Bolt and Screw Compendium

60
Bolt and Screw Compendium

description

Boland screw compendium

Transcript of Bolt and Screw Compendium

  • Bolt and Screw Compendium

  • Introduction

    Who invented the bolt, where, when and to what purpose it was invented, remainsentirely in the darkness of history (S. Kellermann/Treue: Die Kulturgeschichte derSchraube (The cultural history of bolts); 2nd Ed. Munich, Bruckmann 1962).

    Today, in a slightly exaggerated sense, bolts hold together our entire civilization.Billions of bolts are manufactured throughout the year for the widest variety of uses.Hence it could be impulsively concluded that this omnipresent machine elementdoes not pose any problem to science and technology any more. But the fact that itis far from being so is shown by the abundance of works published on the subjectof bolts in the last two decades.

    This quote, from the introduction to the first Bolt and Screw Compendium, in thebeginning of the eighties, has not lost any of its relevance even today. Even thoughthe standard topics have been processed to the point of saturation, there are andhave always been new fields of requirement. In order to allow for the awareness inthe areas of materials and surface finishes as well as the changes in the computationalregulations, KAMAX has revised the Bolt and Screw Compendium, maintaining the usual compact form.

    We hope that this booklet, like its predecessor is carried in numerous pockets, andis helpful to its user.

    Troy, MI September, 2006

  • Table of Contents

    Page

    1. Fastener Materials and Standards 6

    2. Calculation of Bolted Joints 14

    3. Self loosening of Bolted Joints 20

    4. Tightening of Bolted Joints 23

    5. Corrosion Protection and Lubrication 34

    6. Durability-compatible Configuration 38

    7. Miscellaneous 40

    8. Formula Index 55

    9. Literature 56

  • Bolt and Screw Compendium

    Prop

    erty

    Cla

    sses

    Mec

    hani

    cal a

    nd p

    hysi

    cal

    3.6

    4.6

    4.8

    5.6

    5.8

    6.8

    8.8a

    9.8b

    10.9

    12.9

    char

    acte

    risti

    csd1

    6m

    mc

    d>

    16m

    mc

    Nom

    inal

    ten

    sile

    stre

    ngth

    Rm

    nom

    N/m

    m2

    300

    400

    500

    600

    800

    800

    900

    1000

    120

    0

    Min

    imum

    tens

    ile st

    reng

    thR

    m m

    ind

    eN

    /mm

    233

    040

    042

    050

    052

    060

    080

    083

    090

    010

    401

    220

    Vick

    ers

    hard

    ness

    HV

    min

    .95

    120

    130

    155

    160

    190

    250

    255

    290

    320

    385

    F

    98 N

    m

    ax.

    220f

    250

    320

    335

    360

    380

    435

    Brin

    ell h

    ardn

    ess

    HB

    min

    .90

    114

    124

    147

    152

    181

    238

    242

    276

    304

    366

    F =

    30 (D

    2 )m

    ax.

    209f

    238

    304

    318

    342

    361

    414

    HRB

    min

    .52

    6771

    7982

    89

    Rock

    wel

    l har

    dnes

    sH

    RC m

    in.

    2223

    2832

    39

    HRB

    max

    .95

    .0f

    99.5

    HRC

    max

    .

    32

    3437

    3944

    Surf

    ace

    hard

    ness

    HV

    0.3

    g

    Low

    er y

    ield

    str

    ess

    nom

    inal

    180

    240

    320

    300

    400

    480

    R eL

    hin

    N/m

    m2

    min

    .19

    024

    034

    030

    042

    048

    0

    Stre

    ss a

    t 0.

    2%

    non

    -pro

    port

    iona

    l elo

    ngat

    ion

    nom

    inal

    64

    064

    072

    090

    010

    80

    R p 0

    .2 i

    in N

    /mm

    2m

    in.

    64

    066

    072

    094

    011

    00

    Stre

    ss u

    nder

    S p

    /ReL

    o. S

    P/Rp

    0.2

    0.

    940.

    940.

    910.

    930.

    900.

    920.

    910.

    910.

    900.

    880.

    88

    proo

    f lo

    ad S

    pN

    /mm

    218

    022

    531

    028

    038

    044

    058

    060

    065

    083

    097

    0

    Brea

    king

    tor

    que

    MB

    Nm

    min

    .

    see

    ISO

    898

    -7

    1.Fa

    sten

    er M

    ater

    ials

    and

    Sta

    ndar

    ds

    1.1

    Mec

    hani

    cal a

    nd p

    hysi

    cal c

    hara

    cter

    isti

    cs o

    f fa

    sten

    ers

    (at

    room

    tem

    pera

    ture

    )(A

    bstr

    act

    from

    DIN

    EN

    ISO

    898

    -1; E

    diti

    on 1

    1/99

    )

  • 6 7

    Elon

    gatio

    n af

    ter

    frac

    ture

    A %

    min

    .25

    22

    20

    12

    1210

    98

    Redu

    ctio

    n ar

    ea a

    fter

    frac

    ture

    Z%

    min

    .

    5248

    4844

    Stre

    ngth

    und

    er

    The

    valu

    e fo

    r th

    e en

    tire

    bolt

    (not

    stu

    d bo

    lts) u

    nder

    bev

    el t

    ensi

    le s

    trai

    n

    wed

    ge lo

    adin

    gm

    ust

    not

    fall

    belo

    w t

    he m

    inim

    um t

    ensi

    le s

    tren

    gths

    giv

    en a

    bove

    Impa

    ct s

    tren

    gth,

    KU

    J m

    in.

    25

    30

    3025

    2015

    Hea

    d so

    undn

    ess

    No

    rupt

    ure

    Min

    imum

    hei

    ght

    of

    1 /2

    H1

    2 /3

    H1

    3 /4

    H1

    non-

    deca

    rb. t

    hrea

    d ar

    ea E

    Max

    . dep

    th o

    f (c

    ompl

    ete

    deca

    rbur

    izat

    ion)

    mm

    0.

    015

    Har

    dnes

    s af

    ter

    re-t

    empe

    ring

    M

    ax. 2

    0 H

    V dr

    op in

    har

    dnes

    s

    Surf

    ace

    inte

    grity

    In c

    onfo

    rman

    ce w

    ith IS

    O 6

    157-

    1 or

    ISO

    615

    7-3,

    whe

    reve

    r ap

    plic

    able

    aFo

    r bo

    lts o

    f pr

    oper

    ty c

    lass

    8.8

    in d

    iam

    eter

    s d

    16 m

    m, t

    here

    is a

    n in

    crea

    sed

    risk

    of n

    ut s

    trip

    ping

    in t

    he c

    ase

    of in

    adve

    rten

    tov

    er-t

    ight

    enin

    g in

    duci

    ng a

    load

    exc

    ess

    of p

    roof

    load

    . Ref

    eren

    ce t

    o IS

    O 8

    98-2

    is r

    ecom

    men

    ded.

    bAp

    plie

    s on

    ly t

    o no

    min

    al t

    hrea

    d di

    amet

    ers

    d

    16 m

    m.

    cFo

    r st

    ruct

    ural

    bol

    ting

    the

    limit

    is 1

    2 m

    m.

    dM

    inim

    um t

    ensi

    le p

    rope

    rtie

    s ap

    ply

    to p

    rodu

    cts

    of n

    omin

    al le

    ngth

    l

    2,5

    d. M

    inim

    um h

    ardn

    ess

    appl

    ies

    to p

    rodu

    cts

    of le

    ngth

    l 700 N/mm2 A2 70 X 5 CrNi 18 12 1.4303

    > 800 N/mm2 A2 80

    > 700 N/mm2 A4 70 X 5 CrNiMo 17 12 2 1.4401

    > 800 N/mm2 A4 80

    * as per DIN EN ISO 3506-1

    1.5 Material for corrosion resistant fasteners

  • 10 11

    1.6 Materials for high-tensile bolts without heat treatment after cold forming

    Tensile Strength Rm Material Annotation

    800 1000 N/mm2 10 MnSi 7 Micro-alloyed Tensile Strength Classes 800K 17 MnV 7 Steels

    800 1000 N/mm2 34 Cr 4 Pre heat treatedmaterial

    1.7 Materials for Fasteners made from Aluminum Alloys

    Tensile Strength Rm Material Field of Application

    Rm > 320 N/mm2 EN AW 6082 Magnesium bolting

    Rp0,2 > 290N/mm2 AlSi1MgMn Temperature load 380 N/mm2 EN AW 6056 Magnesium bolting

    Rp0.2 > 350 N/mm2 AlSi6MgCuMn Aluminum bolting

    With heat treatment EN AW 6013 Temperature load

  • Type of Bolt Product Standard

    Hexagon bolt DIN EN ISO 4014 Hexagon head boltsDIN EN ISO 4017 Hexagon head screwsDIN EN ISO 8676 Hexagon head screws,

    with fine pitch threadDIN EN ISO 8765 Hexagon head bolts with

    fine pitch threads

    Hexagon bolt DIN EN 1662 Hexagon bolt with flange small with flange DIN EN 1665 Hexagon bolt with flange large

    ISO 4162 Hexagon flange bolts small

    Hexalobular bolt KN 7210 Kamax Spec. KARUND with flange external drive

    DIN 34 800 Hexalobular bolts with small flange

    DIN 34 801 Hexalobular bolts with large flange

    Hexalobular KN 7230 Kamax Spec. KARUND with internal drive socket cap screws

    KN 7240 Cylindrical bolt for overelastic tightening with large KARUND

    DIN EN ISO 14 579 (Fig.) Hexalobular socket head cap screws

    DIN EN ISO 14 580 (Fig.) Hexalobular socket cheese head screws

    DIN 34 802 Hexalobular bolts with large internal drive

    Bolt and Screw Compendium

    1.8 Types of Bolts and Associated Product Standards

  • 12 13

    Type of Bolt Product Standard

    Hexagon socket head screws DIN EN ISO 4762 Hexagon socket head cap screwsDIN 6912 Hexagon socket thin head cap screws

    with pilot recessDIN 7984 Hexagon socket thin head cap screws

    Internal multipoint socket KN 7300 Kamax Spec. for internal drive multipoint socket head

    KN 7310 Cylindrical bolts for overelastic tightening with internal multipointsocket head

  • Bolt and Screw Compendium

    2. Calculation of Bolted Joints

    Generally a load carrying bolted joint is designed so that:

    the forces occurring during tightening and operation of the joint do not overstrain the components of the joint

    a minimal clamping force will be maintained during service which will guarantee the function of the joint regarding the necessary sealing force or a prevention of the opening of the joint

    the fatigue strength of the bolt will be exceeded by the cyclic load

    without over sizing of the joint.

    During assembly, in principle, the bolts are elongated (fSM) and the bolted parts are compressed (fPM). The load of both partners is equal in magnitude (action = reaction = FM = FSM = FPM), but the elongation/comression of the bolts and bolted components are dependent on the stiffness, and thus unequal.

    Fig. 2.1 Elongation/CompressionComponents of a bolted joint before and after loading

    The basic relations of load and elongation alterations of a bolted joint are clearlyshown in the joint diagram.

  • 2.1 Joint Diagram

    The classical form of the joint diagram, originally introduced by Roetscher, will beused here. However, through various modifications, it can also be applied to complex joints.

    Fig. 2.2 Joint Diagram

    The relationship between the assemblypreload and the elongation of the boltis shown in the bolt curve, which isnone other than the spring characteristicof the bolt. This analogy is valid for the joint components which experiencea compression. The slope of the curve is dependent on the material and geometry. The typicaljoint diagram is now developed byreflecting the component displacementcurve on the same coordinate system asthe bolt elongation curve and bringingthe two curves to the point of intersec-tion of the clamp load. When a work load is applied to thejoint the internal load balance will bealtered.

    The load on the bolt increases, that on the components decreases. The bolt is thusfurther elongated, and the components somewhat expand because of the release. Itshould be noted that the alteration of the displacement for the bolt and the jointcomponent is the same, whereas depending on the relation of the slope (equals the

    14 15

    Clamped plates

    Elongation + f

    Bolt

    Compression f

    + F

    F

    Change in length

    Change in length

  • Bolt and Screw Compendium

    ratio of the stiffness) of the curves the work load will be carried unequally. Therequirement of a minimal clamp load during operation therefore borders the bearable work load as well as the upper limit of the load capacity of the bolt.

    2.2 Mechanics of Calculation

    The fundamental pre-requisites for the calculation of a bolted joint according to the nominal diameter and tensile strength (PC) are: External forces and torques Stiffness and load introduction conditions Minimal clamping force Embedding Tightening factors

    First, the diameter of the bolt is estimated from tables and approximate formulae,and from these estimated measures the actual calculation in carried out. If theresults do not lie within the permissible range of stress, the diameter should bechanged and the calculation should be carried out all over again.The systematic of calculation given below refers exclusively to the linear calculationapproach according to VDI2230 (10/2001).The core point of the calculation is the principle dimensioning formula (calculationstep 6) which is shown graphically as well as a formula in the force-elongation diagram below:

    Fig. 2.3Principle dimensioning formula

    Basis formula:

    Elongation f

    Load

    F

    f

    f f

    SA

    FPA

    PASA

    fSM fPM

    F

    Verf

    FV

    F KR

    F

    Mm

    inF

    Mm

    inF

    Mm

    axF

    Mm

    axF

    Sm

    axF

    Ker

    fF

    ZF

    MF

    AF

    AF

  • Step 0At the beginning of the calculation, the required bolt diameter d and the propertyclass as well as the applicability of the calculation rules for eccentrically deformedand/or loaded joints has to be evaluated on the basis of tables or simple formula.

    Step 1A tightening method should be determined. Its accuracy is reflected through the factor A attributed to it. The method of assembly has huge influence on theassembly preload and consequently the designing of the bolted joint.

    Step 2A minimal clamping force of the joint FKerf , not to be under-run at any time duringoperation is to be estimated from the working conditions. This can be deduced from the requirements regarding the sealing force of the joint, the friction, or theprevention of an opening under work load.

    Step 3The load ratio is to be calculated in order to determine the distribution of axialworking load FA between the bolt and the joint components. Smaller the ratio , lesser additional force will be carried by the bolt. Thus defines itself from theelastic resilience of the bolt S and the joint parts P, as well as the load introduction level (denoted by the factor n) and the eccentricities of the jointand work load. In general, the value of decreases with the increase in the resilience of the bolt, as opposed to that of the deformed parts. The factor n isdependent on the given geometry, the level of load introduction level and the typeof joint. It can be defined according to VDI2230 or from a table.

    Step 4Through the embedment of surfaces, the system looses partly its elastic deformati-on. This is reducing the assembly preload. Under consideration of the stiffness FZ ,the loss of preload as a result of the embedding, will be determined and used forthe calculation. Furthermore a change in the preload FVth will occur under thermalload when the components of the bolted joint do have different thermal expansioncoefficients.

    16 17

  • Bolt and Screw Compendium

    Steps 5 and 6By using the main dimensioning formula FMax = A* [FKerf + (1- )* FA + FZ + FVth],the maximum assembly preload as well the minimum required assembly preloadFMin = FMax / A of the bolted joint will be calculated.

    Step 7The result is to be compared against the table values for the bolt stress (FM) ) at a utilisation of the yield strength of 90% and the given friction factors. The condition FMzul FMmax or FMTab FMmax , must be fulfilled. The reference valuemust be calculated for specially designed bolts.Should the result lead to a necessary change in the bolt geometry or the ratio ofgrip length, the calculation is to be repeated right from step 2.

    Step 8It should be calculated whether the allowable bolt load during operation is notexceeded through the total bolt load of FSmax = FMzul + en* FAmax - FVth. Thecondition red , B < Rp0.2min should be fulfilled, where red, B represents the compa-rative stress from maximum tensile stress and torsional stress obtained from thesmallest cross-sectional area of the bolt. The simplified formula FSmax Rp0.2min* A0is acceptable for torsion-free joints. Furthermore, a safety factor can be incorporatedfor red, B < Rp0.2min / SF.

    Step 9The acceptable alternating stress A is relatively low for bolts as compared to theunthreaded wire. In case there is continious alternating stress, the joint should bechecked for the condition a AS where AS depends on whether the bolt hashad thread rolling before or after heat treatment. The existing alternating stress a isdetermined with respect to the tensile stress area of the bolt.

    Step 10In general, the surface pressure in the joints should not exceed the allowable surfa-ce pressure of the components concerned in either the assembly state pMmax orduring operation pBmax in order to avoid a decrease in the preload by creep processes.A safety factor can be included for pG pM, Bmax .

  • Step 11The length of full thread engagement available has to be determined in order toavoid stripping of the thread(s). Related to nominal diameter and strength the minimum values can be gathered from the VDI 2230 standard.

    Step 12The transverse loads working in the joint are generally transmitted by static frictionin the interfaces of the preloaded joint. Considering the number of interfaces andthe friction coefficients of the interfaces, a comparison has to be carried out betweenthe minimal residual clamp load FKRmin and the clamp load required for the trans-mission of the transverse loads FKQerf . A safety factor FKQerf < FKRmin / SF may alsobe included. If it comes to overloading of the joint, or also for the use of fittingbolts, one should avoid shearing the bolt. For that, max = FQmax / A B should be valid.

    Step 13The assembly torque required for the tightening of the bolts can be read from corresponding tables for 90 % bolt utilization, or can be calculated through MA = FMzul* [0.16* P + 0.58* d2* Gmin + DKm / 2* Kmin]. Additional moments in case connecting elements are used to prevent slacking and loosening have to be considered.

    18 19

  • Bolt and Screw Compendium

    3. Self loosening of bolted joints

    A bolted joint with a mechanically sound design and reliable assembly does notneed a locking device in most cases. In these cases, the applied clamping forcesobstruct relative movements on the bolted joint over the entire life.

    But under certain conditions, initial stress in the bolted joints can be broken down,reduced for a short time, or nullified.

    1. Relaxation of bolted joint through loss of preload as a result of compression or permanent elongations, e.g. creep.

    2. Dynamic load normal to the bolt axis can result in complete self-loosening of a bolt. This begins under a full preload when transverse shearing deformationoccurs as relative movement between joint components.

  • 20 21

    Mat

    rix f

    or S

    ecur

    ing

    Elem

    ents

    for

    Bol

    ted

    Join

    tsM

    echa

    nica

    l Saf

    ety

    Elem

    ents

    Nam

    eW

    orki

    ngSa

    fety

    Har

    dnes

    sIn

    stal

    lati

    onRe

    cycl

    e

    Lubr

    icat

    ion

    Surf

    ace

    of

    Shel

    f-lif

    e

    tem

    p.fo

    r dy

    n.of

    coun

    t of

    bol

    t/be

    arin

    gof

    pro

    duct

    Clo

    adbe

    arin

    gbe

    arin

    gsu

    rfac

    esu

    rfac

    esu

    rfac

    e

    Karip

    pU

    pto

    yes

    Mus

    t be

    La

    rger

    m

    ultip

    leAn

    y

    Min

    or

    unlim

    ited

    star

    ting

    less

    tha

    n fla

    nge

    lubr

    icat

    ion

    dam

    age,

    te

    mp.

    the

    tens

    iledi

    amet

    erpo

    ssib

    le

    not

    for

    st

    reng

    than

    d sp

    ace

    lacq

    uer

    of t

    he b

    olt

    requ

    irem

    ent

    Kalo

    kse

    rrat

    ion

    Upt

    oye

    sM

    ust

    be le

    ssLa

    rger

    mul

    tiple

    Any

    Maj

    orun

    limite

    dst

    artin

    gth

    an th

    e te

    n-fla

    nge

    lubr

    icat

    ion

    dam

    age,

    tem

    p.si

    le s

    tren

    gth

    diam

    eter

    poss

    ible

    not

    for

    of t

    he b

    olt:

    and

    spac

    ela

    cque

    rm

    ax. 4

    0 HR

    Cre

    quire

    men

    t

    Kalo

    k II

    Upt

    oye

    sM

    ust

    be le

    ssle

    ss s

    pace

    mul

    tiple

    Any

    Maj

    orun

    limite

    dst

    artin

    gth

    an th

    e te

    n-re

    quire

    men

    tlu

    bric

    atio

    nda

    mag

    e,te

    mp.

    sile

    str

    engt

    hpo

    ssib

    leno

    t fo

    rof

    the

    bol

    t:

    lacq

    uer

    max

    . 40

    HRC

    Plas

    tic

    lock

    ing

    -56

    cond

    ition

    alAl

    l le

    ss s

    pace

    mul

    tiple

    no4

    Year

    sPa

    tch

    coat

    ins

    bis

    hard

    ness

    esre

    quire

    men

    tsda

    mag

    ePA

    1112

    0

    Trilo

    bula

    rlo

    ckin

    g fe

    atur

    e of

    U

    pto

    cond

    ition

    alTe

    nsile

    stre

    ngth

    Lock

    ing

    mul

    tiple

    Any

    noun

    limite

    dTh

    read

    sth

    read

    form

    ing

    area

    in

    star

    ting

    of t

    he d

    rill

    effe

    ct o

    nly

    lubr

    icat

    ion

    dam

    age

    conn

    ectio

    n w

    ithte

    mp.

    mus

    t be

    less

    in b

    lind

    poss

    ible

    fem

    ale

    thre

    adth

    an t

    heho

    le b

    orin

    gste

    nsile

    stre

    ngth

    of t

    he b

    olt

  • Bolt and Screw Compendium

    Mat

    rix f

    or S

    ecur

    ing

    Elem

    ents

    for

    Bol

    ted

    Join

    tsM

    echa

    nica

    l Saf

    ety

    Elem

    ents

    Man

    ufac

    ture

    r,W

    orki

    ngSa

    fety

    for

    H

    ardn

    ess

    of

    Inst

    alla

    tion

    Recy

    cle

    Lubr

    icat

    ion

    Surf

    ace

    of

    Shel

    f-lif

    e tr

    adem

    ark

    tem

    p.dy

    n. L

    oad

    seal

    ing

    run

    coun

    tbo

    lt/

    seal

    ing

    run

    ofC

    seal

    ing

    run

    prod

    uct

    MVK

    ,O

    mni

    -U

    pto

    150

    yes

    All

    No

    easy

    secu

    ring

    N

    o 2

    4

    year

    s,

    red

    Tech

    nik

    hard

    ness

    esad

    ditio

    nal

    MVK

    not

    dam

    age

    less

    er a

    t

    Prec

    ote

    80sp

    ace

    with

    SM

    ; hi

    gh

    requ

    irem

    ents

    nut

    thre

    ad

    hum

    idity

    oilfr

    ee

    MVK

    ,3M

    Upt

    o 11

    0ye

    sAl

    l N

    oea

    syse

    curin

    g N

    o2

    4

    year

    s,

    blue

    Scot

    ch g

    ripha

    rdne

    sses

    addi

    tiona

    lM

    VK n

    ot

    dam

    age

    less

    er a

    t

    2353

    spac

    ew

    ith S

    M;

    high

    requ

    irem

    ents

    nut

    thre

    adhu

    mid

    ityoi

    lfree

    MVK

    ,O

    mni

    -U

    pto

    170

    yes

    All

    No

    easy

    secu

    ring

    No

    2

    4 ye

    ars,

    turq

    uois

    eTe

    chni

    kha

    rdne

    sses

    addi

    tiona

    lM

    VK n

    ot

    dam

    age

    less

    er a

    t

    Prec

    ote

    85sp

    ace

    with

    SM

    ;hi

    gh

    requ

    irem

    ents

    nut

    thre

    adhu

    mid

    ityoi

    lfree

    Liqu

    idye

    sAl

    so s

    uita

    ble

    No

    easy

    No

    adhe

    sive

    for

    high

    ad

    ditio

    nal

    dam

    age

    hard

    ness

    essp

    ace

    requ

    irem

    ents

  • 22

    4. Tightening joints

    The tightening methods used today are not able to measure the assembly preloaddirectly, but only as a function of the tightening torque, the elastic elongation, the tightening angle or the determination of the yield point of the bolt. The variationof the friction coefficients and the inaccuracy of the tightening methods do lead to a need for over dimensioning of the bolted joint, which is expressed by the tightening factor

    A = Fvmax / Fvmin

    4.1 Torque Controlled Tightening

    By tightening tests on original components, the friction coefficients are first determined,and the required torque is subsequently specified. This torque must be assigned in such a way that the elastic limit of the bolt is not exceeded even in adverse conditions e.g. low friction factor, etc. Pic 4.1. For hexagon bolts acc. DIN EN 24014and similar, the torque values are shown on table 4.1. These are valid for a stress inthe shank of 90 % of the standard minimum yield strenght according to VDI code2230. The table values represent the maximal torque values. For deviant head-geometry, the initial torque is calculated by

    MA = FM(0.16*P+0.58*d2*G+(DKm/2)*K)

    For torque-driven tightening, the designing of bolts is based on a A of 1.8 .

    Monitoring the final angle of rotation along with a given torque is recommendedfor the control of the assembly process. The tolerance range of the final angle ofrotation must be in a defined zone (window), which is established through tests. In case the final angle of rotation lies outside of this window, the driver indicates a failure.

    23

  • Bolt and Screw Compendium

    Fig. 4.1 Scatter of FM for torque controlled tightening of bolted joints

    4.2 Angle Controlled Tightening

    First the joint is loaded with a snug torque until all interfaces are completely closed. Subsequently a defined angle A will be applied, which is measured fromthe point the snug torque is achieved, with which the bolt will be tightened to or beyond the yield point.

    For the control of the tightening process a tolerance range for the final torque hasto be specified. The final torque must be in this range. The big advantage of this tightening process versus torque controlled tightening is that the elongation of the bolt in the plastic area is defined over thegiven angle. The cut off torque preferably lies above the yield point. The bolt willthus be used to the full. It therefore underlies a tightening factor A = 1.0 .

    150

    100

    50 50

    100

    150

    50 50

    MA

    max

    MA

    max

    MK

    MG

    A m

    ax

    MG

    A m

    in

    FF

    min

    FF

    min

    FM

    max

    FM

    maxF [kN]M

    = 0G

    = 0

    ,10

    G

    =

    0,16

    G

    =

    0,10

    ges

    =

    0,10

    ges

    =

    0,17

    1ge

    s

    =

    0,17

    1ge

    s

    =

    0,10

    ;

    G

    =

    0,10

    K

    =

    0,10

    ;

    G

    =

    0,10

    K

    =

    0,16

    ;G

    =

    0,18

    K

    =

    0,16

    ;G

    =

    0,18

    K

    F [kN]M

    MA

    min

    MA

    min

    FM FM

    MA

    MGAMA

    ,MK

    MAMAMA

    [Nm]

    MA[Nm]

    v = 0,9 v=1 v = 0,

    9 v=1

    1

    23

    4

  • Fig. 4.2Angle controlled tightening of bolted connections

    4.3 Yield Controlled Tightening

    Similar to angle controlled tightening, a snug torque will be applied until all inter-faces are completely closed. From this point, the angle and the attained torque aredynamically measured, and the respective differential ratio

    Ma/

    is calculated. This differential ratio is constant in the elastic region, and diminishesas it approaches the elastic limit of the bolt; the torque does not increase in proportion to the angle of rotation any more. When the value of the differentialratio declines to a pre determined value,

    e.g. 0.5*(Ma/)

    the assembly machine will be cut off and the tightening process is completed.

    24 25

    Angle

    Snugpoint

    Pre

    load

    FM

    50

    50

    100

    kN

    100 150grd

    A

    F

    M

    F

    M

    FF

    Rp 0,2 -Punkt

    AA

    F p 0,2

  • Bolt and Screw Compendium

    Fig. 4.3Yield controlled tighteningof bolted connections

    The position of the cut-off in the diagram Ma/ is essentially determined throughthe tensile strength of the bolt and the friction. The assembly preload varies withthe elastic limit of the bolt and thread friction (Fig. 4.4).

    Fig. 4.4Scatter of clampload due to variances of thread friction andyield point of fastener materialduring yield controlled tighteningof bolted joints

    Rp 0,2 -point

    Angle D

    iffer

    entia

    l quo

    tiant

    MAmax

    M

    A

    MAmax

    MA

    MA

    MA

    M

    A

    M

    A

    MF

    max

    Cut-off point

    = 0,5

    = f ()

    Pre

    load

    MA

    F

    Snugpoint

    Snu

    gtor

    que

    Snugangle

    1

    2

    3150

    150

    100

    100

    50

    50

    Nm

    grd

    =

    0,14

    ges

    =

    0,10

    ges

    = 0

    ,10

    G

    = 0G

    =

    0,12

    G

    =

    0,14

    G

    FM

    MG

    A

    R p 0,2 = 1100 N/mm2

    FM [kN]

    MGA ,MA[Nm]

    R p 0,2 = 940 N/mm2

    1

    2

    3

    4

    150

    100

    100

    50

    50

    AFMmax

    66,684,1 1,26

    FMmin= = =

  • For the control of the tightening, the min. and max. values of tightening torque androtating angle of tightening are calculated, or established through tests. Recordedin diagram Ma/, these values define a right angle, which is usually indicated by agreen window (Fig. 4.5). If the cut-off points lie within this range, the tighteningprocess is deemed OK.

    Fig 4.5 green window for yield controlled tightening of bolted joints

    As compared to the angle control, there is the advantage that the bolts undergo a smaller plastic elongation; of course the assembly preload level is somewhatlower.

    The required torque and the attained assembly preload can be estimated through multiplication of values from Table 4.1 with the following conversion factors:

    FM bzw. MA = 1.1-1.3* Table value

    26 27

    MAmax(Rp 0,2 =1100 N/mm

    2; G=K=0,14)

    (Rp 0,2 =1100 N/mm2; G=K=0,12)

    (Rp 0,2 =940 N/mm2; G=K=0,12)

    (Rp 0,2 =940 N/mm2; G=K=0,10)

    MAmax

    MAmin

    MAmin

    m

    in (R

    p 0,

    2 =

    940

    N/m

    m2 ;

    G=

    K=

    0,14

    )

    m

    in (R

    p 0,

    2 =

    940

    N/m

    m2 ;

    G=

    K=

    0,12

    )

    m

    ax (R

    p 0,

    2 =

    110

    0 N

    /mm

    2 ;

    G=

    K=

    0,12

    )

    m

    ax (R

    p 0,

    2 =

    110

    0 N

    /mm

    2 ;

    G=

    K=

    0,10

    )

    Angle

    Tigh

    teni

    ng to

    rque

    MA

    Snu

    gtor

    que

    Snugangle

    MF

    F

    150

    100

    50

    50 100 grd

    Nm

    bc

    a

    A'A

    A''

    Point Rp0.2 F mG mK[N/mm2] [kN]

    A 1020 75.3 0.120 0.120A' 960 70.2 0.125 0.134A" 1080 82.7 0.100 0.114a 870 65.4 0.110 0.130b 1200 85.2 0.140 0.100c 1000 87.2 0.080 0.140

  • Bolt and Screw Compendium

    Thre

    ad S

    ize

    Prop

    erty

    Asse

    mbl

    y Pr

    eloa

    d F M

    [kN

    ] fo

    r g

    Tigh

    teni

    ng T

    orqu

    e M

    A[N

    m]

    for

    k=

    gCl

    ass

    0.08

    0.10

    0.12

    0.16

    0.20

    0.08

    0.10

    0.12

    0.16

    0.20

    M6

    8.8

    10.7

    10.4

    10.2

    09.6

    09.0

    07.7

    09.0

    10.1

    12.3

    14.1

    AS=

    20.1

    mm

    210

    .915

    .715

    .314

    .914

    .113

    .211

    .313

    .214

    .918

    .020

    .712

    .918

    .417

    .917

    .516

    .515

    .513

    .215

    .417

    .421

    .124

    .2M

    78.

    815

    .515

    .114

    .814

    .013

    .112

    .614

    .816

    .820

    .523

    .6A

    S=

    28.9

    mm

    210

    .922

    .722

    .521

    .720

    .519

    .318

    .521

    .724

    .730

    .134

    .712

    .926

    .626

    .025

    .424

    .022

    .621

    .625

    .428

    .935

    .240

    .6M

    8 x

    1.0

    8.8

    21.2

    20.7

    20.2

    19.2

    18.1

    19.3

    22.8

    26.1

    32.0

    37.0

    AS=

    39.2

    mm

    210

    .931

    .130

    .429

    .728

    .126

    .528

    .433

    .538

    .347

    .054

    .312

    .936

    .435

    .634

    .732

    .931

    .033

    .239

    .244

    .955

    .063

    .6M

    8 x

    1.25

    8.8

    19.5

    19.1

    18.6

    17.6

    16.5

    18.5

    21.6

    24.6

    29.8

    34.3

    AS=3

    6.6

    mm

    210

    .928

    .728

    .027

    .325

    .824

    .327

    .231

    .836

    .143

    .850

    .312

    .933

    .632

    .832

    .030

    .228

    .431

    .837

    .242

    .251

    .258

    .9M

    9 x

    1.0

    8.8

    27.7

    27.2

    26.5

    25.2

    23.7

    28.0

    33.2

    38.1

    46.9

    54.4

    AS=

    51.0

    mm

    210

    .940

    .739

    .939

    .037

    .034

    .941

    .148

    .855

    .968

    .879

    .812

    .947

    .746

    .745

    .643

    .340

    .848

    .157

    .065

    .480

    .693

    .4M

    10 x

    1.0

    8.8

    35.2

    34.5

    33.7

    32.0

    30.2

    39.0

    46.0

    53.0

    66.0

    76.0

    AS=

    64.5

    mm

    210

    .951

    .750

    .649

    .547

    .044

    .457

    .068

    .078

    .097

    .011

    2.0

    12.9

    60.4

    59.2

    57.9

    55.0

    51.9

    69.0

    80.0

    91.0

    113.

    013

    1.0

    M10

    x 1

    .25

    8.8

    33.1

    32.4

    31.6

    29.9

    28.2

    38.0

    44.0

    51.0

    62.0

    72.0

    AS=

    61.2

    mm

    210

    .948

    .647

    .546

    .444

    .041

    .455

    .065

    .075

    .092

    .010

    6.0

    12.9

    56.8

    55.6

    54.3

    51.4

    48.5

    65.0

    76.0

    87.0

    107.

    012

    4.0

    4.1

    Clam

    p Lo

    ads

    and

    tigh

    teni

    ng t

    orqu

    es f

    or b

    olts

    wit

    h m

    etric

    thr

    ead

    acc

    DIN

    13 a

    ndhe

    ad c

    onfi

    gura

    tion

    acc

    D/E

    /I 4

    014

    for

    =

    0.9

  • 28 29

    M10

    x 1

    .58.

    831

    .030

    .329

    .627

    .926

    .336

    .043

    .048

    .059

    .068

    .0A

    S=

    58.0

    mm

    210

    .945

    .644

    .543

    .441

    .038

    .653

    .063

    .071

    .087

    .010

    0.0

    12.9

    53.3

    52.1

    50.8

    48.0

    45.2

    62.0

    73.0

    83.0

    101.

    011

    6.0

    M12

    x 1

    .25

    8.8

    50.1

    49.1

    48.0

    45.6

    43.0

    66.0

    79.0

    90.0

    111.

    012

    9.0

    AS=

    92.1

    mm

    210

    .973

    .672

    .170

    .566

    .963

    .297

    .011

    6.0

    133.

    016

    4.0

    190.

    012

    .986

    .284

    .482

    .578

    .373

    .911

    4.0

    135.

    015

    5.0

    192.

    022

    2.0

    M12

    x 1

    .58.

    847

    .646

    .645

    .543

    .140

    .664

    .076

    .087

    .010

    7.0

    123.

    0A

    S=

    88.1

    mm

    210

    .970

    .068

    .566

    .863

    .359

    .795

    .011

    2.0

    128.

    015

    7.0

    181.

    012

    .981

    .980

    .178

    .274

    .169

    .811

    1.0

    131.

    015

    0.0

    183.

    021

    2.0

    M12

    x 1

    .75

    8.8

    45.2

    44.1

    43.0

    40.7

    38.3

    63.0

    73.0

    84.0

    102.

    011

    7.0

    AS=

    84.3

    mm

    210

    .966

    .364

    .863

    .259

    .856

    .392

    .010

    8.0

    123.

    014

    9.0

    172.

    012

    .977

    .675

    .974

    .070

    .065

    .810

    8.0

    126.

    014

    4.0

    175.

    020

    1.0

    M14

    x 1

    .58.

    867

    .866

    .464

    .861

    .558

    .110

    4.0

    124.

    014

    2.0

    175.

    020

    3.0

    AS=

    125

    mm

    210

    .999

    .597

    .595

    .290

    .485

    .315

    3.0

    182.

    020

    9.0

    257.

    029

    9.0

    12.9

    116.

    511

    4.1

    111.

    410

    5.8

    99.8

    179.

    021

    3.0

    244.

    030

    1.0

    349.

    0M

    14 x

    2.0

    8.8

    62.0

    60.6

    59.1

    55.9

    52.6

    100.

    011

    7.0

    133.

    016

    2.0

    187.

    0A

    S=

    115

    mm

    210

    .991

    .088

    .986

    .782

    .177

    .214

    6.0

    172.

    019

    5.0

    238.

    027

    4.0

    12.9

    106.

    510

    4.1

    101.

    596

    .090

    .417

    1.0

    201.

    022

    9.0

    279.

    032

    1.0

    M16

    x 1

    .58.

    891

    .489

    .687

    .683

    .278

    .615

    9.0

    189.

    021

    8.0

    269.

    031

    4.0

    AS=

    167

    mm

    210

    .913

    4.2

    131.

    612

    8.7

    122.

    311

    5.5

    233.

    027

    8.0

    320.

    039

    6.0

    461.

    012

    .915

    7.1

    154.

    015

    0.6

    143.

    113

    5.1

    273.

    032

    5.0

    374.

    046

    3.0

    539.

    0M

    16 x

    2.0

    8.8

    84.7

    82.9

    80.9

    76.6

    72.2

    153.

    018

    0.0

    206.

    025

    2.0

    291.

    0A

    S=

    157

    mm

    210

    .912

    4.4

    121.

    711

    8.8

    112.

    610

    6.1

    224.

    026

    4.0

    302.

    037

    0.0

    428.

    012

    .914

    5.5

    142.

    413

    9.0

    131.

    712

    4.1

    262.

    030

    9.0

    354.

    043

    3.0

    501.

    0M

    18 x

    1.5

    8.8

    122.

    012

    0.0

    117.

    011

    2.0

    105.

    023

    7.0

    283.

    032

    7.0

    406.

    047

    3.0

    AS=

    216

    mm

    210

    .917

    4.0

    171.

    016

    7.0

    159.

    015

    0.0

    337.

    040

    3.0

    465.

    057

    8.0

    674.

    012

    .920

    4.0

    200.

    019

    6.0

    186.

    017

    6.0

    394.

    047

    2.0

    544.

    067

    6.0

    789.

    0

  • Bolt and Screw Compendium

    Thre

    ad S

    ize

    Prop

    erty

    Asse

    mbl

    y Pr

    eloa

    d F M

    [kN

    ] fo

    r g

    Tigh

    teni

    ng T

    orqu

    e M

    A[N

    m]

    for

    k=

    gCl

    ass

    0.08

    0.10

    0.12

    0.16

    0.20

    0.08

    0.10

    0.12

    0.16

    0.20

    M18

    x 2

    .08.

    811

    4.0

    112.

    010

    9.0

    104.

    098

    .022

    9.0

    271.

    031

    1.0

    383.

    044

    4.0

    AS=

    204

    mm

    210

    .916

    3.0

    160.

    015

    6.0

    148.

    013

    9.0

    326.

    038

    6.0

    443.

    054

    5.0

    632.

    012

    .919

    1.0

    187.

    018

    2.0

    173.

    016

    3.0

    381.

    045

    2.0

    519.

    063

    8.0

    740.

    0M

    18 x

    2.5

    8.8

    107.

    010

    4.0

    102.

    096

    .091

    .022

    0.0

    259.

    029

    5.0

    360.

    041

    5.0

    AS=

    193

    mm

    210

    .915

    2.0

    149.

    014

    5.0

    137.

    012

    9.0

    314.

    036

    9.0

    421.

    051

    3.0

    592.

    012

    .917

    8.0

    174.

    017

    0.0

    160.

    015

    1.0

    367.

    043

    2.0

    492.

    060

    1.0

    692.

    0M

    20 x

    1.5

    8.8

    154.

    015

    1.0

    148.

    014

    1.0

    133.

    032

    7.0

    392.

    045

    4.0

    565.

    066

    0.0

    AS=

    272

    mm

    210

    .921

    9.0

    215.

    021

    1.0

    200.

    019

    0.0

    466.

    055

    8.0

    646.

    080

    4.0

    90.0

    12.9

    257.

    025

    2.0

    246.

    023

    4.0

    222.

    054

    5.0

    653.

    075

    6.0

    941.

    011

    00.0

    M20

    x 2

    .58.

    813

    6.0

    134.

    013

    0.0

    123.

    011

    6.0

    308.

    036

    3.0

    415.

    050

    9.0

    588.

    0A

    S=

    245

    mm

    210

    .919

    4.0

    190.

    018

    6.0

    176.

    016

    6.0

    438.

    051

    7.0

    592.

    072

    5.0

    838.

    012

    .922

    7.0

    223.

    021

    7.0

    206.

    019

    4.0

    513.

    060

    5.0

    692.

    084

    8.0

    980.

    0M

    22 x

    1.5

    8.8

    189.

    018

    6.0

    182.

    017

    3.0

    164.

    044

    0.0

    529.

    061

    3.0

    765.

    089

    6.0

    AS=

    333

    mm

    210

    .926

    9.0

    264.

    025

    9.0

    247.

    023

    3.0

    627.

    075

    4.0

    873.

    010

    90.0

    1276

    .012

    .931

    5.0

    309.

    030

    3.0

    289.

    027

    3.0

    734.

    088

    2.0

    1022

    .012

    75.0

    1493

    .0M

    22 x

    2.5

    8.8

    170.

    016

    6.0

    162.

    015

    4.0

    145.

    041

    7.0

    495.

    056

    7.0

    697.

    080

    8.0

    AS=

    303

    mm

    210

    .924

    2.0

    237.

    023

    1.0

    213.

    020

    7.0

    595.

    070

    4.0

    807.

    099

    3.0

    1151

    .012

    .928

    3.0

    277.

    027

    1.0

    257.

    024

    2.0

    696.

    082

    4.0

    945.

    011

    62.0

    1347

    .0M

    24 x

    1.5

    8.8

    228.

    022

    4.0

    219.

    020

    9.0

    198.

    057

    0.0

    686.

    076

    9.0

    995.

    011

    66.0

    AS=

    401

    mm

    210

    .932

    5.0

    319.

    031

    2.0

    298.

    028

    2.0

    811.

    097

    7.0

    1133

    .014

    17.0

    1661

    .012

    .938

    0.0

    373.

    036

    6.0

    347.

    033

    0.0

    949.

    011

    43.0

    1326

    .016

    58.0

    1943

    .0M

    24 x

    2.0

    8.8

    217.

    021

    0.0

    209.

    019

    8.0

    187.

    055

    7.0

    666.

    076

    9.0

    955.

    011

    14.0

    AS=

    384

    mm

    210

    .931

    0.0

    304.

    029

    7.0

    282.

    026

    7.0

    793.

    094

    9.0

    1095

    .013

    60.0

    1586

    .012

    .936

    2.0

    355.

    034

    8.0

    331.

    031

    2.0

    928.

    011

    10.0

    1282

    .015

    91.0

    1856

    .0

  • 30 31

    M24

    x 3

    .08.

    819

    6.0

    192.

    018

    8.0

    178.

    016

    8.0

    529.

    062

    5.0

    714.

    087

    5.0

    1011

    .0A

    S=

    353

    mm

    210

    .928

    0.0

    274.

    026

    7.0

    253.

    023

    9.0

    754.

    089

    0.0

    1017

    .012

    46.0

    1440

    .012

    .932

    7.0

    320.

    031

    3.0

    296.

    027

    9.0

    882.

    010

    41.0

    1190

    .014

    58.0

    1685

    .0M

    27 x

    1.5

    8.8

    293.

    028

    8.0

    282.

    026

    9.0

    255.

    082

    2.0

    992.

    011

    53.0

    1445

    .016

    97.0

    AS=

    514

    mm

    210

    .941

    8.0

    410.

    040

    2.0

    383.

    036

    3.0

    1171

    .014

    13.0

    1643

    .020

    59.0

    2417

    .012

    .948

    9.0

    480.

    047

    0.0

    448.

    042

    5.0

    1370

    .016

    54.0

    1922

    .024

    09.0

    2828

    .0M

    27 x

    2.0

    8.8

    281.

    027

    6.0

    270.

    025

    7.0

    243.

    080

    6.0

    967.

    011

    19.0

    1394

    .016

    30.0

    AS=

    496m

    m2

    10.9

    400.

    039

    3.0

    384.

    036

    6.0

    346.

    011

    49.0

    1378

    .015

    94.0

    1986

    .023

    22.0

    12.9

    468.

    046

    0.0

    450.

    042

    8.0

    405.

    013

    44.0

    1612

    .018

    66.0

    2324

    .027

    17.0

    M27

    x 3

    .08.

    825

    7.0

    252.

    024

    6.0

    234.

    022

    0.0

    772.

    091

    5.0

    1050

    .012

    92.0

    1498

    .0A

    S=

    459

    mm

    210

    .936

    7.0

    359.

    035

    1.0

    333.

    031

    4.0

    1100

    .013

    04.0

    1496

    .018

    40.0

    2134

    .012

    .942

    9.0

    420.

    041

    0.0

    389.

    036

    7.0

    1287

    .015

    26.0

    1750

    .021

    53.0

    2497

    .0

  • Bolt and Screw Compendium

    4.5 Tightening Torques for bolt assembly beyond yield point

    The snug torques and angles of rotation in the following table are valid for bolt grip lengths from 1d to 4d which are assembled beyond yield (angle controlled and yield controlled tightening). For smaller and larger grip length,the required angle of rotation is to be determined by test on original components.In such cases, by keeping the same initial torques, rotation angles of 45 or 180should be considered. The reusability of these bolted joints is limited.

    Thread Property Initial Preload Force Tightening Torque Class Torque [kN] [Nm]

    [Nm] + overelastic angle overelastic angle Rotation controlled tightening controlled tighteningAngle 90

    FMmin FMmax MAmin MAmax8.8 8 10.5 14.5 10.0 17

    M 6 10.9 10 15.5 20 14.5 23.512.9 10 18.5 22.5 17.0 26.58.8 20 19.5 26 24.0 41

    M 8 10.9 20 29 36 35.5 5712.9 20 34 41.5 41.5 658.8 40 31 41.5 47.5 81

    M 10 10.9 50 45.5 57 70 11012.9 50 54 66 81 1308.8 60 48 64 85 154

    M 12 x 1.5 10.9 90 71 88 125 20012.9 90 83 100 145 2308.8 100 69 91 140 240

    M 14 x 1.5 10.9 150 100 125 205 33512.9 150 115 145 235 3808.8 120 95 125 215 380

    M 16 x 1.5 10.9 180 135 170 310 51012.9 180 160 195 360 5858.8 140 125 165 315 555

    M 18 x 1.5 10.9 210 175 220 450 74512.9 210 205 250 525 855

  • 32 33

    4.6 Recommended Values for Tightening Factors

    4.7 Recommended Minimum Length of Thread Engagement for Blind-hole Threads (VDI 2230)

    Tightening process Tightening factors a Remarks

    Yield point controlled, 1.18motorized or manual

    Angle of rotation controlled, 1.18 Snug torque (pre-tightening) and motorized or manual angle of rotation determined

    through experimentation

    Elongation measurement of 1.2calibrated bolt

    Hydraulic tightening 1.2 to 1.6 Long bolts: lower valuesShort bolts: higher values Established through measurement of elongation length and applied pressure

    Torque controlled, 1.4 to 1.6 Determination of required torque with torque wrench or through measurement of FM on precision screwdriver with the jointdynamic torque control 1.6 to 1.8 Nominal torque determined with

    the estimated friction coefficient of the particular case

    Torque controlled, 1.7 to 2.5 Pre-setting of power screwdriver with mechanical screwdriver with post torque, which isImpulse controlled, 2.5 to 4,0 established from the requiredwith impact wrench torque plus post torque

    Tensile Strength of Bolt 8.8 8.8 10.9 10.9Fineness of thread d/P < 9 9 < 9 9

    AlCuMg1 F 40 1.1 d 1.4 d

    GG 22 1.0 d 1.2 d 1.4 d

    St 37 1.0 d 1.25 d 1.4 d

    St 50 0.9 d 1.0 d 1.2 d

    C 45 V 0.8 d 0.9 d 1.0 d

  • Bolt and Screw Compendium

    5. Corrosion Protection and Lubrication

    5.1 Surface Coating System (Optional)Specifications as known at the time of printing.

    Symbol (abbr.) Basecoat Passivation Topcoat / Sealing

    Surfaces containing Cr(VI)

    Zn yellow Galv. Zinc Yellow -

    Zn + Metex LM Galv. Zinc (acid) Yellow Metex LM

    ZnFe black Galv. Zinc-Iron Black -

    ZnNi transparent Galv. Zinc-Nickel Transparent -

    ZnNi black Galv. Zinc-Nickel Black- -

    DAC 320 DACROMET 320 -

    DAC 500 DACROMET 500 -

    DAC 320 + Plus L DACROMET 320 Plus L

    Cr(VI)-free Surfaces

    op thin Zinc phosphate - -

    Zn transp. / Zn Thin III Galv. Zinc Thin layer Cr(III) -

    Zn Thin III + V Galv. Zinc Thin layer Cr(III) Sealing

    Zn Thick III Galv. Zinc Thick layer Cr(III) -

    Zn Thick III + V Galv. Zinc Thick layer Cr(III) Sealing

    ZnFe Pass III Galv. Zinc-Iron Containing Cr(III) -

    ZnFe Pass III + V Galv. Zinc-Iron Containing Cr(III), if black Sealing if black

    ZnNi Pass III Galv. Zinc-Nickel Containing Cr(III) -

    ZnNi Pass III + V Galv. Zinc-Nickel Containing Cr(III), if black Sealing if black

    DS (GZ) - DELTA-Seal (GZ)

    GEO 500 GEOMET 500 -

    DT/DP 100 (+ SM) DELTA-Tone / DELTA-Protekt KL 100 -

    GEOMET + V GEOMET 321 e.g. DACROLUB x

    DT / DP 100 + DS GZ DELTA-Tone / DELTA-Protekt KL 100 DELTA-Seal GZ

    DT / DP 100 + Klevercol DELTA-Tone / DELTA-Protekt KL 100 Klevercol

    GEOBLACK GEOMET 500 Plus ML black

    DP 100 + DP 30x DELTA-Protekt KL 100 DELTA-Protekt VH 30x

    GEO + Plus VL GEOMET 321 Plus VL

    GEOMET + Plus x GEOMET 321 Plus 10 / L / ML / M

    B 46 + B 18 x MAGNI B 46 MAGNI B 18 x

    1 Reference values for parts in new condition (head and thread ends) to be examined individually /these values can be reduced through subsequent handling operation

  • 34 35

    Optical characteristics Layer Additional NaCl-Test Resistance to thickness lubricant DIN 50 021 chemicals 1, 2

    [m] treatment RR (WR) 1, 2 (Rim-cleanser)

    Yellow 8 Necessary 144h (72h) -Yellowish 15 TTF 600h (192h) -Black 8 Necessary 360h (48h) -Silver 8 Necessary 480h (240h) -Black 8 Necessary 480h (120h) -Silver 5 / 8 Necessary 480h / 720h NoSilver 5 / 8 - (Possible) 480h / 720h NoSilver 5 - (Possible) 720h (Yes)

    Dark / black 1 - 4 Oiled 8h No

    Silver 8 Necessary 96h (6h) -Silver 8 If necessary 144h (48h) -Silver (iridescent) 8 Necessary 168h (72h) -Silver 8 If necessary 240h (96h) -(Silver) 8 Necessary 240h (24h) -Silver / black 8 If necessary 480h (120h) -(Silver) 8 Necessary 480h (120h) -Silver / black 8 If necessary 720h (240h) -Silver / black 10 If necessary 120h YesSilver 12 - (Possible) 480 / 720h NoSilver 8 / 12 If necessary 240h / 480h NoSilver 8 / 12 - (Possible) 480h conditionalSilver / black 12 - (Possible) 480h (120h) YesBlack 12 - (Possible) 480h (240h) YesBlack 12 - (Possible) 720h (120h) (Yes)Silver 12 - (Possible) 480 / 720h (Yes)Silver-gray 12 - (Possible) 480 / 720h (Yes)Silver-gray 12 - (Possible) 480 / 720h (Yes)Silver-gray 12 - (Possible) 480 / 720h Yes

    2 With Cr(VI)-free surfaces, a considerably stronger scaling should be accounted for, compared to surfaces containing with Cr(VI), as there's no self-healing effect

  • Bolt and Screw Compendium

    5.2 Lubrication

    The primary task of lubricants is to set up a defined and constant coefficient offriction. Along with this task, lubricants can also fulfill other functions (e.g. Anti-corrosion, chemical resistance, optical characteristics etc.) where applicable.

    Specifications VDA 235-101/ DIN 946 / DIN EN ISO 16047According to VDA 235-101, a total friction coefficient tot of 0.09 0.14 is requiredfor lubricated bolts (partial friction coefficients K and G between 0.08 and 0.16).The determination of the friction coefficients generally is performed according toDIN 946 and DIN EN ISO 16047 respectively.

    Influencing Factors(To be considered while choosing a suitable lubricant)The friction coefficients and their range, in practice, are greatly dependant on the following factors:

    Coating system of the bolt: Type of coating, thickness of layer etc. Bearing plates: hard (e.g. hardened steel), middle (e.g. auto-body sheet steel),

    soft (e.g. Al), uncoated / KTL-coated) Geometry of the bolt-head: Convex / Concave bearing surface,

    flange diameter, etc. Nut thread: un-coated / coated (type of coating), crimped nut, etc. End conditions: Temperature, dampness, tightening speed,

    multiple surfaces etc.

    NotesThe friction-coefficient window defined in the VDA test sheet 235-101 can generally beobtained by proper lubrication. The process-safe compliance in the serial productionwith acceptable range of distribution can still be problematic ( Influencing factors).In principle, integrated lubricants are best suited for majority applications. If required, friction coefficients over 0.14 can be reached through proper lubricanttreatment or through a single coating system without additional lubricant treatment.The spread of friction coefficients increases with increase in the coefficients. Friction coefficients under 0.08 are technically quite difficult to set, and are notdesired due to the required safety against self loosening of a joint.

  • Standard Lubricants with usual areas application (Example)

    36 37

    Product name Friction Coefficients Area of application(DIN 946)

    Subsequently-applied LubricantsGardorol CP 8006 or similar 0.08 0.14 Phosphated bolts

    (Motor bolts)

    Torque N Tension Fluid 0.09 0.14 Zinc-plated coats /galv. surface

    microGLEIT DF911 / 921 0.09 0.14 Zinc-plated coats /galv. surface

    Gleitmo 605 0.07 0.14 Galvanic surfaces

    Gleitmo 2332 V 0.09 0.14 Application withhigh temperatures

    OKS 1700 0.09 0.14 Aluminum bolts /thread-forming bolts

    OKS 1765 0.08 0.14 Thread-forming bolts

    Gleitmo 627 0.09 0.14 Austenitic bolts

    Integrated LubricantsTorque N Tension 11 / 15 0.08 0.14 / 0.12 0.18 Galvanic surfacesmicroGLEIT DCP 9000 0.09 0.14 Zinc-plated coats /

    galv. surface

    DACROLUB 10 / 15 0.10 0.14 / 0.15 0.20 DACROMET 320 /GEOMET 321

    Geomet 500 0.12 0.18 -

    Plus VL 0.09 0.14 GEOMET 321

    Plus L / ML / M 0.08 0.14 / 0.10 0.16 / DACROMET 320 / 0.15 0.20 GEOMET 321

    DELTA-Seal GZ 0.10 0.16 DELTA-Tone / DELTA-Protekt KL 100

    DP VH 301 GZ / VH 302 GZ 0.09 0.14 / 0.10 0.16 DELTA-Tone / DELTA-Protekt KL 100

    B 18 / B 18 N / B 18 T 0.12 0.18 / 0.15 0.21 / MAGNI B 460.18 0.24

  • Bolt and Screw Compendium

    6. Durability-compatible Configuration

    The fatigue limit of a bolted connection can be raised through the following measures:

    a) Rolling of threads after heat treatment; Please note: Disassembly of residual stress occurs during a temperature load.Hence it is important to note the working temperature and thermal load duringthe coating process.

    b) Cold worked bolts from annealed raw material or tensile strength class 800 K.

    c) The geometery of bolts constructed according to the largest possible elastic resilience. e.g. fully threaded parts, parts, waisted shank or reduced shank, hollow shaft option of the largest possible grip length.

    d) Observance of the thermal expansion of bolted parts and fastener. Choosing materials with similar coefficients of expansion if possible.

    e) Usage of MJ thread with enlarged core-radius according to DIN ISO 5855 sections 1-3.

    f) Equal load distribution in threads:1.) Nut materials of smaller E-modules (e.g. cast iron, Aluminum, Titanium)2.) Nut materials of lower tensile strength (Note depth of thread!)3.) Nuts designed as tensile-nuts

    g) Bolt head designed for fatigue endurance (e.g. bigger radius in head-shaft transition).Avoiding metal-cutting process, especially under the bolt head.

    h) Reduction of setting amount through:1.) Reduction of joint faces/clamped parts2.) Avoiding over-loading of bearing faces.

    (Note surface pressure!)3.) Usage of the smoothest possible bearing areas

  • 6.1 Estimation of fatigue limits (reference value)

    a) Heat treated after thread rolling

    ASV = 0.75 (180/d + 52)

    b) Heat treated before thread rolling

    ASG = (2 - FV / F0.2) ASV

    38 39

    +-

    +-

  • Bolt and Screw Compendium

    7. Miscellaneous

    7.1 Conversion tables for hardness and tensile strength

    Hardness test and Conversion Cold forming material and Punching in untempered Condition

    HB, HV, HRc and Tensile Strength(according to DIN 50150 Table A.1 Oct. 2000) values partly interpolated

    Brinell Conversion 2.5 [mm] 5 [mm] 10 [mm] HB HV HRc Rm1.839 [kN] 7.355 [kN] 29.42 [kN] [N/mm2]

    0.750 1.50 3.00 415 436 44.0 1407

    0.760 1.52 3.04 404 424 43.1 1367

    0.770 1.54 3.08 393 413 42.1 1331

    0.780 1.56 3.12 383 402 41.0 1295

    0.790 1.58 3.16 373 392 40.0 1262

    0.800 1.60 3.20 363 381 38.9 1225

    0.810 1.62 3.24 354 372 37.9 1195

    0.820 1.64 3.28 345 362 36.8 1163

    0.830 1.66 3.32 337 354 35.9 1137

    0.840 1.68 3.36 329 346 34.9 1111

    0.850 1.70 3.40 321 337 34.2 1082

    0.860 1.72 3.44 313 329 33.3 1056

    0.870 1.74 3.48 306 321 32.4 1031

    0.880 1.76 3.52 298 313 31.5 1005

    0.890 1.78 3.56 292 307 30.6 986

    0.900 1.80 3.60 285 299 29.8 960

    0.910 1.82 3.64 278 292 28.9 937

    0.920 1.84 3.68 272 286 27.9 918

    0.930 1.86 3.72 266 279 27.1 895

    0.940 1.88 3.76 260 273 26.2 876

    0.950 1.90 3.80 255 268 25.2 860

    0.960 1.92 3.84 249 261 24.5 837

    0.970 1.94 3.88 244 256 23.4 821

  • 40 41

    Brinell Conversion 2.5 [mm] 5 [mm] 10 [mm] HB HV HRc Rm1.839 [kN] 7.355 [kN] 29.42 [kN] [N/mm2]

    0.980 1.96 3.92 239 251 805

    0.990 1.98 3.96 234 246 789

    1.000 2.00 4.00 229 240 770

    1.010 2.02 4.04 224 235 754

    1.020 2.04 4.08 219 230 738

    1.030 2.06 4.12 215 226 725

    1.040 2.08 4.16 211 222 712

    1.050 2.10 4.20 207 217 696

    1.060 2.12 4.24 202 212 680

    1.070 2.14 4.28 198 208 667

    1.080 2.16 4.32 195 205 657

    1.090 2.18 4.36 191 201 644

    1.100 2.20 4.40 187 196 631

    1.110 2.22 4.44 184 193 621

    1.120 2.24 4.48 180 189 607

    1.130 2.26 4.52 177 186 597

    1.140 2.28 4.56 174 183 587

    1.150 2.30 4.60 170 179 573

    1.160 2.32 4.64 167 175 563

    1.170 2.34 4.68 164 172 553

    1.180 2.36 4.72 161 169 543

    1.190 2.38 4.76 158 166 533

    1.200 2.40 4.80 156 164 526

    1.210 2.42 4.84 153 161 516

    1.220 2.44 4.88 150 158 506

  • Bolt and Screw Compendium

    Hardness test and Conversion Cold forming material and Punching in tempered Condition

    HB, HV, HRc and Tensile Strength(according to DIN 50150 Table B.2 Oct. 2000) values partly interpolated

    Brinell Conversion 2.5 [mm] 5 [mm] 10 [mm] HBW HV HRc Rm1.839 [kN] 7.355 [kN] 29.42 [kN] [N/mm2]0.720 1.44 2.88 451 458 46.2 1424

    0.725 1.45 2.90 444 450 45.7 1401

    0.730 1.46 2.92 438 444 45.4 1390

    0.735 1.47 2.94 432 438 44.7 1365

    0.740 1.48 2.96 426 432 44.3 1347

    0.745 1.49 2.98 420 426 43.7 1328

    0.750 1.50 3.00 415 421 43.3 1317

    0.755 1.51 3.02 409 414 43.0 1294

    0.760 1.52 3.04 404 409 42.4 1281

    0.765 1.53 3.06 398 403 41.8 1260

    0.770 1.54 3.08 393 398 41.3 1244

    0.775 1.55 3.10 388 393 40.8 1238

    0.780 1.56 3.12 383 388 40.4 1214

    0.785 1.57 3.14 378 383 39.9 1198

    0.790 1.58 3.16 373 378 39.4 1185

    0.795 1.59 3.18 368 373 38.9 1168

    0.800 1.60 3.20 363 368 38.4 1152

    0.805 1.61 3.22 359 364 38.0 1140

    0.810 1.62 3.24 354 359 37.5 1125

    0.815 1.63 3.26 350 355 37.1 1113

    0.820 1.64 3.28 345 350 36.5 1097

    0.825 1.65 3.30 341 346 36.0 1085

    0.830 1.66 3.32 337 341 35.5 1073

    0.835 1.67 3.34 333 337 35.1 1060

    0.840 1.68 3.36 329 333 34.6 1046

    0.845 1.69 3.38 325 329 34.2 1033

  • 42 43

    Brinell Conversion 2.5 [mm] 5 [mm] 10 [mm] HB HV HRc Rm1.839 [kN] 7.355 [kN] 29.42 [kN] [N/mm2]0.850 1.70 3.40 321 325 33.7 1020

    0.855 1.71 3.42 317 321 33.2 1006

    0.860 1.72 3.44 313 317 32.7 994

    0.865 1.73 3.46 309 313 32.2 981

    0.870 1.74 3.48 306 310 31.8 972

    0.875 1.75 3.50 302 306 31.3 959

    0.880 1.76 3.52 298 302 30.8 946

    0.885 1.77 3.54 295 299 30.4 937

    0.890 1.78 3.56 292 296 29.9 925

    0.895 1.79 3.58 288 292 29.3 915

    0.900 1.80 3.60 285 289 28.9 906

    0.905 1.81 3.62 282 286 28.5 896

    0.910 1.82 3.64 278 282 28.0 883

    0.915 1.83 3.66 275 279 27.6 874

    0.920 1.84 3.68 272 276 27.1 864

    0.925 1.85 3.70 269 273 26.7 852

    0.930 1.86 3.72 266 270 26.2 845

    0.935 1.87 3.74 263 268 26.0 842

    0.940 1.88 3.76 260 266 25.6 832

    0.945 1.89 3.78 257 262 24.9 819

    0.950 1.90 3.80 255 260 24.6 813

    0.955 1.91 3.82 252 257 24.1 803

  • Bolt and Screw Compendium

    7.2 Size limit for regular (standard) and fine threads Metric ISO-threads, size limits for regular threads, DIN 13 Part 20, Oct 1983

    Sym

    bol

    max

    .m

    in.

    min

    .m

    ax.

    min

    .m

    in.

    max

    .m

    in.

    min

    .4h

    - 6

    h4h

    6h4g

    -6g

    4g6g

    4e-6

    e4e

    6e

    oute

    r=d

    3.00

    02.

    933

    2.89

    42.

    980

    2.91

    32.

    874

    2.95

    02.

    883

    2.84

    4M

    3 x

    0.5

    flank

    =d

    22.

    675

    2.62

    72.

    600

    2.65

    52.

    607

    2.58

    02.

    625

    2.57

    72.

    550

    core

    =d

    32.

    387

    2.32

    02.

    293

    2.36

    72.

    299

    2.27

    32.

    337

    2.27

    02.

    243

    oute

    r=d

    4.00

    03.

    910

    3.86

    03.

    978

    3.88

    83.

    838

    3.94

    43.

    854

    3.80

    4M

    4 x

    0.7

    flank

    =d

    23.

    545

    3.48

    93.

    455

    3.52

    33.

    467

    3.43

    33.

    489

    3.43

    33.

    399

    core

    =d

    33.

    141

    3.05

    83.

    024

    3.11

    93.

    036

    3.00

    23.

    085

    3.00

    22.

    968

    oute

    r=d

    5.00

    04.

    905

    4.85

    04.

    976

    4.88

    14.

    826

    4.94

    04.

    845

    4.79

    0M

    5 x

    0.8

    flank

    =d

    24.

    480

    4.42

    04.

    385

    4.45

    64.

    396

    4.36

    14.

    420

    4.36

    04.

    325

    core

    =d

    34.

    019

    3.92

    83.

    893

    3.99

    53.

    903

    3.86

    93.

    959

    3.86

    83.

    833

    oute

    r=d

    6.00

    05.

    888

    5.82

    05.

    974

    5.86

    25.

    794

    5.94

    05.

    828

    5.76

    0M

    6 x

    1.0

    flank

    =d

    25.

    350

    5.27

    95.

    238

    5.32

    45.

    253

    5.21

    25.

    290

    5.21

    95.

    178

    core

    =d

    34.

    773

    4.66

    34.

    622

    4.74

    74.

    637

    4.59

    64.

    713

    4.60

    34.

    562

    oute

    r=d

    7.00

    06.

    888

    6.82

    06.

    974

    6.86

    26.

    794

    6.94

    06.

    828

    6.76

    0M

    7 x

    1.0

    flank

    =d

    26.

    350

    6.27

    96.

    238

    6.32

    46.

    253

    6.21

    26.

    290

    6.21

    96.

    178

    core

    =d

    35.

    773

    5.66

    35.

    622

    5.74

    75.

    637

    5.59

    65.

    713

    5.60

    35.

    562

    oute

    r=d

    8.00

    07.

    868

    7.78

    87.

    972

    7.84

    07.

    760

    7.93

    77.

    805

    7.72

    5M

    8 x

    1.25

    flank

    =d

    27.

    188

    7.11

    37.

    070

    7.16

    07.

    085

    7.04

    27.

    125

    7.05

    07.

    007

    core

    =d

    36.

    466

    6.34

    36.

    300

    6.43

    86.

    315

    6.27

    26.

    403

    6.28

    06.

    237

    oute

    r=d

    9.00

    08.

    868

    8.78

    88.

    972

    8.84

    08.

    760

    8.93

    78.

    805

    8.72

    5M

    9 x

    1.25

    flank

    =d

    28.

    188

    8.11

    38.

    070

    8.16

    08.

    085

    8.04

    28.

    125

    8.05

    08.

    007

    core

    =d

    37.

    466

    7.34

    37.

    300

    7.43

    87.

    315

    7.27

    27.

    403

    7.28

    07.

    237

    oute

    r=d

    10.0

    009.

    850

    9.76

    49.

    968

    9.81

    89.

    732

    9.93

    39.

    783

    9.69

    7M

    10 x

    1.5

    flank

    =d

    29.

    026

    8.94

    18.

    894

    8.99

    48.

    909

    8.86

    28.

    959

    8.87

    48.

    827

    core

    =d

    38.

    160

    8.01

    77.

    970

    8.12

    87.

    985

    7.93

    88.

    093

    7.95

    07.

    903

    oute

    r=d

    11.0

    0010

    .850

    10.7

    6410

    .968

    10.8

    1810

    .732

    10.9

    3310

    .783

    10.6

    97M

    11 x

    1.5

    flank

    =d

    210

    .026

    9.94

    19.

    894

    9.99

    49.

    909

    9.86

    29.

    959

    9.87

    49.

    827

    core

    =d

    39.

    160

    9.01

    78.

    970

    9.12

    88.

    985

    8.93

    89.

    093

    8.95

    08.

    903

  • 44

    Metric ISO-threads, size limits for regular threads, DIN 13 Part 20, Oct 1983

    45

    Sym

    bol

    max

    .m

    in.

    min

    .m

    ax.

    min

    .m

    in.

    max

    .m

    in.

    min

    .4h

    - 6

    h4h

    6h4g

    -6g

    4g6g

    4e-6

    e4e

    6e

    oute

    r=d

    12.0

    0011

    .830

    11.7

    3511

    .966

    11.7

    9611

    .701

    11.9

    2911

    .759

    11.6

    64M

    12 x

    1.7

    5fla

    nk

    =d2

    10.8

    6310

    .768

    10.7

    1310

    .829

    10.7

    3410

    .679

    10.7

    9210

    .697

    10.6

    42co

    re

    =d3

    9.85

    39.

    691

    9.63

    59.

    819

    9.65

    69.

    602

    9.78

    29.

    619

    9.56

    5

    oute

    r=d

    14.0

    0013

    .820

    13.7

    2013

    .962

    13.7

    8213

    .682

    13.9

    2913

    .749

    13.6

    49M

    14 x

    2.0

    flank

    =d

    212

    .701

    12.6

    0112

    .541

    12.6

    6312

    .563

    12.5

    0312

    .630

    12.5

    3012

    .470

    core

    =d

    311

    .546

    11.3

    6911

    .309

    11.5

    0811

    .331

    11.2

    7111

    .475

    11.2

    9811

    .238

    oute

    r=d

    16.0

    0015

    .820

    15.7

    2015

    .962

    15.7

    8215

    .682

    15.9

    2915

    .749

    15.6

    49M

    16 x

    2.0

    flank

    =d

    214

    .701

    14.6

    0114

    .541

    14.6

    6314

    .563

    14.5

    0314

    .630

    14.5

    3014

    .470

    core

    =d

    313

    .546

    13.3

    6913

    .309

    13.5

    0813

    .331

    13.2

    7113

    .475

    13.2

    9813

    .238

    oute

    r=d

    18.0

    0017

    .788

    17.6

    6517

    .958

    17.7

    4617

    .623

    17.9

    2017

    .708

    17.5

    85M

    18 x

    2.5

    flank

    =d

    216

    .376

    16.2

    7016

    .206

    16.3

    3416

    .228

    16.1

    6416

    .296

    16.1

    9016

    .126

    core

    =d

    314

    .933

    14.7

    3114

    .666

    14.8

    9114

    .688

    14.6

    2514

    .853

    14.6

    5014

    .587

    oute

    r=d

    20.0

    0019

    .788

    19.6

    6519

    .958

    19.7

    4619

    .623

    19.9

    2019

    .708

    19.5

    85M

    20 x

    2.5

    flank

    =d

    218

    .376

    18.2

    7018

    .206

    18.3

    3418

    .228

    18.1

    6418

    .296

    18.1

    9018

    .126

    core

    =d

    316

    .933

    16.7

    3116

    .666

    16.8

    9116

    .688

    16.6

    2516

    .853

    16.6

    5016

    .587

    oute

    r=d

    22.0

    0021

    .788

    21.6

    6521

    .958

    21.7

    4621

    .623

    21.9

    2021

    .708

    21.5

    85M

    22 x

    2.5

    flank

    =d

    220

    .376

    20.2

    7020

    .206

    20.3

    3420

    .228

    20.1

    6420

    .296

    20.1

    9020

    .126

    core

    =d

    318

    .933

    18.7

    3118

    .666

    18.8

    9118

    .688

    18.6

    2518

    .853

    18.6

    5018

    .587

    oute

    r=d

    24.0

    0023

    .764

    23.6

    2523

    .952

    23.7

    1623

    .577

    23.9

    1523

    .679

    23.5

    40M

    24 x

    3.0

    flank

    =d

    222

    .051

    21.9

    2621

    .851

    22.0

    0321

    .878

    21.8

    0321

    .966

    21.8

    4121

    .766

    core

    =d

    320

    .319

    20.0

    7820

    .003

    20.2

    7120

    .030

    19.9

    5520

    .234

    19.9

    9319

    .918

    oute

    r=d

    27.0

    0026

    .764

    26.6

    2526

    .952

    26.7

    1626

    .577

    26.9

    1526

    .679

    26.5

    40M

    27 x

    3.0

    flank

    =d

    225

    .051

    24.9

    2624

    .851

    25.0

    0324

    .878

    24.8

    0324

    .966

    24.8

    4124

    .766

    core

    =d

    323

    .319

    23.0

    7823

    .003

    23.2

    7123

    .030

    22.9

    5523

    .234

    22.9

    9322

    .918

    oute

    r=d

    30.0

    0029

    .735

    20.5

    7529

    .947

    29.6

    8229

    .522

    29.9

    1029

    .645

    29.4

    85M

    30 x

    3.5

    flank

    =d

    227

    .727

    27.5

    9527

    .515

    27.6

    7427

    .542

    27.4

    6227

    .637

    27.5

    0527

    .425

    core

    =d

    325

    .706

    25.4

    3925

    .359

    25.6

    5325

    .386

    25.3

    0625

    .616

    25.3

    4925

    .269

  • Bolt and Screw Compendium

    Sym

    bol

    max

    .m

    in.

    min

    .m

    ax.

    min

    .m

    in.

    max

    .m

    in.

    min

    .4h

    - 6

    h4h

    6h4g

    -6g

    4g6g

    4e-6

    e4e

    6e

    oute

    r=d

    8.00

    07.

    910

    7.86

    07.

    978

    7.88

    87.

    838

    7.94

    47.

    854

    7.80

    4M

    8 x

    0.75

    flank

    =d

    27.

    513

    7.45

    07.

    413

    7.49

    17.

    428

    7.39

    17.

    457

    7.39

    47.

    357

    core

    =d

    37.

    080

    6.98

    86.

    951

    7.05

    86.

    968

    6.92

    97.

    024

    6.93

    26.

    895

    oute

    r=d

    8.00

    07.

    888

    7.82

    07.

    974

    7.86

    27.

    794

    7.94

    07.

    828

    7.76

    0M

    8 x

    1.0

    flank

    =d

    27.

    350

    7.27

    97.

    238

    7.32

    47.

    253

    7.21

    27.

    290

    7.21

    97.

    178

    core

    =d

    36.

    773

    6.66

    36.

    622

    6.74

    76.

    637

    6.59

    66.

    713

    6.60

    36.

    562

    oute

    r=d

    9.00

    08.

    888

    8.82

    08.

    974

    8.86

    28.

    794

    8.94

    08.

    828

    8.76

    0M

    9 x

    1.0

    flank

    =d

    28.

    350

    8.27

    98.

    238

    8.32

    48.

    253

    8.21

    28.

    290

    8.21

    98.

    178

    core

    =d

    37.

    773

    7.66

    37.

    622

    7.74

    77.

    637

    7.59

    67.

    713

    7.60

    37.

    562

    oute

    r=d

    10.0

    009.

    888

    9.82

    09.

    974

    9.86

    29.

    794

    9.94

    09.

    828

    9.76

    0M

    10 x

    1.0

    flank

    =d

    29.

    350

    9.27

    99.

    238

    9.32

    49.

    253

    9.21

    29.

    290

    9.21

    99.

    178

    core

    =d

    38.

    773

    8.66

    38.

    622

    8.74

    78.

    637

    8.59

    68.

    713

    8.60

    38.

    562

    oute

    r=d

    10.0

    009.

    868

    9.78

    89.

    982

    9.84

    09.

    760

    9.93

    79.

    805

    9.72

    5M

    10 x

    1.2

    5fla

    nk

    =d2

    9.18

    89.

    113

    9.07

    09.

    160

    9.08

    59.

    042

    9.12

    59.

    050

    9.00

    7co

    re

    =d3

    8.46

    68.

    343

    8.30

    08.

    438

    8.31

    58.

    272

    8.40

    38.

    280

    8.23

    7

    oute

    r=d

    12.0

    0011

    .888

    11.8

    2011

    .974

    11.8

    6211

    .794

    11.9

    4011

    .828

    11.7

    60M

    12 x

    1.0

    flank

    =d

    211

    .350

    11.2

    7511

    .232

    11.3

    2411

    .249

    11.2

    0611

    .290

    11.2

    1511

    .172

    core

    =d

    310

    .773

    10.6

    5910

    .616

    10.7

    4710

    .633

    10.5

    9010

    .713

    10.5

    9910

    .556

    oute

    r=d

    12.0

    0011

    .868

    11.7

    8811

    .972

    11.8

    4011

    .760

    11.9

    3711

    .805

    11.7

    25M

    12 x

    1.2

    5fla

    nk

    =d2

    11.1

    8811

    .103

    11.0

    5611

    .160

    11.0

    7511

    .028

    11.1

    2511

    .040

    10.9

    93co

    re

    =d3

    10.4

    6610

    .333

    10.2

    8610

    .438

    10.3

    0510

    .258

    10.4

    0310

    .270

    10.2

    23

    oute

    r=d

    12.0

    0011

    .850

    11.7

    6411

    .968

    11.8

    1811

    .732

    11.9

    3311

    .783

    11.6

    97M

    12 x

    1.5

    flank

    =d

    211

    .026

    10.9

    3610

    .886

    10.9

    9410

    .904

    10.8

    5410

    .959

    10.8

    6910

    .819

    core

    =d

    310

    .160

    10.0

    129.

    962

    10.1

    289.

    980

    9.93

    010

    .093

    9.94

    59.

    895

    oute

    r=d

    14.0

    0013

    .888

    13.8

    2013

    .974

    13.8

    6213

    .794

    13.9

    4013

    .828

    13.7

    60M

    14 x

    1.0

    flank

    =d

    213

    .350

    13.2

    7513

    .232

    13.3

    2413

    .249

    13.2

    0613

    .290

    13.2

    1513

    .172

    core

    =d

    312

    .773

    12.6

    5912

    .616

    12.7

    4712

    .633

    12.5

    9012

    .713

    12.5

    9912

    .556

    oute

    r=d

    14.0

    0013

    .850

    13.7

    6413

    .968

    13.8

    1813

    .732

    13.9

    3313

    .783

    13.6

    97M

    14 x

    1.5

    flank

    =d

    213

    .026

    12.9

    3612

    .886

    12.9

    9412

    .904

    12.8

    5412

    .959

    12.8

    6912

    .819

    core

    =d

    312

    .160

    12.0

    1211

    .962

    12.1

    2811

    .980

    11.9

    3012

    .093

    11.9

    4511

    .895

    Metric ISO-threads, size limits for fine pitch threads, DIN 13 Part 21, Oct 1983

  • 46

    Sym

    bol

    max

    .m

    in.

    min

    .m

    ax.

    min

    .m

    in.

    max

    .m

    in.

    min

    .4h

    - 6

    h4h

    6h4g

    -6g

    4g6g

    4e-6

    e4e

    6e

    oute

    r=d

    16.0

    0015

    .888

    15.8

    2015

    .974

    15.8

    6215

    .794

    15.9

    4015

    .828

    15.7

    60M

    16 x

    1.0

    flank

    =d

    215

    .350

    15.2

    7515

    .232

    15.3

    2415

    .249

    15.2

    0615

    .290

    15.2

    1515

    .172

    core

    =d

    314

    .773

    14.6

    5914

    .616

    14.7

    4714

    .633

    14.5

    9014

    .713

    14.5

    9914

    .556

    oute

    r=d

    16.0

    0015

    .850

    15.7

    6415

    .968

    15.8

    1815

    .732

    15.9

    3315

    .783

    15.6

    97M

    16 x

    1.5

    flank

    =d

    215

    .026

    14.9

    3614

    .886

    14.9

    9414

    .904

    14.8

    5414

    .959

    14.8

    6914

    .819

    core

    =d

    314

    .160

    14.0

    1213

    .962

    14.1

    2813

    .980

    13.9

    3014

    .093

    13.9

    4513

    .895

    oute

    r=d

    18.0

    0017

    .850

    17.7

    6417

    .968

    17.8

    1817

    .732

    17.9

    3317

    .783

    17.6

    97M

    18 x

    1.5

    flank

    =d

    217

    .026

    16.9

    3616

    .886

    16.9

    9416

    .904

    16.8

    5416

    .959

    16.8

    6916

    .819

    core

    =d

    316

    .160

    16.0

    1215

    .962

    16.1

    2815

    .980

    15.9

    3016

    .093

    15.9

    4515

    .895

    oute

    r=d

    18.0

    0017

    .820

    17.7

    2017

    .962

    17.7

    8217

    .682

    17.9

    2917

    .749

    17.6

    49M

    18 x

    2.0

    flank

    =d

    216

    .701

    16.6

    0116

    .541

    16.6

    6316

    .563

    16.5

    0316

    .630

    16.5

    3016

    .470

    core

    =d

    315

    .546

    15.3

    6915

    .309

    15.5

    0815

    .331

    15.2

    7115

    .475

    15.2

    9815

    .238

    oute

    r=d

    20.0

    0019

    .850

    19.7

    6419

    .968

    19.8

    1819

    .732

    19.9

    3319

    .783

    19.6

    97M

    20 x

    1.5

    flank

    =d

    219

    .026

    18.9

    3618

    .886

    18.9

    9418

    .904

    18.8

    5418

    .959

    18.8

    6918

    .819

    core

    =d

    318

    .160

    18.0

    1217

    .962

    18.1

    2817

    .980

    17.9

    3018

    .093

    17.9

    4517

    .895

    oute

    r=d

    20.0

    0019

    .820

    19.7

    2019

    .962

    19.7

    8219

    .682

    19.9

    2919

    .749

    19.6

    49M

    20 x

    2.0

    flank

    =d

    218

    .701

    18.6

    0118

    .541

    18.6

    6318

    .563

    18.5

    0318

    .630

    18.5

    3018

    .470

    core

    =d

    317

    .546

    17.3

    6917

    .309

    17.5

    0817

    .331

    17.2

    7117

    .475

    17.2

    9817

    .238

    oute

    r=d

    22.0

    0021

    .850

    21.7

    6421

    .968

    21.8

    1821

    .732

    21.9

    9321

    .783

    21.6

    97M

    22 x

    1.5

    flank

    =d

    221

    .026

    20.9

    3620

    .886

    20.9

    9420

    .904

    20.8

    5420

    .959

    20.8

    6920

    .819

    core

    =d

    320

    .160

    20.0

    1219

    .962

    20.1

    2819

    .980

    19.9

    3020

    .093

    19.9

    4519

    .895

    oute

    r=d

    22.0

    0021

    .820

    21.7

    2021

    .962

    21.7

    8221

    .682

    21.9

    2921

    .749

    21.6

    49M

    22 x

    2.0

    flank

    =d

    220

    .701

    20.6

    0120

    .541

    20.6

    6320

    .563

    20.5

    0320

    .630

    20.5

    3020

    .470

    core

    =d

    319

    .546

    19.3

    6919

    .309

    19.5

    0819

    .331

    19.2

    7119

    .475

    19.2

    9819

    .238

    oute

    r=d

    24.0

    0023

    .850

    23.7

    6423

    .968

    23.8

    1823

    .732

    23.9

    3323

    .783

    23.6

    97M

    24 x

    1.5

    flank

    =d

    223

    .026

    22.9

    3122

    .876

    22.9

    9422

    .899

    22.8

    4422

    .959

    22.8

    6422

    .809

    core

    =d

    322

    .160

    22.0

    0721

    .952

    22.1

    2821

    .975

    21.9

    2022

    .093

    21.9

    4021

    .885

    oute

    r=d

    24.0

    0023

    .820

    23.7

    2023

    .962

    23.7

    8223

    .682

    23.9

    2923

    .749

    23.6

    49M

    24 x

    2.0

    flank

    =d

    222

    .701

    22.5

    9522

    .531

    22.6

    6322

    .557

    22.4

    9322

    .630

    22.5

    2422

    .460

    core

    =d

    321

    .546

    21.3

    6321

    .299

    21.5

    0821

    .325

    21.2

    6121

    .475

    21.2

    9221

    .228

    Metric ISO-threads, size limits for fine pitch threads, DIN 13 Part 21, Oct 1983

    47

  • Bolt and Screw Compendium

    7.3 GO Screw ring gage measurement acc. DIN/ISO 1502 edition 01/12.96th

    read

    sm

    in.

    Flan

    k-

    Flan

    k-

    Tigh

    teni

    ngco

    re-

    oute

    r-

    (tol

    eran

    cew

    ear

    limit

    torq

    ue

    ball

    cont

    act

    Test

    dim

    ensi

    on

    Test

    Dim

    ensi

    on

    (tol

    eran

    cein

    m

    )N

    m m

    ax.

    M (t

    ol. i

    n m

    )M

    wor

    n ou

    tin

    m

    )

    M6

    -6h

    6.08

    15.

    348

    7

    5.36

    40.

    220.

    620

    5.59

    2

    75.

    608

    4.91

    7

    7M

    8-6

    h8.

    099

    7.18

    6

    77.

    202

    0.51

    0.72

    57.

    5416

    77.

    5576

    6.64

    7

    7M

    8 x

    1.0

    -6h

    8.08

    17.

    348

    7

    7.36

    40.

    510.

    620

    7.59

    3

    77.

    609

    6.91

    7

    7M

    10-6

    h10

    .119

    59.

    018

    9

    9.03

    91.

    00.

    837

    9.47

    8

    99.

    499

    8.37

    6

    9M

    10 x

    1.0

    -6h

    10.0

    819.

    348

    7

    9.36

    41.

    00.

    620

    9.59

    34

    79.

    6094

    8.91

    7

    7M

    10 x

    1.2

    5-6

    h10

    .099

    9.18

    6

    79.

    202

    1.0

    0.72

    59.

    5424

    7

    9.55

    848.

    647

    7

    M12

    -6h

    12.1

    375

    10.8

    55

    910

    .876

    1.73

    1.10

    11.2

    68

    9

    11.2

    8910

    .106

    9

    M12

    x 1

    .0-6

    h12

    .081

    11.3

    48

    711

    .364

    1.73

    0.62

    011

    .593

    6

    711

    .609

    610

    .917

    7

    M12

    x 1

    .25

    -6h

    12.1

    0111

    .180

    9

    11.2

    011.

    730.

    725

    11.5

    368

    9

    11.5

    578

    10.6

    47

    9M

    12 x

    1.5

    -6h

    12.1

    195

    11.0

    18

    911

    .039

    1.73

    0.83

    711

    .478

    7

    911

    .499

    710

    .376

    9

    M14

    -6h

    14.1

    555

    12.6

    93

    912

    .714

    2.7

    1.11

    213

    .310

    7

    913

    .331

    711

    .835

    9

    M14

    x 1

    .0-6

    h14

    .081

    13.3

    48

    713

    .364

    2.7

    0.62

    013

    .593

    7

    713

    .609

    712

    .917

    7

    M14

    x 1

    .5-6

    h14

    .119

    513

    .018

    9

    13.0

    392.

    70.

    837