Bending - fast10.vsb.cz

15
Bending β€’ Calculation of normal bending stress. β€’ Neutral axis, cross-sectional modulus. β€’ Bending of beams of asymmetrical cross-section. β€’ Design and assessment of beams with elastic behavior of the material according to the ultimate limit state.

Transcript of Bending - fast10.vsb.cz

Bending

β€’ Calculation of normal bending stress.β€’ Neutral axis, cross-sectional modulus.β€’ Bending of beams of asymmetrical cross-section.β€’ Design and assessment of beams with elastic behavior

of the material according to the ultimate limit state.

1. Bending stress = normal stress from My

Load qz , Fz , My β†’ bending moment My β†’ normal stress

Οƒπ‘šπ‘Žπ‘₯ =𝑀𝑦

πΌπ‘¦βˆ™ 𝑒 =

𝑀𝑦

π‘Šπ‘¦

Stress course along the height of the cross section :

linear, changing with increasing distance from the

member axis, maximum in the extreme fibers

1. Stress – normal stress Οƒπ‘₯

𝐼𝑦 [π‘š4]

Effect of bending moment 𝑀y

Οƒπ‘₯ =𝑀𝑦

πΌπ‘¦βˆ™ 𝑧

- moment of inertia

(The shear force Vz causes shear stresses in the cross section –

following topic)

π‘Šπ‘¦ =𝐼𝑦

𝑒

- section modulus Wy

derived from Iy for edge

fibers

π‘Šπ‘¦ [π‘š3]

+

M

e

e

neutrΓ‘lnΓ‘ osa

Deformation: deflection w [m] and angle of rotation Ο• [rad]

Calculation:

2. Deformation

𝐸. 𝐼𝑦 . πœ‘ = βˆ’ΰΆ±π‘€π‘¦. dπ‘₯ + 𝐢1

𝐸. 𝐼𝑦. 𝑀 = βˆ’ΰΆ± ࢱ𝑀𝑦. dπ‘₯ . dπ‘₯ + 𝐢1. π‘₯ + 𝐢2

In following topic

-

+

Οƒ = 0

Tensile fibers

Pressed fibersMy My

x

z

y

1. Ultimate limit state:

MRd carrying capacity in design value

2. Serviceability limit state :

Normal stress Οƒ [MPa]

𝑀𝐸𝑑 = π‘€π‘šπ‘Žπ‘₯ maximal bending moment in design value

𝑀𝑅𝑑 β‰₯ 𝑀𝐸𝑑

The limiting deflection (entered) must be less than the actual deflection from the given load calculated in characteristic values.

Design and assessment of bending stress elements(symmetrical cross sections)

π‘€π‘™π‘–π‘š β‰₯ π‘€π‘Ÿπ‘’π‘Žπ‘™

𝑀𝑅𝑑 = 𝑓𝑦𝑑 βˆ™ π‘Šπ‘¦

fyd = 𝑓𝑦,π‘˜

𝛾𝑀= Οƒallow

In following topicsy

z

Οƒmax,2

Οƒmax,1

ee

Οƒ = 0

Cross section

Οƒπ‘šπ‘Žπ‘₯ =𝑀𝑦

πΌπ‘¦βˆ™ 𝑒 =

𝑀𝑦

π‘Šπ‘¦

+

M

𝑀𝐸𝑑 = π‘€π‘šπ‘Žπ‘₯

- Section modulus, we use for the design and

assessment of the cross-section, as it applies

to the extreme fibers of the cross-section,

where the stress is maximum

π‘Šπ‘¦ [π‘š3]

- yield strength, material strength, maximum normal stress that the cross section transmits in the elastic state, for steel the same in tension and pressure

𝑓𝑦 [π‘ƒπ‘Ž]

We calculate the stress in absolute value and determine the sign according to the sign of bending moments, for positive bending moments the lower fibers are tensile (+), for negative moments the upper fibers are tensile (+).

Οƒπ‘šπ‘Žπ‘₯ =𝑀𝑦

π‘Šπ‘¦+

-

Cross-sectional characteristics in bending :

β€’ simple shapes and rolled profiles – tables

β€’ compound shapes - calculation

1. Symmetrical cross sections:

2. Asymmetric cross sections :

Οƒπ‘šπ‘Žπ‘₯, 1 = Οƒπ‘šπ‘Žπ‘₯, 2 =𝑀

π‘Šπ‘¦

π‘Š1 = π‘Š2 = W

π‘Šπ‘¦ =𝐼𝑦𝑒

Οƒ1 β‰  Οƒ 2

π‘Š1 β‰  π‘Š2e2

e1

x

)(tlakW

M

hor

hor

)(tahW

M

doldol

y

z

Οƒπ‘šπ‘Žπ‘₯ = Οƒ1 =𝑀

π‘Šπ‘¦, 1

The maximum stress arises in the fibers farther from the cross-sectional axis, eg at the T-section the lower fibers are (Wy, min):

𝐼 =πœ‹ βˆ™ 𝑑4

64

π‘Š =πœ‹ βˆ™ 𝑑3

32

𝐼 =1

12π‘β„Ž3

π‘Š =1

6π‘β„Ž2 π‘Š =

1

6π‘Ž3

𝐼 =1

12π‘Ž4

π‘Šπ‘¦ =𝐼𝑦

𝑒[m3]

β€’ Moment of inertia Iy [m4]

β€’ Section modulus Wy [m3]

𝑒1 β‰  𝑒 2

𝑒1 = 𝑒2 = e

2

1

Οƒπ‘šπ‘Žπ‘₯ = Οƒ1 =𝑀

π‘Šπ‘¦, 1

Οƒ2 =𝑀

π‘Šπ‘¦,2

𝑒 =β„Ž

2𝑒 =

𝑑

2𝑒 =

π‘Ž

2

Determine the value of maximum of normal stress in the upper and thelower fibres of the simple beam of the welded T profile.

1. Reactions, distribution of V (shear forces) and M (bending moments)

flange(160 x 16)

web (10 x 220)

T

q = 11 kN/m

l = 6 m

V [kN]

M [kNm]

Mmax = 49,5 kNm

2Β°

1Β°

Example 1

33

-33

1) placing the centre of gravity from y

2) Distance of the centres of gravity of parts from

the centre of gravity of the whole section

3) central moment of inertia

4) Section modulus for the edge fibres

2. Cross-sectional characteristics

22

01

6

T1

T

10

c 1c 2

e 1e 2

y

z

zT = 62,54 mm

c1 = 63,46 mm

c2 = 54,54 mm

Iy = 2,54027 . 107 mm4 = 2,54027 . 10-5 m4

π‘Šπ‘¦,1 =𝐼𝑦𝑒1=2,54027 β‹… 107

173,46= 1,4644 β‹… 105 mm3

π‘Šπ‘¦,2 =𝐼𝑦𝑒2

=2,54027 β‹… 107

62,54= 4,0618 β‹… 105 mm3

e2 = zT =

e1 = (220+16) - zT =

Wy,min = Wy1 Maximal stress is in the lower fibers

Example 1

T2

y

160

z T

The signs of the stress are determined from the moment distribution (tensile / pressed fibers)

neutr. axes→ σ = 0

-108,6 MPa

301,1 MPa

45 m1054027,2 yI

𝑒2 = 62,54mm

𝑒1 = 173,46mm

𝜎2 =π‘€π‘šπ‘Žπ‘₯

π‘Šπ‘¦,2= 121,88MPa (pressure)

𝜎1 = πœŽπ‘šπ‘Žπ‘₯ =π‘€π‘šπ‘Žπ‘₯

π‘Šπ‘¦,1= 339,04MPa(tensile fibers)

Οƒ in place of Mmax

3. Normal stress in the upper, lower fibers of the cross-section and in the place below the flange

π‘Šπ‘¦,1 = 1,4644 β‹… 105 mm3

π‘Šπ‘¦,2 = 4,0618 β‹… 105 mm3

22

01

6

T2

T1

T

10

160c 1

c 2

e 1e 2

y

-80,65 MPa

πœŽπ‘“π‘™π‘Žπ‘›π‘”π‘’ =π‘€π‘šπ‘Žπ‘₯

𝐼𝑦. (𝑒2 βˆ’ 0,016) =

49,5.103

2,54027.10βˆ’5. 0,0465 = 90,61MPa

Οƒπ‘₯ =𝑀𝑦

πΌπ‘¦βˆ™ 𝑧

𝜎1 = πœŽπ‘šπ‘Žπ‘₯ =π‘€π‘šπ‘Žπ‘₯

πΌπ‘¦βˆ™ e1= 339,04 MPa (tensile fibers)

𝜎2 =π‘€π‘šπ‘Žπ‘₯

πΌπ‘¦βˆ™ e2= 121,88 MPa (pressed fibers)

𝑧

𝑧 = 𝑒2 βˆ’ 16

Alternatively:

+

M

-

+

Tensile fibers

Pressed fibersMy My

z(pressure)

Example 1

Example 2 - design and assessment of a circular cross-section according to ULS

Design and assess a steel beam of circular cross-sectionaccording to ULS, qk = 1,25 kNm-1, Ξ³Q =1,5, Ξ³M =1,00.Fe430 / S275.

q

3 0,51a b

2. Reactions and internal forces

1. π‘žπ‘‘ = π‘žπ‘˜ βˆ™ Ξ³Q = 1,25 βˆ™ 1,5 = 1,875 kN/m

𝑓𝑦,𝑑 =𝑓𝑦,π‘˜π›Ύπ‘€

=275

1,0= 275 MPa

𝐹𝑖,𝑧 = 0:βˆ’4,923 βˆ’ 3,516 + 1,875 βˆ™ 4,5 = 0

+

𝑀𝑖,π‘Ž = 0:

𝑀𝑖,𝑏 = 0:

π‘…π‘Žπ‘§,𝑑 = 4,923 π‘˜π‘

𝑅𝑏𝑧,𝑑 = 3,516 π‘˜π‘

π‘žπ‘‘ = 1,875 kN/m

𝑄𝑑,1 βˆ™ 0,5 βˆ’ 𝑄𝑑,2 βˆ™ 1,5 βˆ’ 𝑄𝑑,3 βˆ™ 3,25 + 𝑅𝑏𝑧,𝑑 βˆ™ 3 = 0

𝑄𝑑,1 βˆ™ 3,5 + 𝑄𝑑,2 βˆ™ 1,5 βˆ’ 𝑄𝑑,3 βˆ™ 0,25 βˆ’ π‘…π‘Žπ‘§,𝑑 βˆ™ 3 = 0

෨𝑄𝑑,1 = π‘žπ‘‘ βˆ™ 1

෨𝑄𝑑,2 = π‘žπ‘‘ βˆ™ 3

෨𝑄𝑑,3 = π‘žπ‘‘ βˆ™ 0,5

π‘žπ‘‘

3 0,51a b

෨𝑄𝑑,1 ෨𝑄𝑑,2 ෨𝑄𝑑,3

π‘…π‘Žπ‘§,𝑑 𝑅𝑏𝑧,𝑑

Example 2

q

3 0,51

a b

-2,577-1,875

3,048

n

0,939

a bc

V

[kN]

xnP= 1,374xn

L=1,626

d

2Β°

2Β°

2Β°n

a bc d

1,53

-0,94-0,23

M

[kNm]

1Β° 1Β°

π‘₯𝑛𝐿 =

π‘‰π‘Žπ‘‘π‘žπ‘‘

=3,048

1,875= 1,626 m

π‘₯𝑛𝑅 =

π‘‰π‘π‘‘π‘žπ‘‘

=2,577

1,875= 1,374 m

1Β°

𝑀𝑐 = 𝑀𝑑 =0

π‘€π‘ŽπΏ = βˆ’π‘žπ‘‘ βˆ™

π‘₯2

2= βˆ’1,875 βˆ™

1,02

2= βˆ’0,94 kNm

𝑀𝑛𝐿 = +π‘…π‘Žπ‘§,𝑑 βˆ™ π‘₯𝑛

𝐿 βˆ’ π‘žπ‘‘ βˆ™π‘₯𝑛𝐿 + 1 2

2= 1,53 kNm

c d

Critical point:

𝑀𝑏𝑃 = βˆ’π‘žπ‘‘ βˆ™

π‘₯2

2= βˆ’1,875 βˆ™

0,52

2= βˆ’0,23 kNm

𝑀𝑛𝑃 = +𝑅𝑏𝑧,𝑑 βˆ™ π‘₯𝑛

𝑃 βˆ’ π‘žπ‘‘ βˆ™π‘₯𝑛𝑃+0,5

2

2= 1,53 kNm

Extremes of moments on the beam:

𝑀𝑛,𝑑 = 1,53 kNm

π‘€π‘Ž,𝑑 = βˆ’0,94 kNm

𝑀𝑏,𝑑 = βˆ’0,23 kNmπ‘΄π’Žπ’‚π’™ = 𝑴𝑬𝒅 = 𝟏, πŸ“πŸ‘ 𝐀𝐍𝐦

You can also calculate bending moments with the help of substitute forces

π‘…π‘Žπ‘§,𝑑 = 4,92 π‘˜π‘ 𝑅𝑏𝑧,𝑑 = 3,52π‘˜π‘

3. Calculation of the minimum cross-section of the beam according to ULS :

π‘Šy,π‘šπ‘–π‘›=𝑀𝐸𝑑

𝑓𝑦𝑑

πœ‹π‘‘π‘šπ‘–π‘›3

32= 5,564 . 10-6

π‘‘π‘šπ‘–π‘›= 0,038 βˆ™ 10βˆ’3π‘š

𝑀𝐸𝑑 = 1,53 kNm𝑓𝑦𝑑 β‰₯ Οƒπ‘šπ‘Žπ‘₯ =𝑀𝐸𝑑

π‘Šπ‘¦

Example 2

𝑓𝑦𝑑 β‰₯𝑀𝐸𝑑

π‘Šπ‘¦

Wy,min = 5,564 . 10-6 m3

5. Assessment:

4. Design

𝑀𝑅𝑑 = 𝑓𝑦𝑑 βˆ™ π‘Šy

We round the value of the diameter d upwards :

𝑑 = 0,04 mDesign:

𝑀𝑅𝑑 β‰₯ 𝑀𝐸𝑑

π‘Šy =πœ‹ βˆ™ 𝑑3

32==

πœ‹ βˆ™ (0,04)3

32= 6,28 . 10 βˆ’6m3Section modulus:

MRd= 1,73 kN > MRd= 1,53kN

d

𝑑 = 0,04 m

Answer:The proposed cross-section with a diameter of d = 0.04 m complies with the ultimate limit state.0

In the case of the design of a square

cross βˆ’ section,we substitute for π‘Šπ‘¦, π‘šπ‘–π‘›=1

6π‘Ž3

π‘Š =πœ‹ βˆ™ 𝑑3

32

Example 3 Crosssetional characteristics1. The IPN pair is next to each other2. The IPN profiles are on top of each other

Tables: IPN 160: Wy = 1,17.105 mm3 = 1,17. 10-4 m3

1. The IPN pair is next to

each other

2. The IPN profiles are on

top of each other

Wy,1 = 1,17 βˆ™ 10-4 = m31.

2.

Wy= 2 x 1,17 βˆ™ 10-4 = 2,34 βˆ™ 10-4 m3

y

z

2 x IPN160

2 x IPN160

80

y

z

Iy = 2 βˆ™ 9,35 βˆ™ 10-6 = 18,7 βˆ™ 10-6 m4

Iy = 9,35. 106 mm4 = 9,35. 10-6 m4

π‘Šπ‘¦ =𝐼𝑦𝑒=

18,7 βˆ™ 10βˆ’6

0,08= 2,34 βˆ™ 10βˆ’4 m3

Iy = 2 βˆ™ 9,35 βˆ™ 10-6 + 2 βˆ™ 2,28 βˆ™ 10-3 βˆ™ 0,082 = 4,79 βˆ™ 10-5 m4

π‘Šπ‘¦ =𝐼𝑦𝑒=

4,79 βˆ™ 10βˆ’5

0,16= 2,99 βˆ™ 10βˆ’4 m3

e=160

e=80Iy calculate using Steiner's theorem, Wy compute

Wy can be taken directly as a double from the tables, it can be verified by calculating from Iy

A = 2,28. 103 mm2 = 2,28. 10-3 m2Tables IPN 160:

Other tablesI 160: Wy = 117.103 mm3 = 1,17. 10-4 m3

Example 4 - section from a pair of profiles

Design and assess a Fe360 / S235 steel beam loaded witha variable load qk= 15 kNm-1, gQ= 1,5, gM= 1,00.Cross section: UPN

l = 6 m

qd

U

U2. Reactions

1.

π‘žπ‘‘ = π‘žπ‘˜ βˆ™ Ξ³Q = 15 βˆ™ 1,5 = 22,5 kN/m

𝑓𝑦,𝑑 =𝑓𝑦,π‘˜π›Ύπ‘€

=235

1,0= 235 MPa

σ𝐹𝑖,𝑧 = 0:βˆ’22,5 βˆ’ 45 +1

2βˆ™ qd βˆ™ 6 = 0

+

𝑀𝑖,π‘Ž = 0:

𝑀𝑖,𝑏 = 0:

π‘…π‘Ž,𝑑 = 22,5 kN

𝑅𝑏,𝑑 = 45 kN

π‘žπ‘‘ = 22,5 kN/m

βˆ’1

2βˆ™ π‘žπ‘‘ βˆ™ 6 βˆ™ 4 + 𝑅𝑏,𝑑 βˆ™ 6 = 0

1

2βˆ™ π‘žπ‘‘ βˆ™ 6 βˆ™ 2 βˆ’ π‘…π‘Ž,𝑑 βˆ™ 6 = 0π‘…π‘Ž,𝑑

෨𝑄 =1

2βˆ™ qd βˆ™ 6

l = 6 m

q

a b

a b

𝑅𝑏,𝑑

π‘€π‘Ž = 𝑀𝑏 =0

π‘€π‘šπ‘Žπ‘₯𝐿 = +π‘…π‘Ž,𝑑 βˆ™ π‘₯𝑛 βˆ’

π‘žπ‘‘ βˆ™ π‘₯𝑛3

6 βˆ™ 𝑙= 51,96 kNm

Critical point:

l = 6 m

qd =22,5kN/m

45

+

-

22,5

na b

V

[kN]

Xn= 3,464 2Β°

-45

a bM

[kNm]+

xMmax = 51,96

3Β°

෨𝑄 =1

2βˆ™ qd βˆ™ 6

a b

22,5

π‘₯𝑛𝐿 =

2 βˆ™ π‘‰π‘Žβˆ™ 𝑙

π‘žπ‘‘=

2 βˆ™ 22,5 βˆ™ 6

22,5= 3,464 m

3. Design according to ULS:

π‘Šy,π‘šπ‘–π‘›=𝑀𝐸𝑑

𝑓𝑦𝑑=

51,96

275βˆ™103= 2,211.10-4 m3

𝑀𝐸𝑑 = 51,96 kNm

𝑓𝑦𝑑 β‰₯𝑀𝐸𝑑

π‘Šy

Wy,min,1 = 2,211βˆ™10βˆ’4

2=1,105 βˆ™ 10-4 m3 =1,105 βˆ™ 105 mm3

UPN160: Wy,1 = 1,16 βˆ™ 105 mm3 = 1,16 βˆ™ 10-4 m3

For 2U:

For 1U:

Tables:1U profil

2xUPN160: Wy = 2 βˆ™ 1,16.10-4 = 2,32 βˆ™ 10-4 m3Design:

Assessment:

MRd = 𝑓𝑦𝑑 βˆ™ π‘Šπ‘¦ = 235 βˆ™ 103 βˆ™ 2,32 . 10βˆ’4 = 54,52kNm

MRd= 54,52kNm > MEd = 51,96 kNm

Example 3

Answer:The proposed cross-section with a diameter of d = 0.04 m complies with the ultimate limit state.

Example 5 - homework Design and assess a steel beam from a rolled IPN profileaccording to ULS. Fe 360/S235, Ξ³M=1,00, Ξ³Q=1,5

qk = 7,5 kNm-1

6 1,5

1) Reactions Ra, Rb

2) V, M

3) Mmax= MEd

4) Determine Wy,min :

5) Design section:

6) Carrying capacity MRd

7) Assessment:

= 44,50 kNm

2 extrΓ©mes, chose Mmax

𝑓𝑦𝑑 β‰₯ πœŽπ‘šπ‘Žπ‘₯

𝑓𝑦𝑑 β‰₯𝑀𝐸𝑑

π‘Šπ‘¦

π‘Šπ‘¦, π‘šπ‘–π‘›=𝑀𝐸𝑑

𝑓𝑦𝑑= 1,8936.10-4m3

=2,14.10-4m3IPN200: Wy

β†’ satisfyingEdRd MM

𝑀𝑅𝑑 = 𝑓𝑦𝑑 β‹… π‘Šπ‘¦

MRd = 50,29 kNm