Bak-Sneppen Evolution models on Random and Scale-free Networks

18
1 Satellite Meeting of STATPHYS 22(KIAS) Bak-Sneppen Evoluti on models on Random and Scale-free Netw orks I. Introduction II. Random Neighbor Model III. BS Evolution Model on Network Structures IV. Results V. Summary Sungmin Lee, Yup Kim Kyung Hee Univ.

description

Bak-Sneppen Evolution models on Random and Scale-free Networks. I. Introduction II. Random Neighbor Model III. BS Evolution Model on Network Structures IV. Results V. Summary. Sungmin Lee, Yup Kim Kyung Hee Univ. I. Introduction. The "punctuated equilibrium" theory. - PowerPoint PPT Presentation

Transcript of Bak-Sneppen Evolution models on Random and Scale-free Networks

Page 1: Bak-Sneppen Evolution models on Random and Scale-free Networks

1Satellite Meeting of STATPHYS 22(KIAS)

Bak-Sneppen Evolution models on Random and Scale

-free Networks

I. Introduction

II. Random Neighbor Model

III. BS Evolution Model

on Network Structures

IV. Results

V. Summary

Sungmin Lee, Yup KimKyung Hee Univ.

Page 2: Bak-Sneppen Evolution models on Random and Scale-free Networks

2Satellite Meeting of STATPHYS 22(KIAS)

I. Introduction

Self-organized critical steady state

S.J.Gould (1972)

Instead of a slow, continuous movement, evolution

tends to be characterized by long periods of virtual

standstill ("equilibrium"), "punctuated" by episodes

of very fast development of new forms

The "punctuated equilibrium" theory

Page 3: Bak-Sneppen Evolution models on Random and Scale-free Networks

3Satellite Meeting of STATPHYS 22(KIAS)

The Bak-Sneppen evolution model

0.2 0.30.15

0.40.45

0.7 0.90.35

0.10.55

0.75

0.5 0.80.65

0.60.25

Fitness - An entire species is represented by a single fitness - The ability of species to survive - The fitness of each species is affected by other species to which it is coupled in the ecosystem.

At each time step, the ecology is updated by (i) locating the site with thelowest fitness and mutating it by assigning a new

randomnumber to that site, and

10 if ),,1( Ni PBC

P.Bak and K.sneppenPRL 71,4083 (1993)

0.2 0.30.15

0.40.45

0.7 0.90.95

0.47

0.22

0.75

0.5 0.80.65

0.60.25

Lowest fitness

(ii) changing the landscapes of the two neighbors by assigning new random numbers

to those sites

New lowest fitness

Snapshot of the stationary

state66702.0cf

M.Paczuski, S.Maslov, P.BakPRE 53,414 (1996)

Page 4: Bak-Sneppen Evolution models on Random and Scale-free Networks

4Satellite Meeting of STATPHYS 22(KIAS)

Gap and Critical fitness

)(min sf : The lowest fitness at step s

)](,),0(max[)( minmin sffsG

cfsG )(

Page 5: Bak-Sneppen Evolution models on Random and Scale-free Networks

5Satellite Meeting of STATPHYS 22(KIAS)

Avalanche - subsequent sequences of mutations through fitness below a certain threshold

Distribution of avalanche

sizes in the critical state

Punctuated equilibria - long periods of passivity interrupted by sudden bursts of activity

The activity versus time in a local segment

of ten consecutive sites.

SSP ~)(

1d 2d

1.07(1) 1.245(10)

Page 6: Bak-Sneppen Evolution models on Random and Scale-free Networks

6Satellite Meeting of STATPHYS 22(KIAS)

(1) Study for a characteristic of evolution when interacting structures of biospecies are Scale-free Networks or Random Networks

Motivation of this study

(2) Self-Organized Criticality

of Evolution and Punctuated

Equilibrium on Network

Structures (3) What is the best

structure for the adaptation of species-correlation? (Is there evolution-free

network?)

Page 7: Bak-Sneppen Evolution models on Random and Scale-free Networks

7Satellite Meeting of STATPHYS 22(KIAS)

Exactly solvable model

0.2 0.30.15

0.40.45

0.7 0.90.35

0.10.55

0.75

0.5 0.80.65

0.60.25

- At each time step, the ecology is updated by (i) locating the node with the lowest fitness and mutating it by assigning a new random number to that site (ii) changing the landscapes of randomly

selected K-1 sites by assigning new random

numbers to those sites.

II. Random Neighbor Model

0.2 0.30.15

0.77

0.45

0.34

0.90.35

0.52

0.55

0.75

0.50.22

0.65

0.60.89

Lowest fitness

New lowest fitness

ix: the i-th smallest fitness value

)(xpi : the distribution for ix)(xp : the distribution of all fitness values in the ecology

)()()()( 1)!()!1(

! xQxpxPxp iNiiNi

Ni

x

xpxdxP0

)()( 1

)()(x

xpxdxQwhere

Page 8: Bak-Sneppen Evolution models on Random and Scale-free Networks

8Satellite Meeting of STATPHYS 22(KIAS)

),(),()1,( 11 txptxptxp N

NK

NNK txptxp

),(),( 11

11

The evolution equation for ),( txp

NKxp )(

1)( KKxp

)( 11NK x

)( 11NKx

for

for

SSP ~)( 5.1

(1) identifying each burst with a node(2) and each of K new fitness values resulting from a burst - with either a branch rooted in that node (if the fitness value is less than the threshold value) - with a leaf rooted in the same node (if the fitness value is above threshold)

Avalanches

Kcf10 1

The limit is necessary to obtain the tree structure.N

t

Page 9: Bak-Sneppen Evolution models on Random and Scale-free Networks

9Satellite Meeting of STATPHYS 22(KIAS)

- generate network structures with N nodes- A random fitness equally distributed between 0 and

1, is assigned to each node.- At each time step, the ecology is updated by (i) locating the node with the lowest fitness and

mutating it by assigning a new random number to that site (ii) changing the landscapes of the linked neighbors

by assigning new random numbers to those nodes.

III. BS Evolution Model on Network Structures

0.2

0.75

0.6

0.7

0.8

0.9

0.4

0.3

0.5

0.1

0.25

0.45

0.2

0.21

0.6

0.7

0.62

0.9

0.4

0.3

0.5

0.31

0.25

0.98

Page 10: Bak-Sneppen Evolution models on Random and Scale-free Networks

10Satellite Meeting of STATPHYS 22(KIAS)

dkkPNk

max

)(1

dkkNk

max

1

11

~max Nk

kkP ~)(Scale-free network

dkkPkkk

max

0

22 )(

13

~~ 3max

2

Nkk

)(kP: degree distribution

- We predict the critical behavior of random network is similar to random neighbor model.

Random network

Scale-free network

4 kMean degree :

63 10~10N

05.0

c

c

f

ff

Num. Nodes :

- Condition

Page 11: Bak-Sneppen Evolution models on Random and Scale-free Networks

11Satellite Meeting of STATPHYS 22(KIAS)

IV. ResultsRandom Network

10-7 10-6 10-5 10-4 10-3

0.20

0.22

0.24

0.26

N fc(N)

--------------------------1000 0.257610000 0.22098100000 0.211041000000 0.20748

f c(N

)

1/N

5/1cf

Random Neighbormodel

51

11 Kcf

610N

100 101 102 103

10-6

10-5

10-4

10-3

10-2

10-1

100

f(x)=A*x-exp(-x/xc)

A=0.8 =1.5 x

c=738

P(S

)

S

Consistent with PRL 81,2380 (1998)

5.1

Page 12: Bak-Sneppen Evolution models on Random and Scale-free Networks

12Satellite Meeting of STATPHYS 22(KIAS)

10-6 10-5 10-4 10-3

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

1/N

f c(N

)

=3.50 =4.30 =5.70

3

finitefc

Scale-free Network

0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.14 0.150.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

1000 10000 100000 1000000

0.1

f c(N

)

1/ln(N)

N

fc

fc(N)

~ 1/<K2>

Is consistent withEurophys. Lett., 57, 765 (2002)

3

3

13211 ~~

Nkcf

Page 13: Bak-Sneppen Evolution models on Random and Scale-free Networks

13Satellite Meeting of STATPHYS 22(KIAS)

3

0cf

10-6 10-5 10-4 10-3

0.00

0.05

0.10

0.15

0.20

=2.75 =2.40 =2.15

f c(N

)

1/N

10-6 10-5 10-4 10-3

0.01

0.1

0.37(2)0.42(3)

0.27(2)

=2.75 =2.40 =2.15

f c(N

)

1/N

13211 ~~

Nkcf

)15.2(~ 739.01

N

)40.2(~ 428.01

N

)75.2(~ 142.01

N

Page 14: Bak-Sneppen Evolution models on Random and Scale-free Networks

14Satellite Meeting of STATPHYS 22(KIAS)

100 101 102 103

10-6

10-5

10-4

10-3

10-2

10-1

100

f(x)=A*x-exp(-x/xc)

A=0.8 =1.65 x

c=1000

S

P(S

)

610N30.4

70.5

100 101 102 103

10-6

10-5

10-4

10-3

10-2

10-1

100

f(x)=A*x-exp(-x/xc)

A=0.7 =1.5 x

c=1050

S

P(S

)610N

3

Page 15: Bak-Sneppen Evolution models on Random and Scale-free Networks

15Satellite Meeting of STATPHYS 22(KIAS)

50.3

100 101 102 103

10-6

10-5

10-4

10-3

10-2

10-1

100

A=0.85 B=1.65

f(x)=A*x-B

S

P(S

)

610N100 101 102 103

10-6

10-5

10-4

10-3

10-2

10-1

100

f(x)=0.63*x-2.09

g(x)=0.15*x-1.59

S

P(S

)

Europhys. Lett.,57, 765 (2002)

3

610N

Page 16: Bak-Sneppen Evolution models on Random and Scale-free Networks

16Satellite Meeting of STATPHYS 22(KIAS)

100 101 102 103

10-5

10-4

10-3

10-2

10-1

100

g(x)=0.04*x-1.2

f(x)=0.32*x-2.3

S

P(S

)15.2

75.2 610N

100 101 102 103

10-6

10-5

10-4

10-3

10-2

10-1

100

g(x)=0.1*x-1.47

f(x)=0.6*x-2.22

S

P(S

)610N

3

Page 17: Bak-Sneppen Evolution models on Random and Scale-free Networks

17Satellite Meeting of STATPHYS 22(KIAS)

100 101 102 103

10-6

10-5

10-4

10-3

10-2

10-1

100

P(S

)

S

100 101 102 103 104 105 106

10-5

10-4

10-3

10-2

10-1

100

P(S

)

S

** Star networks

510totalN

20starN

05.0

c

c

f

ff

Page 18: Bak-Sneppen Evolution models on Random and Scale-free Networks

18Satellite Meeting of STATPHYS 22(KIAS)

IV. Summary

cf

2.15

(two power-law regimes)

(star network)

2.3+1.2

2.40

2.27+1.32

2.75

2.22+1.47

3.00

logarithmic

2.06+1.59

3.50

1.65

4.30

1.65

5.70

1.5

0cf

finitefc

cf

1.5)/exp(~)( cSSSSP 5/1cf

◆ Random Network

◆ Scale-free Network

SSP ~)(

)/exp( cSSS

)(SP

~)(SP

)(SP

SSP ~)(

◆ We would like to remark that two power-law regimes are shown in BS model on small world (cond-mat/9905066)

)(~ 21

k