoplastic

    Instability

    TEI: No Functional

    Problem, NotProgressive

    TPI: Distortion,

    Progressive ThermalDamage

    Temperature

    Prediction

    ENGAGE_W

    Model

    Heat Transfer

    Coefficients

    Torque

    Model

    Breakaway

    Coefficient

    Thermal

    Degradation

    Open Pack

    Drag

    Effectof friction materialpermeability ont he engagementofa wet clutch as predicted byhydrodynamic models

    Torque Response Curve Shapes

    0

    50

    100

    150

    200

    250

    300

    350

    400

    450

    0.0 0.2 0.4 0.6 0.8 1.0 1.2

    Time (s)

    Torque(Nm)

    Increasing friction material permeability

    Pressure

    Speed

    Permeability Test Set Up

    Ring Sample

    63 mm

    82 mm

    63 mm

    82 mm

    Fluid: Water

    Fluid Pressure: 230 kPaFluid Volume: 292 cm3

    Sample Pressure: 620 kPa

    LateralPermeability Set Up

    Optimizedgroove

    pattern for

    drag loss

    Determine

    interface

    temperature

    Determine

    torque

    characteristics

  • 7/22/2019 BorgWarner DCTWet ClutchesFrictionMtrls Gold (1)

    28/45

    Module X

    Slide 27

    DCT Material Requirements

    Interface Temperature

    Deterioration

    DualTronic

    friction material

    Conventional

    friction material

    Durability

    Increase surface adsorption

    for ATF modifiers

    No glazing

    Heat Resistance Ingredients

    Controllability

    High lining dimensional stability

    Positive -v slope at various

    pressure and temperature

  • 7/22/2019 BorgWarner DCTWet ClutchesFrictionMtrls Gold (1)

    29/45

    Module X

    Slide 28

    Oil flow effects on temperature

  • 7/22/2019 BorgWarner DCTWet ClutchesFrictionMtrls Gold (1)

    30/45

    Module X

    Slide 29

    ATF Flow

    Improved Heat

    Resistance

    Anti-Shudder

    Characteristics

    Internal Structure

    Surface Texture

    High TemperatureSynthetic Fibers

    High Porosity

    Surface Friction Modifier/Filler

    DCT Material

  • 7/22/2019 BorgWarner DCTWet ClutchesFrictionMtrls Gold (1)

    31/45

    Module X

    Slide 30

    Friction Coefficient after Durability Test

    Slip Speed [rpm]

    FrictionCoeffic

    ient

    Positive m-v slope is

    desirable

  • 7/22/2019 BorgWarner DCTWet ClutchesFrictionMtrls Gold (1)

    32/45

    Module X

    Slide 31

    Materials and Groove Pattern

    Conventional

    - lower porosity

    - simple groove pattern- standard materials

    DCT

    - high porosity, higher elasticity

    - complex groove pattern

    - special material composition

  • 7/22/2019 BorgWarner DCTWet ClutchesFrictionMtrls Gold (1)

    33/45

    Module X

    Slide 32

    DCT material launch charactertics

    Laun

    chtorquec

    urves

    8L/min.o

    il,

    hightemperature

    Conventional material DCT material

    Start of test Start of test

    End of testEnd of test

    Stable,

    desirable

    torque shapespeed

    torque

    Torque

    vibration

    M d l X

  • 7/22/2019 BorgWarner DCTWet ClutchesFrictionMtrls Gold (1)

    34/45

    Module X

    Slide 33

    Launch Durability 8 L/min. Oil

    -0.0025

    -0.002-0.0015

    -0.001

    -0.0005

    0

    0.0005

    0.001

    0.0015

    3000 5000 7000 9000 11000 13000

    Cycles

    COFGr

    adient(500rpm-200rpm)

    Conventional

    DCT

    More robust positive -

    v gradient

    M d l X

  • 7/22/2019 BorgWarner DCTWet ClutchesFrictionMtrls Gold (1)

    35/45

    Module X

    Slide 34

    Carbon Woven material not desirable

    Carbon Woven

    Sliding Speed Sliding Speed

    DCT Material

    Low

    coefficient

    Negative -v,

    potential for

    shudder

    High lining

    loss due tocompression0.005 0.011 0.027 0.055 0.110 0.164 0.219 0.274 0.482 0.548 0.712 0.958 1.205

    1.643

    415

    774

    1933

    2956

    0.110

    0.1150.120

    0.125

    0.130

    0.135

    0.140

    0.145

    0.150

    0.155

    0.160

    0.165

    0.170

    0.175

    0.180

    FRICTIONC

    OEFFICIENT(?

    SLIDING SPEED (m/s)

    SURFACE PRESSURE (kPa)

    M d l X

  • 7/22/2019 BorgWarner DCTWet ClutchesFrictionMtrls Gold (1)

    36/45

    Module X

    Slide 35

    Effect on -V Characteristics by Creating More ATF

    Additives Adsorption Sites for Friction ModifiersMid Pressure (1.0MPa) at 90C

    0.00

    0.05

    0.10

    0.15

    0.20

    0 0.1 0.2 0.3 0.4 0.5Speed (m/s)

    Coefficien

    t-of-Friction

    New Oil / New Material

    Mid Pressure (1.0MPa) at 90C

    0.00

    0.05

    0.10

    0.15

    0.20

    0 0.1 0.2 0.3 0.4 0.5Speed (m/s)

    Coefficient-of-Friction

    Damaged FM Oil / New Material

    Mid Pressure (1.0MPa) at 90C

    0.00

    0.05

    0.10

    0.15

    0.20

    0 0.1 0.2 0.3 0.4 0.5

    Speed (m/s)

    Coefficient-of-F

    riction

    Damaged FM Oil / Greater Surface Enhancement

    New OilStandard Plate

    Degraded OilStandard Plate

    Degraded Oil-Surface EnhancedPlates with moreadsorption sites

    M d l X

  • 7/22/2019 BorgWarner DCTWet ClutchesFrictionMtrls Gold (1)

    37/45

    Module X

    Slide 36

    DCT Material Analyses After Durability Test

    SEM/EDS X-ray

    #662

    Coun

    ts

    Energy (KeV)

    Coun

    ts

    Energy (KeV)

    No Glazing

    No surface

    accumulation of

    P.S from degraded

    ATF

    Energy Densities (j/mm2)5.83

    Oil Temperature 100C

    Speed (rpm) 3,300

    Slip time (seconds ) 7-10

    sec

    Porous

    surface

    Module X

  • 7/22/2019 BorgWarner DCTWet ClutchesFrictionMtrls Gold (1)

    38/45

    Module X

    Slide 37

    Summary

    High temperature launches

    Noise Resistance

    Creep resistance

    Good Durability

    Enablers

    New Tribological Characterization Methods

    Advanced Friction Interface Phenomena Understanding

    Predictive Methods and Model

    High Performance DCT

    Composite Friction Material

    DCT

    Shifting Clutches

    Slipping Clutches

  • 7/22/2019 BorgWarner DCTWet ClutchesFrictionMtrls Gold (1)

    39/45

    Slide 38

    Trends

    new developments

    Module X

  • 7/22/2019 BorgWarner DCTWet ClutchesFrictionMtrls Gold (1)

    40/45

    Module X

    Slide 39

    Micro / Small Class Vehicle

    Main Vehicle Class Micro, Small

    Max Engine Torque 140 Nm

    Vehicle Weight 1150 kg

    Maximum Weight 1650 kg

    Trailer Weight 1000 kg

    Vehicle for Analysis

    Max Transmission Input Torque = 170 Nm

    Module X

  • 7/22/2019 BorgWarner DCTWet ClutchesFrictionMtrls Gold (1)

    41/45

    Module X

    Slide 40

    High Efficiency DualTronic

    Drag Loss ReductionOptimized Groove PatternHigh Precision

    Cooling Flow Control

    Reduced Cooling Flow Smaller Pump Size Reduced Leakage

    High Pressure ActuationElectro Hydraulic SystemElectric Flow Pump

    Based on existing

    DualTronic Technology

    Efficiency

    Improvement

    Clutch Controls

    Module X

  • 7/22/2019 BorgWarner DCTWet ClutchesFrictionMtrls Gold (1)

    42/45

    Module X

    Slide 41

    Efficiency

    60%

    65%

    70%

    75%

    80%

    85%

    90%

    95%

    100%

    19% 20% 21% 22% 23% 24% 25%

    NEDC Engine Efficiency [%]

    NEDCTransmissionEfficiency[%

    Transmissions

    20%

    19%

    18%

    17%

    16%

    15%

    Constant

    Overall

    EfficiencyLines

    MT

    HEDCT+HP

    DRY DCT+HP

    HEDCT

    WET DCT

    CVT-WSC

    CVT-T/C

    AT (NIC+L/U)

    AT

    DCTs with best

    overall efficiency

    from fuel to wheels

    Module X

  • 7/22/2019 BorgWarner DCTWet ClutchesFrictionMtrls Gold (1)

    43/45

    Module X

    Slide 42

    WetHigh EfficiencyDry

    96,8%

    94,6%

    92,5%

    93,3%

    90%

    92%

    94%

    96%

    98%

    100%

    WET DCT

    2008

    HEDCT HEDCT

    HP ACT.

    DRY DCT

    HP ACT.

    FuelConsumption[%

    New Friction Mat.

    Red. Leakage

    High Pre. Flow Ctrl.

    Pump On-Demand&

    Flow On-Demand

    Ratio Limitation

    Higher Inertia

    MT

    Module X

  • 7/22/2019 BorgWarner DCTWet ClutchesFrictionMtrls Gold (1)

    44/45

    Module X

    Slide 43

    Break-up of Losses in NEDC

    0

    100

    200

    300

    400500

    600

    700

    800

    WET

    DCT

    HEDC

    T

    HEDC

    THP

    ACT

    .

    DRYDC

    THP

    ACT

    .

    Energy [kJ] Flow Pump Elec.

    Act. Pump Elec.

    Flow + Act. Pump Mech.

    DCT Inertia

    Drag (Hyd. + Bearings)

    Creep Torque

    Gearbox Losses

    TCU + Solenoid

    Module X

  • 7/22/2019 BorgWarner DCTWet ClutchesFrictionMtrls Gold (1)

    45/45

    Module X

    Slide 44

    better fuel economyreduced emissions

    great performance

    Thank you!