BNBC Part 6-Chap 2_26-08-2012

download BNBC Part 6-Chap 2_26-08-2012

of 131

Transcript of BNBC Part 6-Chap 2_26-08-2012

  • 8/10/2019 BNBC Part 6-Chap 2_26-08-2012

    1/131

    Chapter 2

    LOADS ON BUILDINGS AND STRUCTURES2.1 INTRODUCTION2.1.1 SCOPEThis chapter specifies the minimum design forces including dead load, live load, wind and earthquake loads,

    miscellaneousloadsandtheirvariouscombinations.Theseloadsshallbeapplicableforthedesignofbuildings

    andstructuresinconformancewiththegeneraldesignrequirementsprovidedinChapter1.

    2.1.2 LIMITATIONS

    Provisionsofthischaptershallgenerallybeappliedtomajorityofbuildingsandotherstructurescoveredinthis

    code subject to normally expected loading conditions. For those buildings and structures having unusual

    geometricalshapes,responsecharacteristicsorsite locations,orforthosesubjecttospecialloading including

    tornadoes, special dynamic or hydrodynamic loads etc., sitespecific or casespecific data or analysis may be

    required to determine the design loads on them. In such cases, and all other cases for which loads are not

    specifiedinthischapter,loadinginformationmaybeobtainedfromreliablereferencesorspecialistadvicemay

    besought.However,suchloadsshallbeappliedincompliancewiththeprovisionsofotherpartsorsectionsof

    thisCode.

    2.2 DEADLOADS

    2.2.1 GENERAL

    Theminimumdesigndeadloadforbuildingsandportionsthereofshallbedetermined inaccordancewiththe

    provisionsofthissection.Inaddition,designoftheoverallstructureanditsprimaryloadresistingsystemsshall

    conformtothegeneraldesignprovisionsgiveninChapter1.

    2.2.2 DEFINITION

    DeadLoad is thevertical loadduetotheweightof permanentstructuralandnonstructuralcomponents and

    attachmentsofabuildingsuchaswalls,floors,ceilings,permanentpartitionsandfixedserviceequipmentetc.

    2.2.3 ASSESSMENTOFDEADLOAD

    Deadloadforastructuralmembershallbeassessedbasedontheforcesdueto:

    weightofthememberitself,

    weightofallmaterialsofconstructionincorporatedintothebuildingtobesupportedpermanentlyby

    themember,

    weightofpermanentpartitions,

    weightoffixedserviceequipment,and

    neteffectofprestressing.

  • 8/10/2019 BNBC Part 6-Chap 2_26-08-2012

    2/131

    Part6

    2

    2.2.4 WEIGHTOFMATERIALSANDCONSTRUCTIONS

    Inestimatingdead loads,theactualweightsofmaterialsandconstructionsshallbeused,providedthatinthe

    absenceofdefiniteinformation,theweightsgiveninTables2.2.1and2.2.2shallbeassumedforthepurposes

    ofdesign.

    Table 2.2.1:UnitWeightofBasicMaterials

    Material Unitweight(kN/m3) Material UnitWeight

    (kN/m3)AluminiumAsphaltBrassBronzeBrickCementCoal, looseConcrete stone aggregate (unreinforced) brick aggregate (unreinforced)CopperCork, normal

    Cork, compressedGlass, window (sodalime)

    27.021.283.687.718.914.78.822.8*20.4*86.41.73.725.5

    Granite, BasaltIron cast wroughtLeadLimestoneMarbleSand, drySandstoneSlateSteelStainless SteelTimberZinc

    26.470.775.4111.024.526.415.722.628.377.078.755.911.070.0* for reinforced concrete, add 0.63 kN/m3for each 1% by volume of main reinforcement

    2.2.5 WEIGHTOFPERMANENTPARTITIONS

    When partition walls are indicated on the plans, their weight shall be considered as dead load acting as

    concentrated lineloadsintheiractualpositionsonthefloor.Theloadsduetoanticipatedpartitionwalls,which

    arenotindicatedontheplans,shallbetreatedasliveloadsanddeterminedinaccordancewithSec2.3.2.4.

    2.2.6 WEIGHTOFFIXEDSERVICEEQUIPMENT

    Weights of fixed service equipment and other permanent machinery, such as electrical feeders and other

    machinery,heating,ventilatingandairconditioning systems,liftsandescalators,plumbingstacksandrisersetc.

    shallbeincludedasdeadloadwheneversuchequipmentaresupported bystructuralmembers.

    2.2.7 ADDITIONALLOADS

    In evaluating the final dead loads on a structural member for design purposes, allowances shall be made for

    additional loads resulting from the (i) difference between the prescribed and the actual weights of the

    members and construction materials;(ii) inclusion offuture installations; (iii) changes in occupancy oruse of

    buildings;and(iv)inclusionofstructuralandnonstructuralmembersnotcoveredinSec2.2.2and2.2.3.

    2.3 LIVELOADS

    2.3.1 GENERAL

    Thelive loadsusedforthestructuraldesignoffloors,roof andthesupportingmembersshallbethegreatest

    appliedloadsarisingfromtheintendeduseoroccupancyofthebuilding,orfromthestackingofmaterialsand

    the use of equipment and propping during construction, but shall not be less than the minimum design live

    loads set out by the provisions of this section. For the design of structural members for forces including live

    loads,requirementsoftherelevantsectionsofChapter1shallalsobefulfilled.

  • 8/10/2019 BNBC Part 6-Chap 2_26-08-2012

    3/131

    Chapter2

    3

    Table2.2.2DeadLoad

    Material / Component / Member Weight perUnit Area(kN/m2) MaterialWeightperUnit Area(kN/m2)

    Floor

    Asphalt, 25 mm thickClay tiling, 13 mm thickConcrete slab (stone aggregate)* solid, 100 mm thicksolid, 150 mm thickGalvanized steel floor deck (excl. topping)Magnesium oxychloridenormal (sawdust filler), 25 mm thickheavy duty (mineral filler), 25 mm thickTerrazzo paving 16 mm thickRoofAcrylic resin sheet, corrugated 3 mm thick, standard corrugations3 mm thick, deep corrugationsAsbestos cement, corrugated sheeting (incl. lap and fastenings)

    6 mm thick (standard corrugations)6 mm thick(deep corrugations)Aluminium, corrugated sheeting (incl. lap and fastenings)1.2 mm thick0.8 mm thick0.6 mm thickAluminium sheet(plain) 1.2 mm thick1.0 mm thick0.8 mm thickBituminous felt(5 ply) and gravelSlates 4.7 mm thick9.5 mm thickSteel sheet, flat galvanized 1.00 mm thick0.80 mm thick0.60 mm thickSteel, galvanized std. corrugated sheeting (incl. lap and fastenings)1.0 mm thick0.8 mm thick0.6 mm thickTiles terracotta (French pattern)concrete , 25 mm thickclay tiles

    0.5260.2682.3603.5400.1470.3830.3450.5270.4310.0430.062

    0.1340.1580.0480.0280.0240.0330.0240.0190.4310.3350.6710.0820.0670.0530.1200.0960.0770.5750.5270.60.9

    WallsandPartitions

    Acrylic resin sheet, flat, per mmthicknessAsbestos cement sheeting 4.5 mm thick6.0 mm thickBrick masonry work, excl. plaster burnt clay, per 100 mmthickness sandlime, per 100 mmthicknessConcrete (stone aggregate)* 100 mm thick150 mm thick250 mm thickFibre insulation board, per 10 mmthicknessFibrous plaster board, per 10 mmthicknessGlass, per 10 mm thicknessHardboard, per 10 mm thicknessParticle or flake board, per 10 mmthicknessPlaster board, per 10 mm thicknessPlywood, per 10 mm thicknessCeilingFibrous plaster, 10 mm thickCement plaster, 13 mm thickSuspended metal lath and plaster(two faced incl. studding)MiscellaneousFelt (insulating), per 10 mm thicknessPlaster cement, per 10 mm thickness

    lime, per 10 mm thicknessPVC sheet, per 10 mm thicknessRubber paving, per 10 mm thicknessTerracotta Hollow Block Masonry 75 mm thick100 mm thick150 mm thick

    0.0120.0720.1061.9101.9802.3603.5405.9000.0340.0920.2690.9610.0750.0920.0610.0810.2870.4800.0190.2300.1910.1530.1510.6710.9951.388

    * for brick aggregate, 90% of the listed values may be used.2.3.2 DEFINITION

    Live load is the load superimposed by the use or occupancy of the building not including the environmental

    loadssuchaswindload,rainload,earthquakeloadordeadload.

    2.3.3 MINIMUMFLOORLIVELOADS

    The minimum floor live loads shall be the greatest actual imposed loads resulting from the intended use or

    occupancyofthefloor,andshallnotbelessthantheuniformlydistributedloadpatternsspecifiedinSec2.3.4

    ortheconcentratedloadsspecifiedinSec2.3.5whicheverproducesthemostcriticaleffect.Theliveloadsshall

    beassumedtoactverticallyupontheareaprojectedonahorizontalplane.

  • 8/10/2019 BNBC Part 6-Chap 2_26-08-2012

    4/131

    Part6

    4

    Table2.3.1 MinimumUniformlyDistributedLiveLoads,AndMinimumConcentratedLiveLoads

    OccupancyorUse Uniform

    kN/m2

    Conc.

    kN

    Apartments(seeResidential)

    Accessfloorsystems

    Officeuse

    Computeruse

    2.4

    4.79

    8.9

    8.9

    Armoriesanddrillrooms 7.18

    Assemblyareasandtheaters

    Fixedseats(fastenedtofloor)

    Lobbies

    Movableseats

    Platforms(assembly)

    Stagefloors

    2.87

    4.79

    4.79

    4.79

    7.18

    Balconies(exterior)

    Onone andtwofamilyresidencesonly,andnotexceeding19.3m2

    4.79

    2.87

    Bowlingalleys,poolrooms,andsimilarrecreationalareas 3.59

    Catwalksformaintenanceaccess 1.92 1.33

    Corridors

    Firstfloor

    Otherfloors,sameasoccupancyservedexceptasindicated

    4.79

    Dancehallsandballrooms 4.79

    Decks(patioandroof)Sameasareaserved,orforthetypeofoccupancyaccommodated

    Diningroomsandrestaurants 4.79

    Dwellings(seeResidential)

    Elevatormachineroomgrating(onareaof2,580mm2) 1.33

    Finishlightfloorplateconstruction(onareaof645mm2) 0.89

    Fireescapes

    Onsinglefamilydwellingsonly

    4.79

    1.92

    Fixedladders SeeSection2.3.11

    Garages(passengervehiclesonly)Trucksandbuses 1.92a,b

    Grandstands(seeStadiumsandarenas,Bleachers)

    Gymnasiumsmainfloorsandbalconies 4.79

    Handrails,guardrails,andgrabbars SeeSection2.3.11Hospitals

    Operatingrooms,laboratories

    Patientrooms

    Corridorsabovefirstfloor

    2.87

    1.92

    3.83

    4.45

    4.45

    4.45

    Hotels(seeResidential)

    Libraries

    Readingrooms

    Stackrooms

    Corridorsabovefirstfloor

    2.87

    7.18c

    3.83

    4.45

    4.45

    4.45

    Manufacturing

    Light

    Heavy

    6.00

    11.97

    8.90

    13.40

    Marquees 3.59

    OfficeBuildings

    Fileandcomputerroomsshallbedesignedforheavierloadsbasedonanticipated

    occupancy

    Lobbiesandfirstfloorcorridors

    Offices

    Corridorsabovefirstfloor

    4.79

    2.40

    3.83

    8.90

    8.90

    8.90

  • 8/10/2019 BNBC Part 6-Chap 2_26-08-2012

    5/131

    Chapter2

    5

    Table2.3.1 MinimumUniformlyDistributedLiveLoads,AndMinimumConcentratedLiveLoads(Contd.)

    PenalInstitutions

    Cellblocks

    Corridors

    1.92

    4.79

    Residential

    Dwellings(one andtwofamily)

    Uninhabitableatticswithoutstorage

    Uninhabitableatticswithstorage

    Habitableatticsandsleepingareas

    Allotherareasexceptstairsandbalconies

    Hotelsandmultifamilyhouses

    Privateroomsandcorridorsservingthem

    Publicroomsandcorridorsservingthem

    0.48

    0.96

    1.44

    1.92

    1.92

    4.79

    Reviewingstands,grandstands,andbleachers 4.79d

    Roofs

    Ordinaryflat,pitched,andcurvedroofs

    Roofsusedforpromenadepurposes

    Roofsusedforroofgardensorassemblypurposes

    Roofsusedforotherspecialpurposes

    Awningsandcanopies

    Fabricconstructionsupportedbyalightweightrigidskeletonstructure

    Allotherconstruction

    Primaryroofmembers,exposedtoaworkfloor

    Singlepanelpointoflowerchordofrooftrussesoranypointalongprimary

    structuralmemberssupportingroofsovermanufacturing,storage

    warehouses,andrepairgarages

    Allotheroccupancies

    Allroofsurfacessubjecttomaintenance workers

    0.96h

    2.87

    4.79

    i

    0.24(nonreduceable)

    0.96

    i

    8.9

    1.33

    1.33

    Schools

    Classrooms

    Corridorsabovefirstfloor

    Firstfloorcorridors

    1.92

    3.83

    4.79

    4.45

    4.45

    4.45

    Scuttles,skylightribs,andaccessibleceilings 0.89

    Sidewalks,vehiculardriveways,andyardssubjecttotrucking 11.97e 35.60f

    Stadiumsandarenas

    Bleachers

    Fixedseats(fastenedtofloor)4.79d

    2.87d

    Stairsandexitways

    One andtwofamilyresidencesonly

    4.79

    1.92

    g

    Storageareasaboveceilings 0.96

    Storagewarehouses(shallbedesignedforheavierloadsifrequiredfor

    anticipatedstorage)

    Light

    Heavy

    6.00

    11.97

    Stores

    Retail

    FirstfloorUpperloors

    Wholesale,allfloors

    4.793.59

    6.00

    4.454.45

    4.45

    Vehiclebarriers SeeSection2.3.11

    Walkwaysandelevatedplatforms(otherthanexitways) 2.87

    Yardsandterraces,pedestrian 4.79

    aFloorsingaragesorportionsofabuildingusedforthestorageofmotorvehiclesshallbedesignedfortheuniformly

    distributedliveloadsofTable2.3.1orthefollowingconcentratedload:(1)forgaragesrestrictedtopassengervehicles

    accommodatingnotmorethanninepassengers,13.35kNactingonanareaof114mmby114mmfootprintofajack;

    and(2)formechanicalparkingstructureswithoutslabordeckthatareusedforstoringpassengercaronly,10kNper

    wheel.

  • 8/10/2019 BNBC Part 6-Chap 2_26-08-2012

    6/131

    Part6

    6

    bGaragesaccommodatingtrucksandbusesshallbedesignedinaccordancewithanapprovedmethod,whichcontains

    provisionsfortruckandbusloadings.

    cTheloadingappliestostackroomfloorsthatsupportnonmobile,doublefacedlibrarybookstackssubjecttothe

    followinglimitations:(1)Thenominalbookstackunitheightshallnotexceed2290mm;(2)thenominalshelfdepth

    shallnotexceed305mmforeachface;and(3)parallelrowsofdoublefacedbookstacksshallbeseparatedbyaisles

    notlessthan914mmwide.

    dInadditiontotheverticalliveloads,thedesignshallincludehorizontalswayingforcesappliedtoeachrowofthe

    seatsasfollows:0.350kNperlinearmeterofseatappliedinadirectionparalleltoeachrowofseatsand0.15kNper

    linearmeterofseatappliedinadirectionperpendiculartoeachrowofseats.Theparallelandperpendicular

    horizontalswayingforcesneednotbeappliedsimultaneously.

    eOtheruniformloadsinaccordancewithanapprovedmethod,whichcontainsprovisionsfortruckloadings,shallalso

    beconsideredwhereappropriate.

    fTheconcentratedwheelloadshallbeappliedonanareaof114mmby114mmfootprintofajack.

    gMinimumconcentratedloadonstairtreads(onareaof2,580mm2)is1.33kN.

    hWhereuniformroofliveloadsarereducedtolessthan1.0kN/m2 inaccordancewithSection2.3.14.1andare

    appliedtothedesignof structuralmembersarrangedsoastocreatecontinuity,thereducedroofliveloadshallbe

    appliedtoadjacentspansortoalternatespans,whicheverproducesthegreatestunfavorableeffect.

    iRoofsusedforotherspecialpurposesshallbedesignedforappropriateloadsasapprovedbytheauthorityhaving

    jurisdiction.

    2.3.4 UNIFORMLYDISTRIBUTEDLOADS

    The uniformly distributed live load shall not be less than the values listed in Table 2.3.1, reduced as may be

    specified in Sec 2.3.13, applied uniformlyover theentireareaof the floor, orany portion thereof to produce

    themostadverseeffectsinthememberconcerned.

    2.3.5 CONCENTRATEDLOADS

    The concentrated load to be applied nonconcurrently with the uniformly distributed load given in Sec 2.3.4,

    shall not be less than that listed in Table 2.3.1. Unless otherwise specified in Table 2.3.1 or in the following

    paragraph,theconcentratedloadshallbeappliedoveranareaof300mmx300mmandshallbelocatedsoas

    toproducethemaximumstressconditionsinthestructuralmembers.

    Inareaswherevehiclesareusedorstored,suchascarparkinggarages,ramps,repairshopsetc.,provisionshallbemadeforconcentratedloadsconsistingoftwoormoreloadsspaced nominally 1.5moncentresinabsence

    oftheuniformliveloads.Eachloadshallbe40percentofthegrossweightofthemaximumsizevehicletobe

    accommodated and applied over an area of 750 mm x 750 mm. For the storage of private or pleasuretype

    vehicles without repair or fuelling, floors shall be investigated in the absence of the uniform live load, for a

    minimumconcentrated wheel load of 9 kN spaced 1.5mon centres,applied overanareaof750mmx750

    mm. The uniform live loads for these cases are provided in Table 2.3.1 The condition of concentrated or

    uniformliveloadproducingthegreaterstressesshallgovern.

    2.3.6 PROVISIONFORPARTITIONWALLS

    When partitions, not indicated on the plans, are anticipated to be placed on the floors, their weight shall be

    included as an additional live load acting as concentrated line loads in an arrangement producing the most

    severeeffectonthefloor,unlessitcanbeshownthatamore favourablearrangementofthepartitionsshall

    prevailduringthefutureuseofthefloor.

    Inthecaseoflight partitions,whereinthetotalweight permetrerunisnotgreaterthan5.5kN,auniformly

    distributedlive loadmaybeappliedonthefloor in lieuoftheconcentrated line loadsspecifiedabove. Such

    uniformliveloadpersquaremetre shallbeatleast33% oftheweightpermetrerunofthepartitions,subject

    toaminimumof1.2kN/m2.

  • 8/10/2019 BNBC Part 6-Chap 2_26-08-2012

    7/131

    Chapter2

    7

    2.3.7 MORETHANONEOCCUPANCY

    Whereanareaofafloorisintendedfortwoormoreoccupanciesatdifferenttimes,thevaluetobeusedfrom

    Table2.3.1shallbethegreatestvalueforanyoftheoccupanciesconcerned.

    2.3.8 MINIMUMROOFLIVELOADS

    Roofliveloadsshallbeassumedtoactverticallyovertheareaprojectedbytherooforanyportionofitupona

    horizontal plane, andshallbe determinedasspecifiedinthe following sections:

    2.3.8.1 REGULARPURPOSE - FLAT,PITCHEDANDCURVEDROOFS

    Liveloadsonregularpurposeroofsshallbethegreatestappliedloadsproducedduringusebymovableobjects

    suchasplantersandpeople,andthoseinducedduringmaintenancebyworkers,equipmentandmaterialsbut

    shallnotbelessthanthosegiveninTable2.3.2.

    2.3.8.2 SPECIAL PURPOSEROOFS

    For special purposeroofs, live loads shall be estimated based on the actual weight depending on the type of

    use,butshallnotbelessthanthefollowingvalues:

    a)roofsusedforpromenadepurposes 3.0kN/m2

    b)roofsused forassemblypurposes 5.0kN/m2

    c)roofsusedforgardens 5.0kN/m2

    d)roofsusedforotherspecialpurposes tobedeterminedas per Sec2.3.9

    2.3.8.3 ACCESSIBLEROOFSUPPORTINGMEMBERS

    Rooftrussesoranyotherprimaryroofsupportingmemberbeneathwhichafullceilingisnotprovided,shallbe

    capableofsupporting safely, inadditionto other roof loads,aconcentrated loadat the locations asspecified

    below:

    a)

    Industrial, Storage and Garage Buildings Any single panel point of thelower chord of a roof truss, or any point of other primary roof supportingmember 9.0 kNb) Building with Other Occupancies Any single panel point of the lower chordof a roof truss, or any point of other primary roof supporting member 1.3 kN2.3.9 LOADS NOTSPECIFIED

    Live loads, not specified for uses or occupancies in Sec2.3.3,2.3.4 and 2.3.5, shallbedetermined from loads

    resultingfrom:

    a) weightoftheprobableassemblyofpersons;

    b) weightoftheprobableaccumulationofequipmentandfurniture,and

    c) weightoftheprobablestorageofmaterials.

    2.3.10 PARTIALLOADINGANDOTHERLOADINGARRANGEMENTS

    The full intensity of the appropriately reduced live load applied only to a portion of the length or area of a

    structure or member shall be considered, if it produces a more unfavourable effect than the same intensity

    appliedoverthefulllengthorareaofthestructureormember.

    Where uniformly distributed live loads are used in the design of continuous members and their supports,

    considerationshallbegiventofulldeadloadonallspansincombinationwithfullliveloadsonadjacentspans

    andonalternatespanswhicheverproducesamoreunfavourable effect.

  • 8/10/2019 BNBC Part 6-Chap 2_26-08-2012

    8/131

    Part6

    8

    Table 2.3.2 : Minimum Roof Live Loads(1)Type and Slope of Roof DistributedLoad, kN/m2 ConcentratedLoad, kNI Flat roof (slope = 0) 1.5 1.8II 1. Pitched or sloped roof (0 < slope < 1/3)2 Arched roof or dome (rise < 1/8 span) 1.0 0.9

    III 1. Pitched or sloped roof (1/3 slope < 1.0)2. Arched roof or dome (1/8 rise < 3/8 span) 0.8 0.9IV 1. Pitched or sloped roof (slope 1.0)2. Arched roof or dome (rise 3/8 span) 0.6 0.9V Greenhouse, and agriculture buildings 0.5 0.9VI Canopies and awnings, except those withcloth covers same as given in I through IVabove based on the type andslope.Note : (1) Greater of this load and rain load as specified in Sec 2.6.3 shall be taken as the design live loadfor roof. The distributed load shall be applied over the area of the roof projected upon a horizontal planeand shall not be applied simultaneously with the concentrated load. The concentrated load shall beassumed to act upon a 300 mm x 300 mm area and need not be considered for roofs capable of laterallydistributing the load, e.g. reinforced concrete slabs.2.3.11 OTHERLIVELOADS

    Live loadson miscellaneousstructuresandcomponents, suchashandrailsandsupportingmembers,parapets

    and balustrades, ceilings, skylights and supports, and the like, shall be determined from the analysis of the

    actualloadsonthem,butshallnotbelessthanthosegiveninTable2.3.3.

    2.3.12 IMPACTANDDYNAMICLOADS

    The live loads specified in Sec 2.3.3 shall be assumed to include allowances for impacts arising from normal

    usesonly.However,forcesimposedbyunusualvibrationsandimpactsresultingfromtheoperationofinstalled

    machineryandequipmentshallbedeterminedseparatelyandtreatedasadditionalliveloads.Liveloadsdueto

    vibrationor impactshallbedeterminedby dynamicanalysisofthe supportingmemberor structure including

    foundations, or from the recommended values supplied by the manufacture of the particular equipment or

    machinery.Inabsenceofadefiniteinformation,valueslistedinTable2.3.4forsomecommonequipment,shall

    beusedfordesignpurposes.

    2.3.13 REDUCTION OFLIVELOADS

    Exceptforroofuniformliveloads,allotherminimumuniformlydistributedliveloads,LoinTable2.3.1,maybe

    reducedaccordingtothefollowingprovisions.

    2.3.13.1 GENERAL

    SubjecttothelimitationsofSections2.3.13.2through2.3.13.5,membersforwhichavalueofKLLATis37.16m2ormorearepermittedtobedesignedforareducedliveloadinaccordancewiththefollowingformula:

    0.25 . (2.3.1)where,L=reduceddesignliveloadperm

    2ofareasupportedbythemember;L0=unreduceddesignliveload

    perm2ofareasupportedbythemember(seeTable2.3.1); KLL=liveloadelementfactor(seeTable2.3.5);AT=

    tributaryareainm2

    .Lshallnotbelessthan0.50L0formemberssupportingonefloorandLshallnotbelessthan

    0.40L0formemberssupportingtwoormorefloors.

  • 8/10/2019 BNBC Part 6-Chap 2_26-08-2012

    9/131

    Chapter2

    9

    Table 2.3.3:MiscellaneousLiveLoads

    StructuralMemberorComponent LiveLoad(1)

    (kN/m)1. Handrails, parapets and supports :a) Light access stairs, gangways etc.i) width 0.6 mii) width > 0.6 mb) Staircases other than in (a) above, ramps, balconies :i) Single dwelling and privateii) Staircases in residential buildingsiii) Balconies or portion thereof, stands etc. havingfixed seats within 0.55 m of the barriervi) Public assembly buildings including theatres,cinemas, assembly halls, stadiums, mosques,churches, schools etc.vi) Buildings and occupancies other than (i) through (iv) above

    0.250.350.350.351.53.00.75

    2. Vehicle barriers for car parks and ramps :a) For vehicles having gross mass 2500 kgb) For vehicles having gross mass > 2500 kgc) For ramps of car parks etc. 100(2)165(2)see note (3)Note : (1) These loads shall be applied nonconcurrently along horizontal and vertical directions,

    except as specified in note (2) below.(2) These loads shall be applied only in the horizontal direction, uniformly distributed overany length of 1.5 m of a barrier and shall be considered to act at bumper height. For case2(a) bumper height may be taken as 375 mm above floor level.(3) Barriers to access ramps of car parks shall be designed for horizontal forces equal to50% of those given in 2(a) and 2(b) applied at a level of 610 mm above the ramp.Barriers to straight exit ramps exceeding 20 m in length shall be designed forhorizontal forces equal to twice the values given in 2(a) and 2(b).

    Table2.3.4:MinimumLiveLoadsonSupportsandConnectionsofEquipmentduetoImpact(1)

    EquipmentorMachinery Additionalloadduetoimpactaspercentage

    ofstaticloadincludingselfweight

    Vertical Horizontal

    1. Lifts, hoists and related operatingmachinery 100% 2. Light machinery (shaft or motor driven) 20% 3. Reciprocating machinery, or power drivenunits. 50% 4. Hangers supporting floors and balconies 33% 5. Cranes :a) Electric overhead cranes 25% ofmaximumwheel loadi) Transverse to the rail :20% of the weight of trolleyand lifted load only, appliedonehalf at the top of each railii) Along the rail :10% of maximum wheel loadapplied at the top of each rail

    b) Manually operated cranes 50% of thevalues in (a)above 50% of thevalues in (a) abovec) Caboperated travelling cranes 25% Not applicableNote : (1) All these loads shall be increased if so recommended by the manufacturer. Formachinery and equipment not listed, impact loads shall be those recommended bythe manufacturers, or determined by dynamic analysis.

  • 8/10/2019 BNBC Part 6-Chap 2_26-08-2012

    10/131

    Part6

    10

    2.3.13.2 HEAVYLIVELOADS.

    Liveloadsthatexceed4.79kN/m2shallnotbereduced.

    EXCEPTION:Liveloadsformemberssupportingtwoormorefloorsmaybereducedby20percent.

    2.3.13.3 PASSENGERCARGARAGES.

    Theliveloadsshallnotbereducedinpassengercargarages.

    EXCEPTION:Liveloadsformemberssupportingtwoormorefloorsmaybereducedby20percent.

    2.3.13.4 SPECIALOCCUPANCIES.

    Liveloadsof4.79kN/m2orlessshallnotbereducedinpublicassemblyoccupancies. Thereshallbenoreductionofliveloadsforcycloneshelters.

    2.3.13.5 LIMITATIONSONONE-WAYSLABS.

    Thetributaryarea,AT,foronewayslabsshallnotexceedanareadefinedbytheslabspantimesawidthnormal

    tothespanof1.5timestheslabspan.

    2.3.14 REDUCTIONINROOFLIVELOADS

    Theminimumuniformlydistributedroofliveloads,LoinTable2.3.1,arepermittedtobereducedaccordingto

    thefollowingprovisions.

    2.3.14.1 FLAT,PITCHED,ANDCURVEDROOFS.

    Ordinaryflat,pitched,andcurvedroofsarepermittedtobe designedforareducedroof liveload,asspecified

    in Eq.2.3.2 or other controlling combinations of loads, as discussed later in this chapter, whichever produces

    the greater load. In structures such as greenhouses, where special scaffolding is used as a work surface forworkmenandmaterialsduringmaintenanceandrepairoperations,alowerroofloadthanspecifiedinEq.2.3.2

    shallnotbe usedunlessapprovedbytheauthorityhavingjurisdiction. Onsuchstructures,theminimumroof

    liveloadshallbe0.58kN/m2.

    Lr=LoR1R2where0.58 Lr 0.96 (2.3.2)

    where

    Lr=reducedroofliveloadperm2ofhorizontalprojectioninkN/m

    2

    ThereductionfactorsR1andR2shallbedeterminedasfollows:

    R1=1forAt 18.58m2

    =1.2 0.011Atfor18.58m2

  • 8/10/2019 BNBC Part 6-Chap 2_26-08-2012

    11/131

  • 8/10/2019 BNBC Part 6-Chap 2_26-08-2012

    12/131

    Part6

    12

    building or structure projected onto a vertical plane normal to the assumed wind direction. The design wind

    forceforopenbuildingsandotherstructuresshallbenotlessthan0.5kN/m2)multipliedbytheareaAf.

    ComponentsandCladding:Thedesignwindpressureforcomponentsandcladdingofbuildingsshallnotbeless

    thananetpressureof0.5kN/m2actingineitherdirectionnormaltothesurface.

    2.4.2 DEFINITIONS

    ThefollowingdefinitionsapplyonlytotheprovisionsofSection2.4:

    APPROVED:Acceptabletotheauthorityhavingjurisdiction.

    BASICWINDSPEED,V:Threesecondgustspeedat10mabovethegroundinExposureB(seeSection2.4.8.3)

    havingareturnperiodof50years.

    BUILDING, ENCLOSED: A building that does not comply with the requirements for open or partially enclosed

    buildings.

    BUILDING ENVELOPE: Cladding, roofing, exterior walls, glazing, door assemblies, window assemblies, skylight

    assemblies,andothercomponentsenclosingthebuilding.

    BUILDINGANDOTHERSTRUCTURE, FLEXIBLE:Slenderbuildingsandother structures thathave afundamental

    naturalfrequencylessthan1Hz.

    BUILDING,LOWRISE:Enclosedorpartiallyenclosedbuildingsthatcomplywiththefollowingconditions:

    1.Meanroofheighthlessthanorequalto18.3m.

    2.Meanroofheighthdoesnotexceedleasthorizontaldimension.

    BUILDING,OPEN:Abuildinghavingeachwallatleast80percentopen.Thisconditionisexpressedforeachwall

    bytheequationAo 0.8Agwhere

    Ao=totalareaofopeningsinawallthatreceivespositiveexternalpressure(m2).

    Ag=thegrossareaofthatwallinwhichAoisidentified(m2).

    BUILDING,PARTIALLYENCLOSED:Abuildingthatcomplieswithbothofthefollowingconditions:

    1.Thetotalareaofopeningsinawallthatreceivespositiveexternalpressureexceedsthesumoftheareasof

    openingsinthebalanceofthebuildingenvelope(wallsandroof)bymorethan10percent.

    2.Thetotalareaofopeningsinawallthatreceivespositiveexternalpressureexceeds0.37m2or1percentof

    the area of that wall, whichever is smaller, and the percentage of openings in the balance of the building

    envelopedoesnotexceed20percent.

    Theseconditionsareexpressedbythefollowingequations:

    1.Ao>1.10Aoi

    2.Ao>0.37m2or>0.01Ag,whicheverissmaller,

    andAoi/Agi 0.20

    where

    Ao,AgareasdefinedforOpenBuilding

    Aoi= thesumoftheareasofopeningsinthebuildingenvelope(wallsandroof)notincludingAo,inm2.

    Agi=thesumofthegrosssurfaceareasofthebuildingenvelope(wallsandroof)notincludingAg,inm2.

  • 8/10/2019 BNBC Part 6-Chap 2_26-08-2012

    13/131

    Chapter2

    13

    BUILDING OR OTHER STRUCTURE, REGULAR SHAPED: A building or other structure having no unusual

    geometricalirregularityinspatialform.

    BUILDING OR OTHER STRUCTURES, RIGID: A building or other structure whose fundamental frequency is

    greaterthanorequalto1Hz.

    BUILDING, SIMPLE DIAPHRAGM: A building in which both windward and leeward wind loads are transmitted

    throughfloorandroofdiaphragmstothesameverticalMWFRS(e.g.,nostructuralseparations).

    COMPONENTSANDCLADDING:ElementsofthebuildingenvelopethatdonotqualifyaspartoftheMWFRS.

    DESIGNFORCE,F:Equivalentstaticforcetobeusedinthedeterminationofwindloadsforopenbuildingsand

    otherstructures.

    DESIGNPRESSURE,p:Equivalentstaticpressuretobeusedinthedeterminationofwindloadsforbuildings.

    EAVE HEIGHT, h: The distance from the ground surface adjacent to the building to the roof eave line at a

    particularwall.Iftheheightoftheeavevariesalongthewall,theaverageheightshallbeused.

    EFFECTIVE WIND AREA, A: The area used to determine GCp. For component and cladding elements, the

    effectivewindareainFigs.2.4.11through2.4.17and2.4.19isthespanlengthmultipliedbyaneffectivewidth

    thatneednotbelessthanonethirdthespanlength.Forcladdingfasteners,theeffectivewindareashallnotbe

    greaterthantheareathatistributarytoanindividualfastener.

    ESCARPMENT: Also knownasscarp,withrespect totopographiceffects inSection2.4.9,a cliffor steepslope

    generallyseparatingtwolevelsorgentlyslopingareas(seeFig.2.4.4).

    FREEROOF:Roof(monoslope,pitched,ortroughed)inanopenbuildingwithnoenclosingwallsunderneaththe

    roofsurface.

    GLAZING:Glassortransparentortranslucentplasticsheetusedinwindows,doors,skylights,orcurtainwalls.

    GLAZING, IMPACT RESISTANT: Glazing that has been shown by testing in accordance with ASTM E1886 and

    ASTM E1996 or other approved test methods to withstand the impact of windborne missiles likely to be

    generatedinwindbornedebrisregionsduringdesignwinds.

    HILL: Withrespect to topographic effects inSection2.4.9, a land surface characterized by strongrelief in any

    horizontal direction(seeFig.2.4.4).

    HURRICANE PRONE REGIONS: Areas vulnerable to hurricanes; in Bangladesh these areas include the

    Sundarbans,southernpartsofBarisalandPatuakhali,Hatia,Bhola,easternpartsofChittagongandCoxsBazar

    IMPACT RESISTANT COVERING: A covering designed to protect glazing, which has been shown by testing in

    accordance with ASTM E1886 and ASTM E1996 or other approved test methods to withstand the impact of

    windbornedebrismissileslikelytobegeneratedinwindbornedebrisregionsduringdesignwinds.

    IMPORTANCEFACTOR,I:Afactorthataccountsforthedegreeofhazardtohumanlifeanddamagetoproperty.

    MAIN WINDFORCE RESISTING SYSTEM (MWFRS): An assemblage of structural elements assigned to provide

    supportandstabilityfortheoverallstructure.Thesystemgenerallyreceiveswindloadingfrommorethanone

    surface.

    MEAN ROOF HEIGHT,h: The average of the roof eave height and the height to the highest point on theroof

    surface,exceptthat,forroofanglesoflessthanorequalto10o

    ,themeanroofheightshallbetheroofheave

    height.

    OPENINGS:Aperturesorholesinthebuildingenvelopethatallowairtoflowthroughthebuildingenvelopeand

    thataredesignedasopenduringdesignwindsasdefinedbytheseprovisions.

    RECOGNIZEDLITERATURE:Publishedresearchfindingsandtechnicalpapersthatareapproved.

  • 8/10/2019 BNBC Part 6-Chap 2_26-08-2012

    14/131

  • 8/10/2019 BNBC Part 6-Chap 2_26-08-2012

    15/131

    Chapter2

    15

    GCpi=productofinternalpressurecoefficientandgusteffectfactortobeusedindeterminationofwindloads

    forbuildings

    gQ=peakfactorforbackgroundresponseinEqs.2.4.4and2.4.8

    gR=peakfactorforresonantresponseinEq.2.4.8

    gv=peakfactorforwindresponseinEqs.2.4.4and2.4.8

    H=heightofhillorescarpmentinFig.2.4.4,inm.

    h=meanroofheightofabuildingorheightofotherstructure,exceptthateaveheightshallbeusedforroof

    angleoflessthanorequalto10o

    ,inm.

    he=roofeaveheightataparticularwall,ortheaverageheightiftheeavevariesalongthewall

    I=importancefactor

    Iz=intensityofturbulencefromEq.2.4.5

    K1,K2,K3=multipliersinFig.2.4.4toobtainKzt

    Kd=winddirectionalityfactorinTable2.4.5

    Kh=velocitypressureexposurecoefficientevaluatedatheightz=h

    Kz=velocitypressureexposurecoefficientevaluatedatheightz

    Kzt=topographicfactorasdefinedinSection2.4.9

    L=horizontaldimensionofabuildingmeasuredparalleltothewinddirection,inm.

    Lh = distance upwind ofcrest of hill or escarpment in Fig.2.4.4 to where the difference in ground elevation is

    halftheheightofhillorescarpment,inm.

    L=integrallengthscaleofturbulence,inm.

    Lr=horizontaldimensionofreturncornerforasolidfreestandingwallorsolidsignfromFig.2.4.20,inm.

    l=integrallengthscalefactorfromTable2.4.3inm.

    N1=reducedfrequencyfromEq.2.4.12

    n1=buildingnaturalfrequency,Hz

    p=designpressuretobeusedindeterminationofwindloadsforbuildings,inN/m2

    pL=windpressureactingonleewardfaceinFig.2.4.9,inN/m2

    Pnet=netdesignwindpressurefromEq.2.4.2,inN/m2

    Pnet30=netdesignwindpressureforExposureAath=9.1mandI=1.0fromFig.2.4.3,inN/m2.

    Pp=combinednetpressureonaparapetfromEq.2.4.20,inN/m2.

    Ps=netdesignwindpressurefromEq.2.4.1,inN/m2.

    Ps30=simplifieddesignwindpressureforExposureAath=9.1mandI=1.0fromFig.2.4.2,inN/m2.

    PW=windpressureactingonwindwardfaceinFig.2.4.9,inN/m2.

    Q=backgroundresponsefactorfromEq.2.4.6

    q=velocitypressure,inN/m2.

    qh=velocitypressureevaluatedatheightz=h,inN/m2

  • 8/10/2019 BNBC Part 6-Chap 2_26-08-2012

    16/131

    Part6

    16

    qi=velocitypressureforinternalpressuredetermination,inN/m2.

    qp=velocitypressureattopofparapet,inN/m2.

    qz=velocitypressureevaluatedatheightzaboveground,inN/m2.

    R=resonantresponsefactorfromEq.2.4.10

    RB,Rh,RL=valuesfromEq.2.4.13

    Ri=reductionfactorfromEq.2.4.16

    Rn=valuefromEq.2.4.11

    s=verticaldimensionofthesolidfreestandingwallorsolidsignfromFig.2.4.20,inm.

    r=risetospanratioforarchedroofs.

    V= basicwindspeedobtainedfromFig.2.4.1orTable2.4.1,inm/s.Thebasicwindspeedcorrespondstoa3s

    gustspeed at10mabove ground inExposure Category Bhavingan annual probability ofoccurrence of

    0.02.

    Vi=unpartitionedinternalvolumem3

    ZV =meanhourlywindspeedatheight ,m/s.W=widthofbuildinginFigs.2.4.12and2.4.14AandBandwidthofspaninFigs.2.4.13and2.4.15,inm.X=distancetocenterofpressurefromwindwardedgeinFig.2.4.18,inm.

    x=distanceupwindordownwindofcrestinFig.2.4.4,inm.

    z=heightabovegroundlevel,inm.

    z=equivalentheightofstructure,inm.

    zg=nominalheightoftheatmosphericboundarylayerusedinthisstandard.ValuesappearinTable2.4.3

    zmin=exposureconstantfromTable2.4.3

    =3sgustspeedpowerlawexponentfromTable2.4.3=reciprocaloffromTable2.4.3=meanhourlywindspeedpowerlawexponentinEq.2.4.14fromTable2.4.3=dampingratio,percentcriticalforbuildingsorotherstructures=ratioofsolidareatogrossareaforsolidfreestandingwall,solidsign,opensign,faceofatrussedtower,orlatticestructure

    =adjustmentfactorforbuildingheightandexposurefromFigs.2.4.2and2.4.3

    =integrallengthscalepowerlawexponentinEq.2.4.7fromTable2.4.3

    =valueusedinEq.2.4.13(seeSection2.4.10.2)

    =angleofplaneofrooffromhorizontal,indegrees

    v=heighttowidthratioforsolidsign

  • 8/10/2019 BNBC Part 6-Chap 2_26-08-2012

    17/131

    Chapter2

    17

    2.4.4 METHOD1SIMPLIFIEDPROCEDURE

    2.4.4.1 SCOPE

    Abuildingwhosedesignwindloadsaredeterminedinaccordancewiththissectionshallmeetalltheconditions

    of Sections 2.4.4.2 or 2.4.4.3. If a building qualifies only under 2.4.4.2 for design of its components and

    cladding,thenitsMWFRSshallbedesignedbyMethod2orMethod3.

    Limitations on Wind Speeds: Variation of basic wind speeds with direction shall not be permitted unlesssubstantiatedbyanyestablishedanalyticalmethodorwindtunneltesting.

    2.4.4.2 MAINWIND-FORCERESISTINGSYSTEMS

    ForthedesignofMWFRSsthebuildingmustmeetallofthefollowingconditions:

    1.ThebuildingisasimplediaphragmbuildingasdefinedinSection2.4.2.

    2.ThebuildingisalowrisebuildingasdefinedinSection2.4.2.

    3. The building is enclosed as defined in Section 2.4.2 and conforms to the windborne debris provisions of

    Section2.4.11.3.

    4.ThebuildingisaregularshapedbuildingorstructureasdefinedinSection2.4.2.

    5.ThebuildingisnotclassifiedasaflexiblebuildingasdefinedinSection2.4.2.

    6. The building does not have response characteristics making it subject to across wind loading, vortex

    shedding,instabilityduetogallopingorflutter;anddoesnothaveasitelocationforwhichchannelingeffectsor

    buffetinginthewakeofupwindobstructionswarrantspecialconsideration.

    7. The building has an approximately symmetrical crosssection in each direction with either a flat roof or a

    gableorhiproofwith 45

    .

    8.ThebuildingisexemptedfromtorsionalloadcasesasindicatedinNote5ofFig.2.4.10,orthetorsionalload

    casesdefinedinNote5donotcontrolthedesignofanyoftheMWFRSsofthebuilding.

    2.4.4.3 COMPONENTSANDCLADDING

    Forthedesignofcomponentsandcladdingthebuildingmustmeetallthefollowingconditions:

    1.Themeanroofheighthmustbelessthanorequalto18.3m(h 18.3m).

    2. The building is enclosed as defined in Section 2.4.2 and conforms to the windborne debris provisions of

    Section2.4.11.3.

    3.ThebuildingisaregularshapedbuildingorstructureasdefinedinSection2.4.2.

    4. The building does not have response characteristics making it subject to across wind loading, vortex

    shedding,instabilityduetogallopingorflutter;anddoesnothaveasitelocationforwhichchannelingeffectsor

    buffetinginthewakeofupwindobstructionswarrantspecialconsideration.

    5.Thebuildinghaseitheraflatroof,agableroofwith 45o,orahiproofwith 27

    o.

    2.4.4.4 DESIGNPROCEDURE

    1.ThebasicwindspeedVshallbedeterminedinaccordancewithSection2.4.6.Thewindshallbeassumedto

    comefromanyhorizontaldirection.

    2.AnimportancefactorIshallbedeterminedinaccordancewithSection2.4.7.

    3.AnexposurecategoryshallbedeterminedinaccordancewithSection2.4.8.3.

  • 8/10/2019 BNBC Part 6-Chap 2_26-08-2012

    18/131

    Part6

    18

    4.Aheightandexposureadjustmentcoefficient,,shallbedeterminedfromFig.2.4.2.

    2.4.4.4.1 MainWind-ForceResistingSystem.

    Simplifieddesignwindpressures,ps,fortheMWFRSsoflowrisesimplediaphragmbuildingsrepresentthenet

    pressures (sum of internal and external) to be applied to the horizontal and vertical projections of building

    surfaces as shown in Fig. 2.4.2. For the horizontal pressures (zones A, B, C, D),ps is the combination of the

    windwardandleewardnetpressures.psshallbedeterminedbythefollowingequation:

    ps=KztIpS30 (2.4.1)

    where

    =adjustmentfactorforbuildingheightandexposurefromFig.2.4.2

    Kzt=topographicfactorasdefinedinSection2.4.9evaluatedatmeanroofheight,h

    I=importancefactorasdefinedinSection2.4.7

    pS30=simplifieddesignwindpressureforExposureA,ath=9.1m,andforI=1.0,fromFig.2.4.2

    MinimumPressures: Theloadeffectsofthedesignwindpressuresfromthissectionshallnotbelessthanthe

    minimum loadcasefromSection2.4.4.1assumingthepressures,ps,forzonesA,B,C,andDallequalto+0.5

    kN/m2,whileassumingzonesE,F,G,andHallequaltozerokN/m2.

    2.4.4.4.2 ComponentsandCladding

    Net design wind pressures, Pnet, for the components and cladding of buildings designed using Method 1

    represent the net pressures (sum of internal and external) to be applied normal to each building surface as

    showninFig.2.4.3.

    pnetshallbedeterminedbythefollowingequation:

    pnet=KztIPnet30 (2.4.2)

    where

    =adjustmentfactorforbuildingheightandexposurefromFig.2.4.3

    Kzt=topographicfactorasdefinedinSection2.4.9evaluatedatmeanroofheight,h

    I=importancefactorasdefinedinSection2.4.7

    pnet30=netdesignwindpressureforExposureA,ath=9.1m,andforI=1.0,fromFig.2.4.3

    Minimum Pressures : The positive design wind pressures,pnet, from this section shall not be less than +0.5

    kN/m2,andthenegativedesignwindpressures,pnet,fromthissectionshallnotbelessthan0.5kN/m

    2.

    2.4.4.4.3 AirPermeableCladding

    DesignwindloadsdeterminedfromFig.2.4.3shallbeusedforallairpermeablecladdingunlessapprovedtest

    data or the recognized literature demonstrate lower loads for the type of air permeable cladding being

    considered.

    2.4.5 METHOD2ANALYTICALPROCEDURE

    2.4.5.1 SCOPESANDLIMITATIONS

    A building or other structure whose design wind loads are determined in accordance with this section shall

    meetallofthefollowingconditions:

    1.ThebuildingorotherstructureisaregularshapedbuildingorstructureasdefinedinSection2.4.2.

  • 8/10/2019 BNBC Part 6-Chap 2_26-08-2012

    19/131

    Chapter2

    19

    2. The building or other structure does not have response characteristics making it subject to across wind

    loading, vortex shedding, instability due to galloping or flutter; or does not have a site location for which

    channelingeffectsorbuffetinginthewakeofupwindobstructionswarrantspecialconsideration.

    Theprovisionsofthissectiontakeintoconsiderationtheloadmagnificationeffectcausedbygustsinresonance

    with alongwind vibrations of flexible buildings or other structures. Buildings or other structures not meeting

    therequirementsofSection2.4.4,orhavingunusualshapesorresponsecharacteristicsshallbedesignedusing

    recognized literature documenting such wind load effects orshall use the wind tunnel procedure specified inSection0.

    2.4.5.2 SHIELDING.

    There shall be no reductions in velocity pressure due to apparent shielding afforded by buildings and other

    structuresorterrainfeatures.

    2.4.5.3 AIRPERMEABLECLADDING

    DesignwindloadsdeterminedfromSection2.4.5shallbeusedforairpermeablecladdingunlessapprovedtest

    dataorrecognizedliteraturedemonstratelowerloadsforthetypeofairpermeablecladdingbeingconsidered.

    2.4.5.4 DESIGNPROCEDURE

    1. The basic wind speedV and wind directionality factorKd shall be determined in accordance with Section

    2.4.6.

    2.AnimportancefactorIshallbedeterminedinaccordancewithSection2.4.7.

    3. An exposure category or exposure categories and velocity pressure exposure coefficient Kz or Kh, as

    applicable,shallbedeterminedforeachwinddirectioninaccordancewithSection2.4.8.

    4.AtopographicfactorKztshallbedeterminedinaccordancewithSection2.4.9.

    5.AgusteffectfactorGorGf,asapplicable,shallbedeterminedinaccordancewithSection2.4.10.

    6.AnenclosureclassificationshallbedeterminedinaccordancewithSection2.4.11.

    7.InternalpressurecoefficientGCpishallbedeterminedinaccordancewithSection2.4.12.1.

    8. External pressure coefficients Cp or GCpf, or force coefficients Cf, as applicable, shall be determined in

    accordancewithSection2.4.12.2or2.4.12.3,respectively.

    9.Velocitypressureqzorqh,asapplicable,shallbedeterminedinaccordancewithSection2.4.11.5.

    10.DesignwindloadporFshallbedeterminedinaccordancewithSections2.4.13.

    2.4.6 BASICWINDSPEED

    Thebasicwindspeed,V,usedinthedeterminationofdesignwindloadsonbuildingsandotherstructuresshall

    be as given in Fig.2.4.1 except as provided in Section 2.4.6.1. The wind shall be assumed to come from anyhorizontal direction.

    2.4.6.1 SPECIALWINDREGIONS

    Thebasicwindspeedshallbeincreasedwhererecordsorexperienceindicatethatthewindspeedsarehigher

    than those reflected in Fig. 2.4.1. Mountainous terrain, gorges, and special regions shall be examined for

    unusualwindconditions.Theauthorityhavingjurisdictionshall,ifnecessary,adjustthevaluesgiveninFig.2.4.1

    to account for higher local wind speeds. Such adjustment shall be based on adequate meteorological

    informationandothernecessarydata.

  • 8/10/2019 BNBC Part 6-Chap 2_26-08-2012

    20/131

    Part6

    20

    2.4.6.2 LIMITATION

    Tornadoeshavenotbeenconsideredindevelopingthebasicwindspeeddistributions.

    2.4.6.3 WINDDIRECTIONALITYFACTOR

    Thewinddirectionalityfactor,Kd,shallbedeterminedfromTable2.4.5.Thisfactorshallonlybeappliedwhen

    usedinconjunctionwithloadcombinationsspecifiedinChapter2ofPart6ofthiscode.

    2.4.7 IMPORTANCEFACTOR

    An importance factor, I, for the building or other structure shall be determined from Table 2.4.2 based on

    buildingandstructurecategorieslistedinSection1.2.4.

    2.4.8 EXPOSURE

    Foreachwinddirectionconsidered,theupwindexposurecategoryshallbebasedongroundsurfaceroughness

    thatisdeterminedfromnaturaltopography,vegetation,andconstructedfacilities.

    2.4.8.1 WINDDIRECTIONSANDSECTORS

    Foreachselectedwinddirectionatwhichthewind loadsaretobeevaluated,theexposureofthebuildingor

    structure shall be determined for the two upwind sectors extending 45o either side of the selected wind

    direction.

    TheexposuresinthesetwosectorsshallbedeterminedinaccordancewithSections2.4.8.2and2.4.8.3andthe

    exposureresultinginthehighestwindloadsshallbeusedtorepresentthewindsfromthatdirection.

    2.4.8.2 SURFACEROUGHNESSCATEGORIES

    A ground surface roughness within each 45o

    sector shall be determined for a distance upwind of the site as

    defined in Section 2.4.8.3 from the categories defined in the following text, for the purpose of assigning an

    exposurecategoryasdefinedinSection2.4.8.3.

    SurfaceRoughnessA:Urbanandsuburbanareas,woodedareas,orotherterrainwithnumerouscloselyspaced

    obstructionshavingthesizeofsinglefamilydwellingsorlarger.

    Surface RoughnessB:Open terrain with scattered obstructions havingheights generally lessthan 9.1 m.This

    categoryincludesflatopencountry,grasslands,andallwatersurfacesinhurricaneproneregions.

    Surface Roughness C: Flat, unobstructed areas and water surfaces outside hurricane prone regions. This

    categoryincludessmoothmudflatsandsaltflats.

    2.4.8.3 EXPOSURECATEGORIES

    Exposure A: Exposure A shall apply where the ground surface roughness condition, as defined by Surface

    Roughness A, prevails in the upwind direction for a distance of at least 792 m or 20 times the height of the

    building,whicheverisgreater.

    EXCEPTION:Forbuildingswhosemeanroofheightislessthanorequalto9.1m,theupwinddistancemaybe

    reducedto457m.

    ExposureB:ExposureBshallapplyforallcaseswhereExposuresAorCdonotapply.

    Exposure C: Exposure C shallapply where theground surface roughness, as defined by Surface Roughness C,

    prevailsintheupwinddirectionforadistancegreaterthan1,524mor20timesthebuildingheight,whichever

    isgreater.ExposureCshallextendintodownwindareasofSurfaceRoughnessAorBforadistanceof200mor

    20timestheheightofthebuilding,whicheverisgreater.

  • 8/10/2019 BNBC Part 6-Chap 2_26-08-2012

    21/131

  • 8/10/2019 BNBC Part 6-Chap 2_26-08-2012

    22/131

    Part6

    22

    IfsiteconditionsandlocationsofstructuresdonotmeetalltheconditionsspecifiedinSection2.4.9.1thenKzt=

    1.0.

    2.4.10 GUSTEFFECTFACTOR

    2.4.10.1 RIGIDSTRUCTURES

    ForrigidstructuresasdefinedinSection2.4.2,thegusteffectfactorshallbetakenas0.85orcalculatedbythe

    formula:

    0.925 1 1.711.7 (2.4.4) 10 (2.4.5)where the intensity of turbulence at height where the equivalent height of the structure definedas 0.6h, but not less than zminfor all building heights h. zminand c are listed for each exposure in Table

    2.4.3;gQ

    andgv

    shall be taken as 3.4. The background responseQ

    is given by 110.63 . 2.4.6whereB,haredefinedinSection2.4.3;and=theintegrallengthscaleofturbulenceattheequivalentheightgivenby

    10 (2.4.7)in which land are constants listed in Table 2.4.3.2.4.10.2 FLEXIBLEORDYNAMICALLYSENSITIVESTRUCTURES

    For flexible or dynamically sensitive structures as defined in Section 2.4.2 natural period greater than 1.0second, the gusteffect factor shall be calculated by 0.925

    1 1.7 1 1.72.4.8

    gQand gv shall be taken as 3.4 andgRis given by 2ln3600 0.577

    2ln3600

    2.4.9

    R,theresonantresponsefactor,isgivenby

    1 0.53 0.47 (2.4.10) 7.47 1 10.3 (2.4.11)

  • 8/10/2019 BNBC Part 6-Chap 2_26-08-2012

    23/131

    Chapter2

    23

    (2.4.12) 1 12 1 for 0 (2.4.13a) 1 for 0 2.4.13b

    wherethesubscript

    inEq.2.4.13shallbetakenash,B,andL,respectively,whereh,B,andLaredefinedin

    Section2.4.3.

    n1=buildingnaturalfrequency

    R=Rhsetting =4.6/R=RBsetting =4.6/R=RLsetting =15.4 /=dampingratio,percentofcritical=meanhourlywindspeedatheightdeterminedfromEq.2.4.14.

    10 (2.4.14)

    whereandareconstantslistedinTable2.4.3andV isthebasicwindspeedinkm/h.2.4.10.3 RATIONALANALYSIS

    InlieuoftheproceduredefinedinSections2.4.10.1and2.4.10.2,determination ofthegusteffectfactorbyany

    rationalanalysisdefinedintherecognizedliteratureispermitted.

    2.4.10.4 LIMITATIONS

    Where combined gusteffect factors and pressure coefficients (GCp, GCpi, and GCpf ) are given in figures andtables,thegusteffectfactorshallnotbedeterminedseparately.

    2.4.11 ENCLOSURECLASSIFICATIONS.

    2.4.11.1 GENERAL

    For the purpose of determining internal pressure coefficients, all buildings shall be classified as enclosed,

    partiallyenclosed,oropenasdefinedinSection2.4.2.

    2.4.11.2 OPENINGS

    Adeterminationshallbemadeoftheamountofopeningsinthebuildingenvelopetodeterminetheenclosure

    classificationasdefinedinSection2.4.11.3.

    2.4.11.3 WIND-BORNEDEBRIS

    Glazinginbuildingslocatedinwindbornedebrisregionsshallbeprotectedwithanimpactresistantcoveringor

    be impactresistantglazingaccordingtotherequirementsspecified in ASTM E1886and ASTME1996orother

    approvedtestmethodsandperformancecriteria.ThelevelsofimpactresistanceshallbeafunctionofMissile

    LevelsandWindZonesspecifiedinASTME1886andASTME1996.

    EXCEPTIONS:

  • 8/10/2019 BNBC Part 6-Chap 2_26-08-2012

    24/131

    Part6

    24

    i. GlazinginCategoryII,III,orIVbuildingslocatedover18.3mabovethegroundandover9.2m

    aboveaggregatesurfaceroofslocatedwithin458mofthebuildingshallbepermittedtobe

    unprotected.

    ii. GlazinginCategoryIbuildingsshallbepermittedtobeunprotected.

    2.4.11.4 MULTIPLECLASSIFICATIONS

    If a building by definition complies with both the open and partially enclosed definitions, it shall be

    classifiedasanopenbuilding.Abuildingthatdoesnotcomplywitheithertheopenorpartiallyenclosed

    definitionsshallbeclassifiedasanenclosedbuilding.

    2.4.11.5 VELOCITYPRESSURE

    Velocitypressure,qz,evaluatedatheightzshallbecalculatedbythefollowingequation: 0.000613 ; (kN/m2), Vinm/s (2.4.15)whereKd is the wind directionality factor,Kz is the velocity pressure exposure coefficient defined in Section

    2.4.8.6,KztisthetopographicfactordefinedinSection2.4.9.2,andqh isthevelocitypressurecalculatedusing

    Eq. 2.4.15 at mean roof heighth. The numerical coefficient 0.000613 shall be used except where sufficient

    climaticdataareavailabletojustifytheselectionofadifferentvalueofthisfactorforadesignapplication.

    2.4.12 PRESSUREANDFORCECOEFFICIENTS.

    2.4.12.1 INTERNALPRESSURECOEFFICIENTS

    InternalPressureCoefficient.Internalpressurecoefficients,GCpi,shallbedeterminedfromFig.2.4.5basedon

    buildingenclosureclassificationsdeterminedfromSection2.4.11.

    Reduction Factor for Large Volume Buildings, Ri: For a partially enclosed building containing a single,

    unpartitioned large volume, the internal pressure coefficient, GCpi, shall be multiplied by the following

    reductionfactor,Ri: 1.0 or 0.5

    1 11 6951

    1.0 (2.4.16)where

    Aog=totalareaofopeningsinthebuildingenvelope(wallsandroof,inm

    2

    )

    Vi=unpartitionedinternalvolume,inm3

    2.4.12.2 EXTERNALPRESSURECOEFFICIENTS.

    Main WindForce Resisting Systems: External pressure coefficients for MWFRSs Cp are given in Figs. 2.4.6,

    2.4.7,and2.4.8.Combinedgusteffectfactorandexternalpressurecoefficients,GCpf,aregiveninFig.2.4.10for

    lowrisebuildings.ThepressurecoefficientvaluesandgusteffectfactorinFig.2.4.10shallnotbeseparated.

  • 8/10/2019 BNBC Part 6-Chap 2_26-08-2012

    25/131

    Chapter2

    25

    ComponentsandCladding:Combinedgusteffectfactorandexternalpressurecoefficientsforcomponentsand

    claddingGCparegiveninFigs.2.4.11through2.4.17.Thepressurecoefficientvaluesandgusteffectfactorshall

    notbeseparated.

    2.4.12.3 FORCECOEFFICIENTS

    ForcecoefficientsCfaregiveninFigs.2.4.20through2.4.23.

    2.4.12.4 ROOFOVERHANGS

    Main WindForce Resisting System: Roof overhangs shall be designed for a positive pressure on the bottom

    surfaceofwindwardroofoverhangscorrespondingtoCp=0.8 incombinationwith thepressures determined

    fromusingFigs.2.4.6and2.4.10.

    ComponentsandCladding:For allbuildings, roofoverhangsshall be designedforpressures determinedfrom

    pressurecoefficientsgiveninFigs.2.4.11B,C,D.

    2.4.12.5 PARAPETS

    Main WindForce Resisting System: The pressure coefficients for the effect of parapets on the MWFRS loads

    aregiveninSection2.4.14.2

    Components and Cladding: The pressure coefficients for the design of parapet component and cladding

    elementsaretakenfromthewallandroofpressurecoefficientsasspecifiedinSection2.4.14.3.

    2.4.13 DESIGNWINDLOADSONENCLOSEDANDPARTIALLYENCLOSED

    BUILDINGS.

    2.4.13.1 GENERAL

    SignConvention:Positivepressureactstowardthesurfaceandnegativepressureactsawayfromthesurface.

    CriticalLoadCondition:Valuesofexternalandinternalpressuresshallbecombinedalgebraicallytodetermine

    themostcriticalload.

    TributaryAreasGreaterthan65m2:Componentandcladdingelementswithtributaryareasgreaterthan65m

    2

    shallbepermittedtobedesignedusingtheprovisionsforMWFRSs.

    2.4.13.2 MAINWIND-FORCERESISTINGSYSTEMS

    Rigid Buildings of All Heights: Design wind pressures for the MWFRS of buildings of all heights shall be

    determinedbythefollowingequation: kN m (2.4.17)where

    q=qzforwindwardwallsevaluatedatheightzabovetheground

    q= qhforleewardwalls,sidewalls,androofs,evaluatedatheighth

    qi= qhforwindwardwalls,sidewalls, leewardwalls,androofsofenclosedbuildingsandfornegative internal

    pressureevaluationinpartiallyenclosedbuildings

    qi= qzforpositiveinternalpressureevaluation in partiallyenclosedbuildingswhereheightzisdefinedasthe

    levelofthehighestopeninginthebuildingthatcouldaffectthepositiveinternalpressure.Forbuildingssitedin

    windbornedebrisregions,glazingthat isnot impactresistantor protectedwithan impactresistantcovering,

  • 8/10/2019 BNBC Part 6-Chap 2_26-08-2012

    26/131

    Part6

    26

    shallbetreatedasanopeninginaccordancewithSection2.4.11.3.Forpositiveinternalpressureevaluation, qi

    mayconservativelybeevaluatedatheighth(qi=qh)

    G= gusteffectfactorfromSection2.4.10

    Cp=externalpressurecoefficientfromFig.2.4.6or2.4.8

    (GCpi)=internalpressurecoefficientfromFig.2.4.5

    qandqishallbeevaluatedusingexposuredefinedinSection2.4.8.3.Pressureshallbeappliedsimultaneously

    onwindwardandleewardwallsandonroofsurfacesasdefinedinFigs.2.4.6and2.4.8.

    LowRise Building: Alternatively, design wind pressures for the MWFRS of lowrise buildings shall be

    determinedbythefollowingequation: kN m (2.4.18)where

    qh=velocitypressureevaluatedatmeanroofheighthusingexposuredefinedinSection2.4.8.3

    (GCpf)=externalpressurecoefficientfromFig.2.4.10

    (GCpi)=internalpressurecoefficientfromFig.2.4.5

    Flexible Buildings: Design wind pressures for the MWFRS of flexible buildings shall be determined from the

    followingequation: kN m (2.4.19)whereq,qi,Cp,and(GCpi)areasdefinedinSection2.4.13.2andGf=gusteffectfactorisdefinedasinSection

    2.4.10.

    Parapets:ThedesignwindpressurefortheeffectofparapetsonMWFRSsofrigid,lowrise,orflexiblebuildings

    withflat,gable,orhiproofsshallbedeterminedbythefollowingequation:

    kN m (2.4.20)

    where

    pp= combined net pressure on the parapet due to the combination of the net pressures from the front and

    back parapet surfaces. Plus (and minus) signs signify net pressure acting toward (and away from) the front

    (exterior)sideoftheparapet

    qp= velocitypressureevaluatedatthetopoftheparapet

    GCpn= combinednetpressurecoefficient

    = +1.5forwindwardparapet

    = 1.0forleewardparapet

    2.4.13.3 DESIGNWINDLOADCASES

    The MWFRS of buildings of all heights, whose wind loads have been determined under the provisions of

    Sections2.4.13.2,shallbedesignedforthewindloadcasesasdefinedinFig.2.4.9.Theeccentricitye forrigid

    structures shall be measuredfromthe geometriccenterofthebuilding faceand shall be considered for each

    principalaxis(eX,eY).Theeccentricitye forflexiblestructuresshallbedeterminedfromthefollowingequation

    andshallbeconsideredforeachprincipalaxis(eX,eY):

  • 8/10/2019 BNBC Part 6-Chap 2_26-08-2012

    27/131

    Chapter2

    27

    1.7 1 1.7 (2.4.21)where

    eQ= eccentricity easdeterminedforrigidstructuresinFig.2.4.9

    eR= distancebetweentheelasticshearcenterandcenterofmassofeachfloor

    ,gQ,Q,gR,R shallbeasdefinedinSection2.4.3Thesignoftheeccentricitye shallbeplusorminus,whichevercausesthemoresevereloadeffect.

    EXCEPTION: Onestory buildings withh less than or equal to 9.1 m, buildings twostories or less framed with

    lightframe construction, and buildings two stories or less designed with flexible diaphragms need only be

    designedforLoadCase1andLoadCase3inFig.2.4.9.

    2.4.13.4 COMPONENTSANDCLADDING.

    LowRise Buildings and Buildings with h 18.3 m: Design wind pressures on component and cladding

    elementsoflowrisebuildingsandbuildingswithh 18.3mshallbedeterminedfromthefollowingequation:

    kN m (2.4.22)where

    qh= velocitypressureevaluatedatmeanroofheighthusingexposuredefinedinSection2.4.8.5

    (GCp)= externalpressurecoefficientsgiveninFigs.2.4.11through2.4.16

    (GCpi )= internalpressurecoefficientgiveninFig.2.4.5

    Buildingswithh>18.3m:Designwindpressuresoncomponentsandcladdingforallbuildingswithh > 18.3m

    shallbedeterminedfromthefollowingequation: kN/m (2.4.23)where

    q=qzforwindwardwallscalculatedatheightzabovetheground

    q=qhforleewardwalls,sidewalls,androofs,evaluatedatheighth

    qi=qhforwindwardwalls, sidewalls, leewardwalls,and roofsofenclosedbuildingsandfornegative internal

    pressureevaluationinpartiallyenclosedbuildings

    qi=qzforpositive internal pressureevaluation inpartiallyenclosedbuildingswhereheightz is definedas the

    levelofthehighestopeninginthebuildingthatcouldaffectthepositiveinternalpressure.Forbuildingssitedin

    windbornedebrisregions,glazingthat isnot impactresistantorprotectedwithan impactresistantcovering,

    shallbetreatedasanopeninginaccordancewithSection2.4.11.3.Forpositiveinternalpressureevaluation,qi

    mayconservativelybeevaluatedatheighth(qi=qh)

    (GCp)=externalpressurecoefficientfromFig.2.4.17.

    (GCpi)= internalpressure coefficient given inFig. 2.4.5.qandqishall beevaluated usingexposure defined in

    Section2.4.8.3.

  • 8/10/2019 BNBC Part 6-Chap 2_26-08-2012

    28/131

    Part6

    28

    2.4.13.5 ALTERNATIVEDESIGNWINDPRESSURESFORCOMPONENTSAND

    CLADDINGINBUILDINGSWITH18.3M< h < 27.4M

    AlternativetotherequirementsofSection2.4.13.2,thedesignofcomponentsandcladdingforbuildingswitha

    meanroofheightgreaterthan18.3mandlessthan27.4mvaluesfromFigs.2.4.11through2.4.17shallbeused

    only if the height to width ratio isoneor less(except as permitted by Note 6of Fig. 2.4.17) andEq.2.4.22 is

    used.

    Parapets:Thedesignwindpressureonthecomponentsandcladdingelementsofparapetsshallbedesignedbythefollowingequation: (2.4.24)where

    qp=velocitypressureevaluatedatthetopoftheparapet

    GCp=externalpressurecoefficientfromFigs.2.4.11through2.4.17

    GCpi=internalpressurecoefficientfromFig.2.4.5,basedontheporosityoftheparapetenvelope.

    Twoloadcasesshallbeconsidered.LoadCaseAshallconsistofapplyingtheapplicablepositivewallpressure

    fromFig.2.4.11Aor2.4.17tothefrontsurfaceof theparapetwhile applyingthe applicablenegativeedgeorcorner zone roof pressure from Figs.2.4.11 through 2.4.17 to the back surface. Load Case B shall consist of

    applying the applicable positive wall pressure from Fig. 2.4.11A or 2.4.17 to the back of the parapet surface,

    and applying the applicable negative wall pressure from Fig. 2.4.11A or 2.4.17 to the front surface. Edge and

    cornerzonesshallbearrangedasshowninFigs.2.4.11through2.4.17.GCpshallbedeterminedforappropriate

    roof angle and effective wind area from Figs.2.4.11 through 2.4.17. If internal pressure is present, both load

    casesshouldbeevaluatedunderpositiveandnegativeinternalpressure.

    2.4.14 DESIGNWINDLOADSONOPENBUILDINGSWITHMONOSLOPE,

    PITCHED,ORTROUGHEDROOFS.

    2.4.14.1 GENERAL

    Sign Convention: Plus and minus signs signify pressure acting toward and away from the top surface of the

    roof,respectively.

    Critical Load Condition: Net pressure coefficientsCN include contributions from top and bottom surfaces. All

    loadcasesshownforeachroofangleshallbeinvestigated.

    2.4.14.2 MAINWIND-FORCERESISTINGSYSTEMS

    ThenetdesignpressurefortheMWFRSsofmonoslope,pitched,ortroughedroofsshallbedeterminedbythe

    followingequation:

    (2.4.25)

    where

    qh= velocity pressure evaluated at mean roof heighthusing the exposure as defined in Section 2.4.8.3 that

    resultsinthehighestwindloadsforanywinddirectionatthesite

    G= gusteffectfactorfromSection2.4.10

    CN= netpressurecoefficientdeterminedfromFigs.2.4.18Athrough2.4.18D.

  • 8/10/2019 BNBC Part 6-Chap 2_26-08-2012

    29/131

    Chapter2

    29

    For free roofs with an angle of plane of roof from horizontal less than or equal to 5o and containing fascia

    panels,thefasciapanelshallbeconsideredaninvertedparapet.Thecontribution ofloadsonthefasciatothe

    MWFRSloadsshallbedeterminedusingSection2.4.13.5withqp equaltoqh .

    2.4.14.3 COMPONENTANDCLADDINGELEMENTS

    Thenetdesignwindpressureforcomponentandcladdingelementsofmonoslope,pitched,andtroughedroofs

    shallbedeterminedbythefollowingequation: (2.4.26)where

    qh= velocity pressure evaluated at mean roof heighthusing the exposure as defined in Section 2.4.8.3 that

    resultsinthehighestwindloadsforanywinddirectionatthesite

    G= gusteffectfactorfromSection2.4.10

    CN= netpressurecoefficientdeterminedfromFigs.2.4.19Athrough2.4.19C.

    2.4.15 DESIGNWIND

    LOADS

    ON

    SOLID

    FREE

    STANDING

    WALLS

    AND

    SOLID

    SIGNS

    Thedesignwindforceforsolidfreestandingwallsandsolidsignsshallbedeterminedbythefollowingformula: kN (2.4.27)where

    qh= thevelocitypressureevaluatedatheighth(definedinFig.2.4.20)usingexposuredefinedinSection2.4.8.3

    G= gusteffectfactorfromSection2.4.10

    Cf= netforcecoefficientfromFig.2.4.20

    AS= thegrossareaofthesolidfreestandingwallorsolidsign,inm2

    2.4.16 DESIGNWINDLOADSONOTHERSTRUCTURES

    Thedesignwindforceforotherstructuresshallbedeterminedbythefollowing

    equation: kN (2.4.28)where

    qz= velocitypressureevaluatedatheightzofthecentroidofareaAfusingexposuredefinedinSection2.4.8.3

    G= gusteffectfactorfromSection2.4.10

    Cf= forcecoefficientsfromFigs.2.4.21through2.4.23.

    Af= projectedareanormaltothewindexceptwhereCf isspecifiedfortheactualsurfacearea,m2

  • 8/10/2019 BNBC Part 6-Chap 2_26-08-2012

    30/131

    Part6

    30

    2.4.17 ROOFTOPSTRUCTURESANDEQUIPMENTFORBUILDINGSWITHH

    18.3M

    TheforceonrooftopstructuresandequipmentwithAflessthan(0.1Bh)locatedonbuildingswithh 18.3m

    shallbedeterminedfromEq.2.4.28, increasedbyafactorof1.9.Thefactorshallbepermittedtobereduced

    linearlyfrom1.9to1.0asthevalueofAfisincreasedfrom(0.1Bh)to(Bh).

    2.4.18 METHOD3WINDTUNNELPROCEDURE

    2.4.18.1 SCOPE

    Wind tunnel tests shall be used where required by Section 2.4.5.1. Wind tunnel testing shall be permitted in

    lieuofMethods1and2foranybuildingorstructure.

    2.4.18.2 TESTCONDITIONS

    Windtunnel tests, or similar tests employing fluidsotherthan air, usedforthe determinationof design wind

    loads for any building or other structure, shall be conducted in accordance with this section. Tests for the

    determinationofmeanandfluctuatingforcesandpressuresshallmeetallofthefollowingconditions:

    i. Thenaturalatmosphericboundarylayerhasbeenmodeledtoaccountforthevariationof

    windspeedwithheight.

    ii. Therelevantmacro (integral)lengthandmicrolengthscalesofthelongitudinal component

    ofatmosphericturbulencearemodeledtoapproximatelythesamescaleasthatusedtomodel

    thebuildingorstructure.

    iii. Themodeledbuildingorotherstructureandsurroundingstructuresandtopographyare

    geometricallysimilartotheirfullscalecounterparts,exceptthat,forlowrisebuildings

    meetingtherequirementsofSection2.4.5.1,testsshallbepermittedforthemodeledbuilding

    inasingleexposuresiteasdefinedinSection2.4.8

    iv. Theprojectedareaofthemodeledbuildingorotherstructureandsurroundingsislessthan8

    percentofthetestsectioncrosssectionalareaunlesscorrectionismadeforblockage.

    v. Thelongitudinal pressuregradientinthewindtunneltestsectionisaccountedfor.vi. Reynoldsnumbereffectsonpressuresandforcesareminimized.

    vii. Responsecharacteristicsofthewindtunnelinstrumentationareconsistentwiththerequired

    measurements.

    2.4.19 DYNAMICRESPONSE

    Tests for the purpose of determining the dynamic response of a building or other structure shall be in

    accordance with Section 2.4.18.2. The structural model and associated analysis shall account for mass

    distribution,stiffness,anddamping.

  • 8/10/2019 BNBC Part 6-Chap 2_26-08-2012

    31/131

    Fig. .4.1 Basic ind speed Vb) map of

    31

    angladesh

    Chapter2

  • 8/10/2019 BNBC Part 6-Chap 2_26-08-2012

    32/131

    Part6

    32

    MainWindForceResistingSystem Method1 h 18.3 m

    Figure2.4.2 DesignWindPressures Walls&Roofs

    EnclosedBuildings

    Notes:1. Pressures shown are applied to the horizontal and vertical projections, for exposure A, at h=9.1m,I=1.0, and Kzt=1.0. Adjust to other conditions using Equation 2.4.1.2. The load patterns shown shall be applied to each corner of the building in turn as the reference corner. (See Figure2.4.10)3. For the design of the longitudinal MWFRS use = 0, and locate the zone E/F, G/H boundary at the midlength of thebuilding.4. Load cases 1 and 2 must be checked for 25 < 45. Load case 2 at 25 is provided only for interpolation between25 to 30.5. Plus and minus signs signify pressures acting toward and away from the projected surfaces, respectively.6. For roof slopes other than those shown, linear interpolation is permitted.7. The total horizontal load shall not be less than that determined by assuming ps= 0 in zones B & D.8. The zone pressures represent the following:Horizontal pressure zones Sum of the windward and leeward net (sum of internal and external) pressures onvertical projection of:A End zone of wall C Interior zone of wall

    B End zone of roof D Interior zone of roofVertical pressure zones Net (sum of internal and external) pressures on horizontal projection of:E End zone of windward roof G Interior zone of windward roofF End zone of leeward roof H Interior zone of leeward roof9. Where zone E or G falls on a roof overhang on the windward side of the building, use EOH and GOH for the pressureon the horizontal projection of the overhang. Overhangs on the leeward and side edges shall have the basic zonepressure applied.10. Notation:a: 10 percent of least horizontal dimension or 0.4h, whichever is smaller, but not less than either 4% of leasthorizontal dimension or 0.9 m.h: Mean roof height, in feet (meters), except that eave height shall be used for roof angles

  • 8/10/2019 BNBC Part 6-Chap 2_26-08-2012

    33/131

  • 8/10/2019 BNBC Part 6-Chap 2_26-08-2012

    34/131

    Part6

    34

    ComponentsandCladdingMethod1 h 18.3m

    Figure2.4.3 DesignWindPressures Walls&Roofs

    EnclosedBuildings

    Notes:1. Pressures shown are applied normal to the surface, for exposure A, at h= 9.1m, I= 1.0, and Kzt= 1.0. Adjust toother conditions using Equation 2.4.2.2. Plus and minus signs signify pressures acting toward and away from the surfaces, respectively.3. For hip roofs with 25, Zone 3 shall be treated as Zone 2.4. For effective wind areas between those given, value may be interpolated, otherwise use the value associatedwith the lower effective wind area.5. Notation:a: 10 percent of least horizontal dimension or 0.4h, whichever is smaller, but not less than either 4% of leasthorizontal dimension or 0.9 m.h: Mean roof height, in feet (meters), except that eave height shall be used for roof angles

  • 8/10/2019 BNBC Part 6-Chap 2_26-08-2012

    35/131

    Chapter2

    35

    ComponentsandCladdingMethod1 h 18.3m

    Figure2.4.3(cont'd) NetDesignWindPressures Walls&Roofs

    EnclosedBuildings

    RoofOverhangNetDesignWindPressure,Pnet30 (kN/m2)

    (ExposureAath=9.1mwithl=1.0)Zone EffectiveWindArea(m2)Basic Wind Speed V (m/s)40.23 44.7 49.17 53.64 58.11 62.58 67.05 75.99

    Roof0to7degrees

    2 0.930 1.005 1.239 1.502 1.785 2.096 2.431 2.790 3.5842 1.860 0.986 1.220 1.473 1.756 2.058 2.388 2.742 3.5222 4.648 0.962 1.191 1.440 1.713 2.010 2.330 2.675 3.4362 9.296 0.947 1.168 1.412 1.680 1.971 2.287 2.627 3.3733 0.930 1.656 2.043 2.470 2.943 3.450 4.005 4.594 5.9053

    1.860 1.297 1.603 1.938 2.3112.708 3.144 3.609 4.632

    3

    4.648 0.828 1.024 1.240 1.4741.727 2.005 2.302 2.957

    3 9.296 0.479 0.584 0.708 0.842 0.986 1.144 1.311 1.684

    Roof>

    7to27

    degrees

    2 0.930 1.302 1.603 1.943 2.311 2.713 3.144 3.613 4.6372 1.860 1.302 1.603 1.943 2.311 2.713 3.144 3.613 4.6372 4.648 1.302 1.603 1.943 2.311 2.713 3.144 3.613 4.6372 9.296 1.302 1.603 1.943 2.311 2.713 3.144 3.613 4.6373 0.930 2.187 2.699 3.268 3.885 4.560 5.292 6.072 7.8003 1.860 1.971 2.436 2.948 3.507 4.115 4.775 5.479 7.0393 4.648 1.689 2.086 2.526 3.005 3.526 4.091 4.694 6.0343 9.296 1.479 1.823 2.206 2.627 3.082 3.574 4.106 5.268

    Roof>2

    7to45

    degrees

    2 0.930 1.182 1.460 1.766 2.101 2.464 2.861 3.282 4.2162 1.860 1.148 1.416 1.713 2.038 2.393 2.775 3.182 4.0912 4.648 1.101 1.359 1.641 1.952 2.292 2.660 3.052 3.9242

    9.296

    1.062 1.311 1.587 1.8902.220 2.574 2.952 3.795

    3

    0.930 1.182 1.460 1.766 2.1012.464 2.861 3.283 4.216

    3 1.860 1.148 1.416 1.713 2.038 2.393 2.775 3.182 4.0913 4.648 1.101 1.359 1.641 1.952 2.292 2.660 3.053 3.9233 9.296 1.062 1.311 1.589 1.890 2.220 2.574 2.952 3.795

    AdjustmentFactor

    forBuildingHeightandExposure,

    Mean roof

    height(m)

    Exposure

    A B C4.6 1.00 1.21 1.476.1 1.00 1.29 1.557.6 1.00 1.35 1.619.15 1.00 1.40 1.6610.7 1.05 1.45 1.7012.2 1.09 1.49 1.7413.7 1.12 1.53 1.7815.2 1.16 1.56 1.8116.8 1.19 1.59 1.8418.3 1.22 1.62 1.87

    UnitConversion1.0ft=0.3048m;1.0psf=0.0929m2;1.0psf=0.0479KN/m

  • 8/10/2019 BNBC Part 6-Chap 2_26-08-2012

    36/131

    Part6

    36

    TopographicFactor,Kzt Method2

    Figure2.4.4

    Topographic Multipliers for Exposure BH/Lh K1Multiplier x/Lh

    K2Multiplier z/Lh K3 Multiplier2-D

    Ridge

    2-D

    Escarp.

    3-D

    Axisym.Hill

    2-D

    Escarp.

    All

    OtherCases

    2-D

    Ridge

    2-D

    Escarp.

    3-D

    Axisym.Hill0.20 0.29 0.17 0.21 0.00 1.00 1.00 0.00 1.00 1.00 1.000.25 0.36 0.21 0.26 0.50 0.88 0.67 0.10 0.74 0.78 0.670.30 0.43 0.26 0.32 1.00 0.75 0.33 0.20 0.55 0.61 0.450.35 0.51 0.30 0.37 1.50 0.63 0.00 0.30 0.41 0.47 0.300.40 0.58 0.34 0.42 2.00 0.50 0.00 0.40 0.30 0.37 0.200.45 0.65 0.38 0.47 2.50 0.38 0.00 0.50 0.22 0.29 0.140.50 0.72 0.43 0.53 3.00 0.25 0.00 0.60 0.17 0.22 0.093.50 0.13 0.00 0.70 0.12 0.17 0.064.00 0.00 0.00 0.80 0.09 0.14 0.040.90 0.07 0.11 0.031.00 0.05 0.08 0.021.50 0.01 0.02 0.00

    2.00 0.00 0.00 0.00Notes:1. For values of H/Lh,x/Lhandz/Lhother than those shown, linear interpolation is permitted.2. For H/Lh> 0.5, assume H/Lh= 0.5 for evaluating K1and substitute 2Hfor Lhfor evaluating K2andK3.3. Multipliers are based on the assumption that wind approaches the hill or escarpment along thedirection of maximum slope.4. Notation:

    H: Height of hill or escarpment relative to the upwind terrain, in meters.Lh: Distance upwind of crest to where the difference in ground elevation is half the height ofhill or escarpment, in meters.K1: Factor to account for shape of topographic feature and maximum speedup effect.K2: Factor to account for reduction in speedup with distance upwind or downwind of crest.K3: Factor to account for reduction in speedup with height above local terrain.x: Distance (upwind or downwind) from the crest to the building site, in meters.z

    : Height above local ground level, in meters.W

    : Horizontal attenuation factor.: Height attenuation factor.

  • 8/10/2019 BNBC Part 6-Chap 2_26-08-2012

    37/131

  • 8/10/2019 BNBC Part 6-Chap 2_26-08-2012

    38/131

    Part6

    38

    MainWindForceResistingSystem Method2 AllHeights

    Figure2.4.6 ExternalPressureCoefficients,Cp Walls&Roofs

    Enclosed,PartiallyEnclosedBuildings

  • 8/10/2019 BNBC Part 6-Chap 2_26-08-2012

    39/131

    Chapter2

    39

    MainWindForceResistingSystem Method2 AllHeights

    Figure2.4.6(cont) ExternalPressureCoefficients,Cp Walls&Roofs

    Enclosed,PartiallyEnclosedBuildings

    Wall PressureCoefficients,Cp

    Surface L/B Cp UseWithWindwardWall Allvalues 0.8 qzLeewardWall 01 0.5 qh

    2 0.3

    >4 0.2

    SideWall Allvalues 0.7 qhRoofPressureCoefficients,Cp,forusewithqh

    Wind

    Direction

    Windward Leeward

    Angle, (degrees) Angle, (degrees)

    h/L 10 15 20 25 30 35 45 >60# 10 15 >20

    Normal

    To ridge

    for >100

    1.0 1.3**0.18 1.00.180.70.18

    0.50.0* 0.30.2 0.20.2 0.0*0.3 0.01 0.7 0.6 0.6Normal

    Toridge

    for

    2h 0.3, 0.18

    > 1.00 to h/2 1.3**, 0.18 Area (m 2) Reduction Factor

    < 9.3 sq m 1.0> h/2 0.7, 0.18 23,2 sq m 0.9> 92.9 sq m 0.8Notes:1. Plus and minus signs signify pressures acting toward and away from the surfaces, respectively.2. Linear interpolation is permitted for values of L/B,h/Land other than shown. Interpolation shall only becarried out between values of the same sign. Where no value of the same sign is given, assume 0.0 forinterpolation purposes.3. Where two values of Cpare listed, this indicates that the windward roof slope is subjected to eitherpositive or negative pressures and the roof structure shall be designed for both conditions. Interpolation forintermediate ratios of h/Lin this case shall only be carried out between C p values of like sign.4. For monoslope roofs, entire roof surface is either a windward or leeward surface.5. For flexible buildings use appropriate Gfas determined by Section 2.4.10.6. Refer to Figure 2.4.7 for domes and Figure 2.4.8 for arched roofs.7. Notation:B

    : Horizontal dimension of building, in meter, measured normal to wind direction.L

    : Horizontal dimension of building, in meter, measured parallel to wind direction.h: Mean roof height in meters, except that eave height shall be used for e 10 degrees.z: Height above ground, in meters.G: Gust effect factor.qz,qh: Velocity pressure, in N/m2, evaluated at respective height.: Angle of plane of roof from horizontal, in degrees.8. For mansard roofs, the top horizontal surface and leeward inclined surface shall be treated as leewardsurfaces from the table.9. Except for MWFRS's at the roof consisting of moment resisting frames, the total horizontal shear shall notbe less than that determined by neglecting wind forces on roof surfaces.#For roof slopes greater than 80, use Cp= 0.8

  • 8/10/2019 BNBC Part 6-Chap 2_26-08-2012

    40/131

    Part6

    40

    MainWindForceResistingSystem Method2 AllHeights

    Figure2.4.7 ExternalPressureCoefficients,Cp Domed Roofs

    Enclosed,PartiallyEnclosedBuildings andStructures

    Note:1. Two load cases shall be considered:Case A. Cpvalues between A and B and between B and C shall be determined by linearinterpolation along arcs on the dome parallel to the wind direction;Case B. Cpshall be the constant value of A for 25 degrees, and shall be determined by linearinterpolation from 25 degrees to B and from B to C.2.

    Values denoteCp

    to be used with

    wherehD+f

    is the height at the top of the dome.3.

    Plus and minus signs signify pressures acting toward and away from the surfaces, respectively.4. Cpis constant on the dome surface for arcs of circles perpendicular to the wind direction; forexample, the arc passing through BBB and all arcs parallel to BBB.5. For values of hD/Dbetween those listed on the graph curves, linear interpolation shall bepermitted.6. =0 degreeson dome springline, = 90 degrees at dome center top point. f is measured fromspringline to top.7. The total horizontal shear shall not be less than that determined by neglecting wind forces roofsurfaces.8. Forf/Dvalues less than 0.05. use Figure 2.4.6.

  • 8/10/2019 BNBC Part 6-Chap 2_26-08-2012

    41/131

    Chapter2

    41

    MainWindForceRes.Sys./CompandClad.Method2 AllHeightFigure2.4.8 ExternalPressureCoefficients,Cp ArchedRoofs

    Enclosed,PartiallyEnclosedBuildingsandStructures

    Condition Risetospan

    ratio,r

    CpWindward

    quarter

    Center

    half

    Leeward

    quarter

    Roof on elevated structure 0 < r< 0.2 0.9 0.7 r 0.50.2 r< 0.3* l.5 r 0.3 0.7 r 0.50.3 r 0.6

    2.75r

    0.7 0.7 r

    0.5Roof springing from groundlevel 0

  • 8/10/2019 BNBC Part 6-Chap 2_26-08-2012

    42/131

    Part6

    42

    MainWindForceResistingSystem Method2 AllHeightsFigure2.4.9 DesignWindLoadCases

    Case 1. Full design wind pressure acting on the projected area perpendicular to each principal axisof the structure, considered separately along each principal axis.Case 2. Three quarters of the design wind pressure acting on the projected area perpendicular toeach principal axis of the structure in conjunction with a torsional moment as shown,considered separately for each principal axis.Case 3. Wind loading as defined in Case 1, but considered to act simultaneously at 75% of thespecified value.Case 4. Wind loading as defined in Case 2, but considered to act simultaneously at 75% of thespecified value.Notes:1. Design wind pressures for windward and leeward faces shall be determined in accordance

    with the provisions of 2.4.13 as applicable for building of all heights.2. Diagrams show plan views of building.3. Notation:Pwx,PwY:Windward face design pressure acting in the x,yprincipal axis, respectively.PLX,PLY:Leeward face design pressure acting in the x,yprincipal axis, respectively.e(eX+ey): Eccentricity for the x,yprincipal axis of the structure, respectively.MT: Torsional moment per unit height acting about a vertical axis of the building.

  • 8/10/2019 BNBC Part 6-Chap 2_26-08-2012

    43/131

  • 8/10/2019 BNBC Part 6-Chap 2_26-08-2012

    44/131

    Part6

    44

    MainWindForceResistingSystem Method2 h 18.3m

    Figure2.4.10(contd) ExternalPressureCoefficients,GCpf LowriseWalls&

    RoofsEnclosed,PartiallyEnclosedBuildings

    RoofAngle (degrees)BuildingSurface

    1 2 3 4 5 6 1E 2E 3E 4E05 0.40 0.69 0.37 0.29 0.45 0.45 0.61 1.07 0.53 0.4320 0.53 0.69 0.48 0.43 0.45 0.45 0.80 1.07 0.69 0.643045 0.56 0.21 0.43 0.37 0.45 0.45 0.69 0.27 0.53 0.4890 0.56 0.56 0.37 0.37 0.45 0.45 0.69 0.69 0.48 0.48Notes:1. Plus and minus signs signify pressures acting toward and away from the surfaces, respectively.2. For values of other than those shown, linear interpolation is permitted.3. The building must be designed for all wind directions using the 8 loading patterns shown. The loadpatterns are applied to each building corner in turn as the Reference Corner.4. Combinations of external and internal pressures (see Figure 2.4.5) shall be evaluated as required toobtain the most severe loadings.5. For the torsional load cases shown below, the pressures in zones designated with a T (1T, 2T, 3T,4T) shall be 25% of the full design wind pressures (zones 1, 2, 3, 4).Exception: One story buildings with hless than or equal to 9.1m, buildings two stories or lessframed with light frame construction, and buildings two stories or less designed with flexiblediaphragms need not be designed for the torsional load cases.Torsional loading shall apply to all eight basic load patterns using the figures below applied at eachreference corner.6. Except for momentresisting frames, the total horizontal shear shall not be less than thatdetermined by neglecting wind forces on roof surfaces.7. For the design of the MWFRS providing lateral resistance in a direction parallel to a ridge line or forflat roofs, use = 0 and locate the zone 2/3 boundary at the midlength of the building.8. The roof pressure coefficient GCpf, when negative in Zone 2 or 2E, shall be applied in Zone 2/2Efora distance from the edge of roof equal to 0.5 times the horizontal dimension of the building parallelto the direction of the MWFRS being designed or 2.5 times the eave height, he, at the windwardwall, whichever is less; the remainder of Zone 2/2E extending to the ridge line shall use thepressure coefficient GCpffor Zone 3/3E.

    9.

    Notation:a

    : 10 percent of least horizontal dimension or0.4h

    , whichever is smaller, but not less than either4% of least horizontal dimension or 0.9 m.h: Mean roof height, in meters, except that eave height shall be used for 10.: Angle of plane of roof from horizontal, in degrees.

  • 8/10/2019 BNBC Part 6-Chap 2_26-08-2012

    45/131

    Chapter2

    45

    ComponentsandCladdingMethod2 h 18.3m

    Figure2.4.11.A ExternalPressureCoefficients,GCp Walls

    Enclosed,PartiallyEnclosedBuildings

    Notes:1. Vertical scale denotes GCPto be used with qh-2. Horizontal scale denotes effective wind area, in square meters.3. Plus and minus signs signify pressures acting toward and away from the surfaces,respectively.4. Each component shall be designed for maximum positive and negative pressures.5. Values of GCPfor walls shall be reduced by 10% when 10 0.6. Notation:a:10 percent of least horizontal dimension or 0.4h, whichever is smaller, but not less thaneither 4% of least horizontal dimension or 0.9m.h:Mean roof height, in meters, except that eave height shall be used for 10 0.: Angle of plane of roof from horizontal, in degrees.

  • 8/10/2019 BNBC Part 6-Chap 2_26-08-2012

    46/131

    Part6

    46

    ComponentsandCladdingMethod2 h 18.3m

    Figure2.4.11.B ExternalPressureCoefficients,GCp GableRoofs 70

    Enclosed,PartiallyEnclosedBuildings

    Notes:

    1. Vertical scale denotes GCPto be used with qh-2. Horizontal scale denotes effective wind area, in square meters.3. Plus and minus signs signify pressures acting toward and away from the surfaces,respectively.4. Each component shall be designed for maximum positive and negative pressures.5. If a parapet equal to or higher than 0.9m is provided around the perimeter of the roof with 70, the negative values of GC0in Zone 3 shall be equal to those for Zone 2 and positivevalues of GCPin Zones 2 and 4 shall be set equal to those for wall Zones 4 and 5 respectivelyin figure 2.4.11A.6. Values of GCPfor roof overhangs include pressure contributions from both upper and lowersurfaces.7. Notation:a:10 percent of least horizontal dimension or 0.4h, whichever is smaller, but not less thaneither 4% of least horizontal dimension or 0.9m.h:

    Eave height shall be used for 100

    .: Angle of plane of roof from horizontal, in degrees.

  • 8/10/2019 BNBC Part 6-Chap 2_26-08-2012

    47/131

    Chapter2

    47

    ComponentsandCladdingMethod2 h 18.3m

    Figure2.4.11.C ExternalPressureCoefficients,GCp Gable/HipRoofs70

  • 8/10/2019 BNBC Part 6-Chap 2_26-08-2012

    48/131

    Part6

    48

    ComponentsandCladdingMethod2 h 18.3mFigure2.4.11.D ExternalPressureCoefficients,GCp GableRoofs27

    0

  • 8/10/2019 BNBC Part 6-Chap 2_26-08-2012

    49/131

    Chapter2

    49

    ComponentsandCladdingMethod2 h 18.3mFigure2.4.12 ExternalPressureCoefficients,GCp

    SteppedRoofsEnclosed,PartiallyEnclosedBuildings

    Notes:On the lower level of flat, stepped roofs shown in Fig. 2.4.12, the zone designations and pressurecoefficients shown in Fig. 2.4.11B shall apply, except that at the roofupper wall intersection(s), Zone 3shall be treated as Zone 2 and Zone 2 shall be treated as Zone 1. Positive values of GCpequal to those forwalls in Fig. 2.4.11A shall apply on the crosshatched areas shown in Fig. 2.4.12.Notation:b: 1.5h1in Fig. 2.4.12, but not greater than 30.5 m.h: Mean roof height, in meters.hi: h1or h2in Fig. 2.4.12; h= h1+h2;h1 3.1 m; hi/h= 0.3 to 0.7.W: Building width in Fig. 2.4.12.Wi:W1

    orW2

    orW3

    in Fig. 2.4.12.W=W1+W2

    orW1+W2+W3

    ;Wi/W

    = 0.25 to 0.75.e

    : Angle of plane of roof from horizontal, in degrees.

  • 8/10/2019 BNBC Part 6-Chap 2_26-08-2012

    50/131

  • 8/10/2019 BNBC Part 6-Chap 2_26-08-2012

    51/131

    Chapter2

    51

    ComponentsandCladdingMethod2 h 18.3m

    Figure2.4.14.A ExternalPressureCoefficients,GCp MonoslopeRoofs

    30

  • 8/10/2019 BNBC Part 6-Chap 2_26-08-2012

    52/131

  • 8/10/2019 BNBC Part 6-Chap 2_26-08-2012

    53/131

    Chapter2

    53

    ComponentsandCladdingMethod2 h 18.3m

    Figure2.4.15 ExternalPressureCoefficients,GCp SawtoothRoofs

    Enclosed,PartiallyEnclosedBuildings

    Notes:

    1. VerticalscaledenotesGCPtobeusedwithqh

    2. HorizontalscaledenoteseffectivewindareaA,insquarefeet(squaremeters).

    3. Plusandminussignssignifypressuresactingtowardandawayfromthesurfaces,respectively.

    4. Eachcomponentshallbedesignedformaximumpositiveandnegativepressures.

    5. For 100

    ValuesofGCPfromFig.2.4.11shallbeused.

    6. Notation:

    a: 10 percent of least horizontal dimension or 0.4h, whichever is smaller, but not less than

    either4%ofleasthorizontaldimensionor0.9m.

    h:Meanroofheightinmetersexceptthateaveheightshallbeusedfor00

    100.

    W:Buildingwidth,inmeters.

    :Angleofplaneofrooffromhorizontal,indegrees.

  • 8/10/2019 BNBC Part 6-Chap 2_26-08-2012

    54/131

    Part6

    54

    ComponentsandCladdingMethod2 AllHeights

    Figure2.4.16 ExternalPressureCoefficients,GCp DomedRoofs

    Enclosed,PartiallyEnclosedBuildings

    ExternalPressureCoefficientsforDomeswithacircularBase, degrees NegativePressures PositivePressures PositivePressures0 90 0 60 61 90GCp 0.9 +0.9 +0.5Notes:1. Values denote Cpto be used with