Bahram Sanadgol - Kontaktangabenhft.uni-duisburg-essen.de/arbeiten/Vortrag_Sanadgol_Bahram.pdf ·...

30
11.06.2007 Bahram Sanadgol 1 Master Thesis Control and Prediction of Scan Blindness Effects in Printed Planar Antenna Systems Bahram Sanadgol Universität Duisburg-Essen: Prof. Dr.-Ing. K. Solbach Dipl.-Ing. Oliver Litschke, IMST GmbH

Transcript of Bahram Sanadgol - Kontaktangabenhft.uni-duisburg-essen.de/arbeiten/Vortrag_Sanadgol_Bahram.pdf ·...

11.06.2007 Bahram Sanadgol 1

Master Thesis

Control and Prediction of Scan Blindness Effects in Printed Planar Antenna Systems

Bahram Sanadgol

Universität Duisburg-Essen: Prof. Dr.-Ing. K. Solbach

Dipl.-Ing. Oliver Litschke, IMST GmbH

Presentation Outline

11.06.2007 Bahram Sanadgol 2

Waveguide Simulator

Blindness Concept

11.06.2007 Bahram Sanadgol 3

TM TE

•Null in Pattern •Scan Coverage •Big Mismatch in Input Impedance •No Feeding Possible

E E

Substrate u=sin θ cos Ф

Surface Wave Circle Diagram

11.06.2007 Bahram Sanadgol 4

Scanning Part

Blind

Spot

Blindness in Visible Space

TM (TE) mode excitation

X→0.55λ

y→ 0.5 λ and β=1.3

Scan Impedance Method and SEP

11.06.2007 Bahram Sanadgol 5

Effective Propagation Constant

11.06.2007 Bahram Sanadgol 6

TM Mode β Calculation

11.06.2007 Bahram Sanadgol 7

TE Mode β Calculation

11.06.2007 Bahram Sanadgol 8

Substrate Mode Ideal β Calculated

β Substrate1 TM 1.1349 1.145

Substrate2

2

TM 1.6168 1.597

Substrate2 TE 1.1316 1.109

ε=3.25

h=0.101λ

ε=4

h=0.181λ

Substrate Mode β

effective

β

Theory

Substrate1 TM 1.124 1.1349

Substrate2 TM 1.4 1.6168

Substrate2

TE 1.177 1.1316

Printed Dipole

11.06.2007 Bahram Sanadgol 9

Method Comparison for Dipole

11.06.2007 Bahram Sanadgol 10

Spacing Spacing

Surface Wave

SEP Scan

Impedance

β effective

Surface Wave

SEP Scan

Impedance

β effective

(1.1349)

(1.6168)

Spacing Substrate Surface Wave SEP Scan Impedance β Effective

Patch Array

11.06.2007 Bahram Sanadgol 11

Arrays of Microstrip Patches

11.06.2007 Bahram Sanadgol 12

Scan Element Pattern

ε=3.48

h=0.121λ β=1.2383

Scan Resistance, E-plane

11.06.2007 Bahram Sanadgol 13

Scan Reactance, E-plane

11.06.2007 Bahram Sanadgol 14

Scan Resistance, H-plane

11.06.2007 Bahram Sanadgol 15

Scan Reactance, H-plane

11.06.2007 Bahram Sanadgol 16

E-plane Farfield and Comparison

11.06.2007 Bahram Sanadgol 17

Spacing Surface Wave SEP Scan Impedance β effective

Element Spacing= 0.55 λ

Blindness Control

11.06.2007 Bahram Sanadgol 18

Wall’s Functionality

11.06.2007 Bahram Sanadgol 19

18 GHz 24 GHz

Effect of Wall on Resonant Frequency

11.06.2007 Bahram Sanadgol 20

Near Field Interference

Frequency Up-shift

Match Improvement from Suppressed Surface Wave

Single Element Tuning

Wall Effect on Blindness

11.06.2007 Bahram Sanadgol 21

Blind Spot is moved toward grating lobe.

Element Spacing= 0.55 λ

Surface

Wave is

Suppressed

SEP Analysis

Grating Lobe at 55

β close to 1

Farfield Comparison

11.06.2007 Bahram Sanadgol 22

50

Element Spacing= 0.55 λ

Waveguide Simulator

11.06.2007 Bahram Sanadgol 23

Wav

egu

ide

Po

rt

Ele

men

t P

ort

Dipole Array, Spacing o.5λ

3*3 on a substrate with h=0.181λ

28°

24 GHz

E-plane

Farfield

11.06.2007 Bahram Sanadgol 24

Farfield pattern of a 1inear array of 17 dipoles on a

substrate with ε=4.2 from Scan Impedance Method

Conclusion and Future Work

11.06.2007 Bahram Sanadgol 25

•Blindness prediction for dipoles and patches

•New method based on β calculations

•Blindness control

•Waveguide simulation as comparison

•β calculations for other single elements

•Optimized feeding network

•Another suppressing structures

11.06.2007 Bahram Sanadgol 26

11.06.2007 Bahram Sanadgol 27

Patch Serial Feeding

11.06.2007 Bahram Sanadgol 28

Why? Simple Feeding Network

Easy to introduce phase shifters

Disadvantages

Pin’s Spurious Radiation

Amplitude Distribution

Amplitude Distribution and Layout

11.06.2007 Bahram Sanadgol 29

Farfield of Series Patches

11.06.2007 Bahram Sanadgol 30